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Abstract—A real-world graph often has frequently interacting
nodes on less frequently updated edges. Each interaction activates
an existing edge and changes the activeness of the edge. In such an
activation network, nodes that are cohesively connected by active
edges form a cluster in both structural and temporal senses. For
activation networks, incrementally maintaining a structure for
an efficient clustering query processing is thus important. This
raises problems on maintaining the edge activeness, combining
the structural cohesiveness and activeness for clustering, and de-
signing indexes for online clustering queries. This paper considers
the time-decay scheme in modelling the activeness and proposes
a suite of techniques with great effort made on simplification
and innovation for efficiency, effectiveness and scalability. The
query time is only related to the query results as opposed to
the graph. The index size is linear up to a logarithmic factor.
Extensive experiments verify the quality of the clustering results
and moreover, the update time is up to six orders of magnitude
faster than the baseline.

I. INTRODUCTION

A graph with nodes and edges thereon can model the in-
terconnections among real-world objects. Various graph-based
applications host frequent interactions upon a relatively stable
graph. For example, on a social network, nodes represent users
and edges their friendships. An interaction between two nodes
of an edge can be a live chat, a message or a comment
on each other’s posts. Users interact largely with existing
friends especially after the new user phase in which most
friends have been recommended and added in a batch. Without
interactions, two users along an edge drift apart with time.
Lacking interactions sometimes reflects estrangement and even
hostility: with polarized political ideas, even family members
may not talk to each other just to avoid conflicts. Another
example is on collaboration networks where a node denotes an
academic and an edge a collaboration. Establishing a collabo-
ration with new academics takes significantly more effort than
reactivating existing collaborations. For two academics with
existing collaboration, a long period without a collaboration
may indicate diverged research interests or shifted research
environments. We abstract, from these cases, an activation
network which consists of 1) a relatively stable graph called
relation network (term borrowed from [30]), 2) a sequence
of activations each denoting an interaction along a relation
network edge and 3) the character that without an activation,
the activeness of an edge decays along time.

This paper studies scalable clustering of an activation net-
work for efficient online queries. Specifically on an activation
network, we aim at efficiently querying nodes that are cohe-
sively connected by active edges (i.e., the edges that have been

activated recently) – clusters in both structural and temporal
senses. Such queries are of practical importance: at a time,
a user of a social network may navigate his local active
community with adequate zoom ins (i.e., reporting a slightly
smaller community) and zoom outs; an academic in a collab-
oration network may explore his active research community
with different granularities. Thus, efficiently reporting such
clusters on an activation network is highly desirable.

Clustering has been extensively studied on both static
and dynamic/temporal graphs (see surveys [5], [30]). On a
static graph, a proliferation of research [5] optimizes one
structural clustering measure such as modularity, density and
conductance. Note that since each measure reflects different
emphasis, the comparison among approaches usually uses a
basket of measures (Section 3 of [30]). When it comes to
dynamic/temporal graphs, to avoid expensive recomputation
of the clustering for the snapshot of each time step, existing
work [30] i) models the problem by either associating each
edge a duration (e.g., a time interval) or constantly focusing on
the activations within a temporal window (i.e., sliding window)
and ii) at each time step, generate clustering from the previous
time step’s results (see [43] as an entrance).

The barrier of applying existing clustering methods to
activation network is the costly maintenance of the decaying
activeness. With the time-decay scheme proposed by [19] (see
Figure 1(a) for a specification), the activeness of all edges
decay along the time even without any activation. Such an
inevitable maintenance is costly to the clustering for online
queries. To reduce the cost, an optimization was proposed by
[19] which keeps, for each node at any time, only the top-k
(k is a parameter) closest neighbors as opposed to the entire
neighbor set; however, it introduces approximation and needs
to recompute the clusters for each time step as well.

Even if the activeness of edges can be efficiently maintained,
the main challenge of clustering activation network lies in
efficient online clustering query and update processing. The
state-of-the-art dynamic graph clustering [43] optimizes the
modularity along updates on the edge weights. However, its
update cost is still too large for graphs with billions of edges
and cannot handle clustering queries with different granulari-
ties. This motivates us to consider a suite of indexing problems
(Figure 1(b-c)): combining the structural cohesiveness and
activeness for clustering, designing indexes for clustering and
maintaining the indexes for online queries.

To enable an effective indexing for clustering, a metric
that integrates both structural cohesiveness and activeness
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Fig. 1: Clustering Activation Networks. (a) A relation graph G(V,E) and a stream of activations each includes an edge and a timestamp.
Assume by the current time t, an edge e ∈ E has 3 activations with timestamps t1, t2, t3, respectively. The time-decay scheme defines
activeness of edge e at time t as

∑
i∈[3] e

λ(t−ti). The decay factor λ (a parameter) controls the rate at which the impact of an activation
decays along the time. (b) For clustering the activation network, combine the structural cohesiveness and edge activeness to generate a
distance metric. (c) Build a distance-based clustering index on the distance metric, provide zoom-in and zoom-out operations for local
clustering queries on a static graph, finally update the index along the changing activeness of edges.

(Figure 1(b)) is highly desirable; however, finding a maintain-
able and effective metric is non-trivial. An interesting work
Attractor [33] on clustering static graph sheds light on our
research. On a static graph (initially unit weighted), Attractor
iteratively applies, on each edge e(x, y), “local” rules (rules
related only to x, y and their common neighbors), to update
the edge weight of e, and truncates the weight to [0, 1]. The
iteration terminates when all the weights are polarized (either 0
or 1). The clusters are generated as the connected components
of the graph after removing all the 0-weighted edges. Attractor
is not scalable since it requires empirically 50 iterations to
terminate and each iteration takes quadratic time1. We note
that the effectiveness of Attractor lies in the propagation of
the local cohesiveness across iterations.

Our observation on Attractor raises a question: On a graph
where the weight of an edge e(x, y) is the inverse of a “local
similarity S(x, y) that combines both local cohesiveness and
the activeness” of x and y, can we use “shortest distance” to
carry out the propagation of the local similarity for clustering?
A strong benefit of using the shortest distance as the metric
is the possibility for an efficient clustering index that allows
scalable construction, efficient incremental maintenance and
efficient processing of online clustering queries including
zoom-in and zoom-out (Figure 1(c)). However, will the short-
est distance be able to carry out the propagation? We provide
a positive answer to this question: for any two nodes u and
v, if we define S(u, v) as the inverse of the shortest distance
dist(u, v), then the cohesiveness of u and v is,

max
p: paths u→v

harmonic mean of the local similarity on edges on p

the number of edges on p

The propagation holds since S(u, v) reduces when either the
shortest path p has more hops or the harmonic mean of the
local similarity on edges on p is smaller. Our experimentation
verifies the effectiveness and efficiency of using shortest
distance as the metric.

The activation network maintenance and the distance-based
indexing have to be considered holistically. In other words,
the techniques used for efficiently maintaining the activeness
must be compatible to the distance-based indexing. This poses
extra challenge to our work. This paper provides a suite of

1Unlike claimed in [33], Line 18 of the algorithm of Attractor [33] takes
O(d) time where d is the maximum degree of a node. The time complexity
of Attractor is thus O(dn) per iteration where n is the number of nodes in
the graph. The complexity is O(n2), quadratic in the worst case.

techniques to efficiently clustering activation networks for
online queries. Our contributions are summarized as follows.
• We propose the problem of indexing activation networks

for online clustering queries – clustering activation net-
works – based on real-world applications.

• We provide solutions to activation network clustering in-
cluding techniques for the following three problems.
– We propose a global decaying factor to efficiently main-

tain the decaying activeness on the activation network,
the distance metric and the clustering index.

– We propose a new way of synthesizing structural cohe-
siveness and edge activeness into a distance metric that
is easily maintainable under the decaying activeness and
supports empirically verified high quality clustering.

– We propose a scalable distance-based clustering in-
dex called pyramids. Pyramids allow efficient query
processing including zoom-in and zoom-out operations
for clustering queries, and graph clustering of different
granularities. Pyramids can also be efficiently updated.
The index time and index size are linear (up to a
logarithmic factor) to the number of nodes in the graph.
The query time for clustering queries and update time
are bounded [28]; in other words, the query time is
determined by the nodes in the query results as opposed
to the entire graph, and the update time is determined
by the nodes affected (Section V) by the update.

• Extensive experiments verify the efficiency, effectiveness
and scalability of our solution. The update time is up to
six orders of magnitude faster than the baseline.

The paper is organized as follows. Section II introduces
the related work. Section III defines the problem. Section IV
proposes global decay factor for maintaining the activeness,
and shows the distance metric that combines both the structural
cohesiveness and edge activeness. The distance metric is
designed such that it can be maintained with the global decay
factor as well. Section V proposes the indexing structure,
the index-based clustering algorithms, and the update pro-
cess. Section VI shows extensive experiments in evaluating
the effectiveness and efficiency of our solution. Section VII
concludes the paper.

II. RELATED WORK

Clustering Evolving Networks. Graph clustering on evolving
networks [4], [15], [30], [16] has been studied in the literature



with two types of updates: updates on the network structure,
e.g., insertion/deletion of edges and vertices [17], [11] and up-
dates on the edge weights [7], [41], [6], [19]. The edge weight
in [6] corresponds to the number of interactions between two
nodes while [19] updates the edge weights with a time-decay
scheme to focus more on recent interactions (adopted by us).

To support zoom-in and zoom-out operations, hierarchical
clustering algorithms (see survey [29]) establish the cluster
hierarchy by iteratively either agglomerating clusters from
bottom up or dividing clusters from top down. Each iteration
greedily chooses the clusters to merge or a cluster to divide
by optimizing a measure such as modularity, normalized cut,
conductance, etc.. However, the time-consuming optimization
of each iteration is prohibitive to massive activation networks.

In clustering evolving networks, existing work (see sur-
vey [15]) focuses on updating the clusters based on the
change in the underlying graph to avoid recomputing the
clustering from scratch at each time step. With the time-
decay scheme, all the activeness decays along the time even
without interactions; hence, the algorithm of [19] recomputes
the clustering upon each query and optimizes the clustering
computation by maintaining a derived graph (summary) of the
top-k closest neighbors of each node to perform clustering.
Distances and Graph Clustering Dynamic processes are
engaged in measuring the similarity among nodes in a static
unweighted graph. The dynamic processes include random
walk [26], diffusion [42], and synchronization [13]. Pair-wise
distances are relatively expensive to compute especially on
massive graphs. A recent work [33] (will be elaborated in
Section IV) iteratively updates the edge weights until they
become binary (connect/disconnect) and then uses connected
components as clusters. As far as we know, our solution is the
first work in using shortest distance for graph clustering.
Index Distances on Massive Graphs. Indexing distances
exactly for small-world networks (PLL [8], the state-of-the-
art) and road networks [24] adopts different approaches;
updating these indexes on activation networks is expensive
due to the collective updates on the activeness along the time.
For example, the index time and index size of PLL [8] are
bottlenecks on static massive graphs [21], let alone the update.

Approximate distance indexes that provide approximate
guarantee [14], [32], [25] follow the seminal work of Tho-
rup and Zwick [36]. This line of research reports approxi-
mate distance d̃(u, v) of two nodes u and v with guarantee
d(u, v) ≤ d̃(u, v) ≤ rd(u, v) where r ≥ 1 is a real number
called the stretch. Trade-offs are made among the size of the
index, the stretch, and the online query time. In the original
work of [36], for any positive value k, an index with size
O(kn1+1/k) can provide stretch 2k− 1 and query time O(k);
later work [14] improves trade-off to query time O(1) and
size O(n1+1/k). A large constant factor in indexing is often
hidden in this line of work; one exception is the structure
proposed by Das Shama [32] with space O(n log(n)), stretch
2 log(n) − 1 and query time O(log(n)). The structure can
be easily parallelized/distributed in construction and query
processing [31]. We adopt this structure for distance indexing.

Online computation, as a complement to the exact indexes
and approximate indexes, can reduce the index size [9] and
improve the precision [37], [27].

III. PROBLEM FORMULATION

Let G(V,E) be an undirected unweighted graph with the
vertex set V and edge set E. Denote by n and m the cardinal-
ities of V and E, respectively. For a node v ∈ V , denote by
N(v) the set of neighbors of v, i.e., N(v) = {u|(u, v) ∈ E},
and by deg(v) = |N(v)| the degree of v. For any function
f : E 7→ R that maps the edges of G to real numbers, the
f -based distance distf (u, v) between two nodes u, v ∈ V is
the length of the shortest path under f between u and v.

An activation is a pair (e, t′) of an edge e ∈ E and a
timestamp t′. An activation stream is an unlimited sequence
of activations that arrive in the system sequentially in the
following form A1,A2, · · · ,Ai, · · · . Interaction Ai = (ei, ti)
arrives at time ti > 0, ∀i > 0. Denote by t the current time.

An activation network is a graph with an activation stream.
We use the time-decay scheme to model that the impact of an
activation on an edge decays exponentially along the time.
Time-decay Scheme [19]. Decay factor λ is a non-negative
parameter. The activeness at time t is a function on E:

at(e) =
∑

Ai:e=ei,ti≤t

e−λ(t−ti),∀e ∈ E. (1)

Example 1: Let λ = 0.1. For edge e(v8, v11) in Figure 2(a),
consider an interaction stream with A1 = (e, 0) and A2 =
(e, 2). a0(e) = 1. At time t = 1, a1(e) = 1 × e−0.1×(1−0) =
0.905. At time t = 2, a2(e) = 1 × e−0.1×(2−0) + 1 ×
e−0.1×(2−2) = 1.818.

Problem 1 (Clustering Activation Networks): Given an
activation network G(V,E) with an activation stream and a
decay factor λ, answer the following clustering queries at any
time t considering both the activeness defined by the time-
decay scheme and the structural cohesiveness:

1) Report all clusters. Report clustering results such that
the total number of clusters is Θ(

√
n) and based on

which repetitive operations of
• Zoom in: report finer grained clustering results.
• Zoom out: report coarser grained clustering results.
The total number of different granularities is O(log2 n).

2) Report Local Clusters. Given a query node v, report
• The smallest cluster that contains v, and then allow

repetitive zoom-out operations.
• The cluster that contains v in the granularity where

the total number of clusters is Θ(
√
n) and then allows

zoom-in and zoom-out operations.
Observing that the activeness is a function on the current

time t, constant maintenance is needed when t increases which
may trigger a high cost.

IV. ESTABLISH DISTANCE METRIC

This section proposes a global decay factor for maintaining
the activeness, then shows the distance metric that i) combines
both the structural cohesiveness and edge activeness, and ii)
is maintainable under the global decay factor.
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Fig. 2: Index a Graph with 13 nodes with P of 2 pyramids, each has ⌈log2(13)⌉ = 4 levels of granularities
A. Global Decay Factor

The time-decay scheme constantly decays the activeness of
all edges; however, we made the following observation.

Observation 1: The activeness of all unactivated edges
decays at the same pace. Specifically, For any edge e that
has not been activated during time span [t′, t′′], Equation 1
guarantees that at′′(e) = at′(e) × e−λ(t

′′−t′). The factor
e−λ(t

′′−t′) is edge independent, i.e., does not depend on e.
Definition 1 (Global Decay Factor): Let t∗ be a timestamp

no larger than t – the current time. Project the activeness
of all edges at time t to timestamp t∗ to generate anchored
activeness a∗t (e) = at(e)/g(t, t

∗) where g(t, t∗) = e−λ(t−t
∗)

is called the global decay factor and t∗ the anchor time.
For any edge e that has not been activated during (t∗, t],

the activeness at(e) of e at time t is at∗(e) × g(t, t∗).
Thus, a∗t (e) = at∗(e) does not have to be updated along
the time. Upon receiving an activation on edge e at time t,
the increase of at(e) by ∆e−λ·0 = 1 (Equation 1) incurs
the increase of a∗t (e) by ∆e−λ(t

∗−t) = 1/g(t, t∗) to uphold
at(e) = a∗t (e)× g(t, t∗) on all edges. Therefore, the anchored
activeness a∗t (e) only updates upon the arrival of an activation
on edge e. Besides, when a fixed number of activations
accumulates, we let all anchored activeness absorb the global
decay factor (×g(t, t∗)) and update the anchor time (t∗ ← t),
which is called a batched rescale. The anchor time t∗ is
initially 0 and updated periodically in batched rescale. The
update cost of batched rescale can be amortized to the arrived
activations that triggered the rescale

Lemma 1: With global decay factor, the activeness can be
maintained at a cost linear to the number of arrived activations.
All the proofs can be found in our technical report [3].

In the following, we use [at, g(t, t
∗)] to denote the ac-

tiveness kept under a global decay factor: we are essentially
keeping the anchored activeness a∗t = at

g(t,t∗) for each edge.
Example 2: Consider edge e(v8, v11) of Figure 2(a) and the

activation stream in Example 1. t∗ = 0 initially and a0(e) = 1.
At time t = 1, g(t, t∗) becomes e−0.1×(1−0) = 0.905 and the
edge weight a1(e) = a∗0(e)× g(1, 0) where a∗1(e) = a∗0(e) =
a0(e) = 1. At time t = 2, g(t, t∗) becomes 0.819 and then we
derive a∗2(e) = a∗1(e) + 1/g(t, t∗) = 2.221. It can be verified
that a2(e) = 1.819 = a∗2(e)×g(2, 0). If we update the anchor
time at time t = 2, then t∗ = 2 and a∗2(e) = a2(e) = 1.819.

Derived functions of the activeness can be similarly main-
tained using the global decay factor.

Definition 2 (Maintainable under the global decay factor
(PosM, NegM and NeuM)): Let a function Ft on the edge set
E be a derived function of Wt, i.e., Ft(e) of any edge e ∈ E
is a function fe({at(e′)|e′ ∈ E}). We say Ft is

PosM positively maintainable under the global decay fac-
tor if Ft(e) = fe({a∗t (e′)|e′ ∈ E})× g(t, t∗),

NegM negatively maintainable under the global decay
factor if Ft(e) =

fe({a∗
t (e

′)|e′∈E})
g(t,t∗) ,

NeuM neutrally maintainable under the global decay fac-
tor if Ft(e) = fe({a∗t (e′)|e′ ∈ E}).

Lemma 2: Function Ft is PosM if it is a linear combination,
without constant term, of 1) {at(e′)|e′ ∈ E}, or 2) functions
that are PosM. Function Ft is NegM if 1) it is the inverse of
a PosM function, or 2) a linear combination, without constant
term, of functions that are NegM.
Clearly at(e) is PosM. Lemma 2 will be used to quickly verify
if a function is maintainable under the global decay factor.

B. Local Reinforcement
This section first designs a similarity function St and then

derives the distance metric. We start with examining Attractor
[33], an algorithm on a closely related problem: clustering a
static unweighted graph by iteratively updating edge weights
based on the local graph topology.

Attractor clusters a static unweighted graph by iteratively
(engaging up to 50 repetitions) incorporating the local struc-
tural cohesiveness into the edge weights (initially 1). When-
ever the updated weight exceeds 1 (falls below 0, resp.), it
truncates (rounds, resp.) the weight to 1 (0, resp.), until all
edge weights become binary (0 or 1). Clusters are gener-
ated as the connected components with only 0-weight edges.
The effectiveness of Attractor lies in propagating the local
structural coherence via iteratively updating the edge weights.
The repetition number, 3 to 50 [33], is acceptable for offline
computation but not for online computation: waiting for a 0-1
separation over all edge weights is impractical. This motivates
us to use the shortest distance, instead of multiple repetitions,
to propagate the local structural coherence for clustering.
Active similarity. To reduce the number of repetitions, we first
derive active similarity from Jaccard similarity to combine the
structural correlation of two nodes u and v of an edge with
its activeness. For ∀(u, v) ∈ E, its active similarity is

σ(u, v) =

∑
x∈N(u)∩N(v)(at(u, x) + at(v, x))∑

x∈N(u) at(u, x) +
∑

x∈N(v) at(v, x)
.



Note that the common friends of u and v that have active
edges with u and v (collectively) will boost the similarity more
than the common friends that are not so active with u and v.
Exclusive friends of u and v will reduce the similarity.

Jaccard similarity [35] is adopted for initializing the active
similarity before applying the local reinforcement because i)
it is widely used in clustering, e.g., SCAN [39] and Attractor
[33], ii) local and inexpensive to compute from the activeness
function, and most importantly iii) it is NeuM (Definition 2)
– the global decay factor can all be cancelled. Property iii)
is important since the initialized structural similarity should
be irrelevant to the time decay function and furthermore, this
enables the structural similarity to be embedded in the local
reinforcement without spoiling the maintainability of Ft.
Active Neighbor Set. Given the active similarity, we define
the active neighbor set based on a threshold ϵ.

Nϵ(v) = {u ∈ N(v)|σ(u, v) ≥ ϵ}.
Because the active similarity is essentially a scale (the global

factor term g(t, t∗) can be cancelled), we have Lemma 3.
Lemma 3: Consider the anchored activeness a∗t and its

corresponding active similarity and active neighbor set N∗ϵ (v)
for each node v ∈ V , we have N∗ϵ (v) = Nϵ(v).
Core Node. Based on the size of the active neighbor set, we
define core nodes. Given a parameter µ, a node v ∈ V is a
core if it has at least µ active neighbors, |Nϵ(v)| ≥ µ. Two
node types that are related to core can be derived: a node is
a p-core if it is not a core but has the potential to be a core
– its degree is no less than µ. A node is a periphery if it can
never be a core – its degree is less than µ. Note that the three
types of nodes, core, p-core, and periphery, disjointly partition
the vertex set V , i.e., a node belongs to exactly one type.
Local Reinforcement. Based on the above concepts, we
introduce a local reinforcement process in encoding both the
cohesiveness and activeness to one metric. Right before an
activation A = (e, t) with edge e(u, v) arrives at the system
at time t, assume that there is a function Ft : E 7→ R on
the edge set. We call e the trigger edge and u, v the trigger
nodes. The local reinforcement updates Ft to propagate the
structural coherence based on the activation. Specifically, we
define 3 different processes called direct consolidation, triadic
consolidation and wedge stretch, for edge e and one of its
trigger nodes. In the following, we only describe the processes
for the trigger node u while the processes for v are symmetric.

• Direct consolidation. The activation on e consolidates the
relationship between u and v by a factor proportional to
the active similarity; moreover, the more neighbors u or
v has, the less influence an interaction has on u or v.

AF (e) = Ft(e)
σt(u, v)

deg(u)
.

• Triadic consolidation. For common neighbors of u and v,
the consistency between the structural coherence and the
activation reinforces the similarity.

TF (e) =
∑

w∈N(u)∩N(v)

√
Ft(u,w)Ft(v, w)

σt(w, u)

deg(u)

• Wedge stretch. Exclusive friends of u or v introduce
divergence, which may lead to a less impactful activation.

WSF (e) =
∑

w∈N(u)\N(v)

Ft(w, u)
σt(w, u)

deg(u)

With these three processes, we update Ft(e) with three
formulations based on the node property (i.e., core, periphery
or p-core) of the trigger node u. Specifically, if u is a

• Core: The high number of active neighbors indicates that
a core may lead a community and thus attract neighboring
nodes in forming a cluster. For e(u, v), we apply direct
and triadic consolidation to update Ft(e):

Ft(e)← Ft(e) +AF (e, t) + TF (e, t). (2)
• Periphery: The weak connections of a periphery imply

that it is more likely to be grouped into a cluster as a
follower, but it lacks the ability of attracting its neighbors
and may be distracted by exclusive neighbors. Therefore,
we apply wedge stretch to update Ft(e):

Ft(e)← Ft(e)−WSF (e). (3)
• P-core: In the situation between a core and a periphery, a

p-core has the ability to consolidate the similarity through
direct and triadic consolidations while it also follows its
exclusive neighbors and diminishes the relationship with
v through wedge stretch. We update Ft(e) with
Ft(e)← Ft(e) +AF (e, t) + TF (e, t)−WSF (e, t). (4)

We update Ft(e) for trigger node v symmetrically as well.
This completes the local reinforcement of Ft(e) upon an
activation. Note that here the function Ft can be any function,
we plug the similarity function in to derive the distance metric.

C. Distance Metric

Given the local reinforcement process we have described,
we define the similarity function St on E in both initializing
S0 (t = 0) and updating St (t > 0) along the time. The
distance metric is defined upon the similarity function.
Initialize S0. Note that when t = 0, no activation has arrived
at the system, finding the similarity function S0 serves the
purpose of clustering a static graph. In other words, the sim-
ilarity function should purely reflect the structural coherences
of the graph. We start by setting S0 = 1,∀e ∈ E first and then
applying local reinforcement with a stream of activations. The
activations are generated in the following way. i) Determine
the number of repetitions rep. ii) The stream is initialized
with activations over all edges in E (in arbitrary order) – the
timestamps are all t = 0. iii) For each repetition, append the
stream with activations over all edges in E – the timestamps
are all t = 0. As shall be revealed in the experiment, 7
repetitions are enough for a high quality clustering while 0
repetition is enough for beating the baselines.
Update the similarity function St on activation stream.
For an edge e ∈ E, without activations, the similarity St(e)
decays at the same ratio λ as the edge weight at(e); upon
the arrival of an activation (e, t) at time t, local reinforcement
with trigger edge e is applied to St.



Lemma 4: If a similarity function is PosM (Definition 2,
after applying the local reinforcement, the similarity function
is still PosM.

Therefore, similar to the activeness (Lemma 1), the cost
for maintaining a similarity function can be amortized to each
arrived activation and we thus have Lemma 5.

Lemma 5: The cost of maintaining St upon receiving
an activation e(u, v) is O(|N(u)| + |N(v)|) involving only
neighbors of u and v.
S0 can be used for clustering a static graph and thus can

be used to verify the effectiveness of the local reinforcement
in clustering static graphs with ground truth.
Distance Metric. Upon the similarity function on the edge set
E, a distance metric based on shortest distance can be derived
to propagate the structural coherence computed in St. Engag-
ing the shortest distance reduces the number of repetitions re-
quired for refining St. Specifically, at time t, given a similarity
function St and its reverse function S−1t (e) = 1

St(e) ,∀e ∈ E,
define a distance metric Mt : V × V 7→ R as the pairwise
shortest distance, with edge weight S−1t on graph G. In the
following discussions on shortest distance, unless otherwise
specified, the default edge weight is S−1t . Consider two nodes
u and v, their attraction strength is defined as

max
p: path between u and v

1∑
e∈p

1
St(e)

=
1

dist(u, v)
.

The attraction strength is the maximum harmonic mean,
among all the paths from u to v, of the active similarities
divided by the number of hops on the path. It justifies the
propagation hidden in the distance computation.

Lemma 6: The distance metric is NegM (Definition 2).

V. DISTANCE INDEXING

As discussed in Section II, it is expensive for massive
graphs such as social networks to compute Mt in O(mn)
time, building exact distance index has strong limitations in
index time, index size and maintenance.

A. Index (Pyramids) Construction

Our index P , called pyramids, adopts, as the base structure,
an oracle proposed by Sarma et al., for approximate distance
indexing on web-scale graphs [32] (see Section II for details).
We first construct P and then show how our algorithms use
P to generate clusters and maintain P upon activations.

A building block of P is to construct, given an integer l ∈
[1, ⌈log2(n)⌉] called the granularity level, a Voronoi partition.
Seed set. Select a set S of 2l nodes without duplication from

the node set V of the graph uniformly at random.
In other words, for any S′ ⊆ V with size 2l, the
probability of Pr(S = S′) = 1

(n
2l)

.

Voronoi For each node v ∈ V , find the node S[v] ∈ S that
Partition. is closest to v. S[v] is called the seed of v in S.

One can compute S[v] for all v ∈ V using one
Dijkstra with set S as the super source node. 2l

disjoint partitions can be obtained by grouping the
nodes in V by their seeds in S, each partition has a

seed node. Store the shortest path tree from a seed
node to all the nodes in the corresponding partition,
a by-product of Dijkstra.

An index P consists of a constant number k (typically
4) of pyramids, P1,P2, · · · ,Pk, where each pyramid is a
suite of ⌈log2(n)⌉ Voronoi partitions with granularity level,
respectively, 1, 2, · · · , ⌈log2(n)⌉.

Lemma 7: [32] The construction time of an index P is
O(n log2(n) +m log(n)) and the space is O(n log2(n)).

Example 3: In Figure 2, (a) shows an example of a graph
with n = 13 nodes and (b), (c) are the k = 2 pyramids of its
index P . For each pyramid, we show the Voronoi partition
of the first 3 granularity levels as (d)-(f) (resp. (g)-(i)). Each
pyramid consists of ⌈log2 13⌉ = 4 granularity levels. From
level 1 to level 3, 21−1, 22−1 and 23−1 nodes are selected as
seeds (in gray color) respectively and each seed is the root of
a shortest path tree. For example, on level 1 shown in (d) of
pyramid (b), the only seed v1 is the root node of the shortest
path tree containing all the 13 nodes of the graph. On level 2
shown in (e) of pyramid (b), each node of the graph exclusively
belongs to a partition of a seed node v4 or v7.

B. Clustering with Pyramids
Each Voronoi structure provides a center-based clustering:

seed node s attracts the surrounding nodes v with strength
defined in Section IV-C and dominates v if this attraction is the
strongest among all seeds. The seed with the smallest shortest
distance to v has the largest similarity to v.

Given the random nature of the seed selection, we engage
multiple pyramids as a voting system to stabilize the cluster-
ing. Specifically, given a support threshold θ which is normally
set to 0.7, two nodes u, v are in the same cluster at granularity
level l if u and v are dominated by the same seed node in θk
or more pyramids of P . Formally, we define a voting function
Hl for granularity l as Hl(u, v) =

1, if at least θk pyramids (in P) have seed set
Sl with Sl[u] = Sl[v] at level l;

0, otherwise.

Example 4: The k = 2 pyramids in Figure 2 (b) and (c)
can be used as a voting system for clustering. Let the support
threshold θ be 0.7 and take two connected nodes v4 and v7 as
an example. At level l = 2, both pyramids put v4 and v7 under
the partition of the same seed node, thenHl(v4, v7) = 1 as 2 ≥
2×0.7 = 1.4. At level l = 3, v4 and v7 are under the partition
of the same seed node in pyramid (c) while in different seed
nodes’ partitions in pyramid (b), then Hl(v4, v7) = 0 as 1 <
1.4. Thus, the voting system votes v4 and v7 to be in the same
cluster at level 2 but not in the same cluster at level 3.

With the voting function, we remove all edges in G whose
voting result is 0 and leave the edges with result 1. Then
consider two ways of clustering.

1) Even Clustering. Report the connected components of
the remaining graph.

2) Power Clustering. Set a direction to each edge that heads
from high degree node to low degree node (use node id



to break ties) and label all nodes as “unclustered”. Search
from the high degree node to low degree node: for each
unclustered node v, find all unclustered nodes that are
reachable from v and put them into a single cluster.

The drawback of the even clustering is the amplification of
any unexpected error in the voting results: a cluster can be
over-expanded due to any mis-clustering of two nodes of an
edge. This problem can be avoided by power clustering.

Lemma 8: The complexity of both even clustering and
power clustering in clustering a graph is O(m log(n)).

Note that both even clustering and power clustering are
search based, we thus have Lemma 9.

Lemma 9: Given a query node v, the cluster at a granularity
level l can be obtained by the time proportional to the size of
the neighbors of the reported nodes.

Zoom-in and zoom-out operations can be supported by
adjusting the granularity level l.

Example 5: With the same voting system as Example 4
(Figure 2), edges e(v1, v2), e(v1, v3), e(v4, v13), e(v5, v6),
e(v6, v9), e(v6, v10), e(v8, v12) and e(v8, v11) are voted to
be within the same cluster at level 3. Power clustering ranks
all the nodes based on degree and breaks ties with node
id: v6, v1, v4, · · · , v12, v13, v7. Search from v6, reach unclus-
tered nodes v5, v9, v10 and produce cluster {v6, v5, v9, v10}.
A search from v1 reaches unclustered nodes v2 and v3
and produce cluster {v1, v2, v3}. 5 clusters, {v6, v5, v9, v10},
{v1, v2, v3}, {v4, v13}, {v8, v11, v12} and {v7}, are found.

C. Efficient Update.

According to Lemma 2, the global decay factor is applicable
to St, Mt, as well as P . The global decay factor allows the
update cost of at to be O(1) per activation and that of St on
edge e(u, v) to be O(deg(u) + deg(v)).

Lemma 10: The global decay factor for S−1t , Mt and P is
g−1(t, t∗) where t∗ is the anchor time.

Upon the arrival of an activation e(u, v), the update of P
boils down to two steps:

1) Update St(e) in O(deg(u) + deg(v)) time;
2) Update the edge weight of e to S−1t (e) in the Voronoi

partition of each level of each pyramid of P .
Algorithms 1-3 update an edge weight e in a Voronoi

partition. The essence of these algorithms is to search, from
the two ends of the edge e, the nodes whose distance to
their closest seed nodes are subject to change (affected).
Algorithm 1 handles the case when S−1t (e) decreases during
the update and Algorithm 3 handles an increasing S−1t (e).
Both algorithms store the impacted nodes together with their
upper bound distances to the seed nodes in a queue, and
terminate when the queue becomes empty.

A decreasing S−1t (e) can only incur a reduction of the
distances of other nodes to their seeds (proved formally for
Lemma 12). The decrease of a node x to its seed node
must be triggered by the decrease of a neighbor of x to the
corresponding seed node. Thus, we pass to Algorithm 2 a
potential “neighbor who may cause the update” (the input node
named b) and use Algorithm 2 to detect/update the infected

Algorithm 1: Update-Decrease
Input: Edge e(u, v) ∈ E, similarity w on e to update, Voronoi partition of

the level of interest in P
Output: Updated Voronoi partition

1 S−1
t (e)← w−1;

2 Initialize a priority queue Q← ∅;
3 if Probe(u,P) then Q.push(⟨dist(S[u], u), u, S[u]⟩);
4 if Probe(v,P) then Q.push(⟨dist(S[v], v), v, S[v]⟩);
5 while Q is not empty do
6 ⟨dist(S[x], x), x, S[x]⟩ ← Q.pop();
7 for each y ∈ N(x) do
8 if Probe(y, x,P) then Q.push(⟨dist(S[y], y), y, S[y]⟩);
9 return the updated Voronoi partition;

Algorithm 2: Probe
Input: Two nodes a, b ∈ V with (a, b) ∈ E, the shortest path tree of the

Voronoi partitions at the granularity of interest in P
Output: Return true if dist(S[a], a) or S[a] changed triggered by b,

return false otherwise
1 o← S[b];
2 do,a ← dist(S[b], b) + S−1(a, b);
3 if dist(S[a], a) > do,a then
4 S[a]← x;
5 dist(S[a], a)← do,a;
6 return true;
7 return false;

nodes for Algorithm 1. Algorithm 1 firstly updates the reverse
similarity on e in Line 1. Line 2 initializes the priority queue
with an empty queue. The queue stores triples, each triple
includes i) the upper bound distance from a node z to its
closest seed node, ii) the node z, and iii) the current seed
node S[z] of z. Probe (Algorithm 2) recalculates a node’s
shortest distance to a seed node in S via its “source” and
returns true if its distance upper bound to its seed node is
updated in the recalculation. u and v are pushed into the queue
after the probing test (Line 3-4). As long as the queue is not
empty (Line 5), the node x whose triple has the minimum
distance upper bound in the queue will be popped (Line 6). If
x can update the distance upper bound of any of its neighbors
(Line 8), its corresponding neighbors will be enqueued.

When w−1(e(u, v)) increases, if the edge e is not on the
shortest path tree before the update, then nothing will be
impacted by the update. If v (or u, resp.) is the parent of u (or
v, resp.) in the shortest path tree before update, then all the
affected nodes must be in the shortest path tree rooted at u (or
v, resp.) (see the proof in Lemma 12 in the technical report).
Algorithm 3 takes an edge e(u, v) with increasing weight w−1.
It firstly updates the reverse similarity on e in Line 1 then
decides the impacted subtree To in Line 2-5. Line 6 initializes
a priority queue Q. In Line 7-9, both distances and seeds of the
nodes x ∈ Tu are reset to a node −1 with infinite distance.
Besides, the nodes that are adjacent to x but not in To are
pushed to Q. In Line 10-14, Dijkstra’s-like procedures are
applied to reconstruct the shortest path tree(s).

The following lemma shows that by conducting the above
bounded search [28], all the nodes with updated distances/seed
nodes will be pushed into the queue.

Let e(u, v) be an edge whose w−1t (u, v) is updated. Con-
sider a Voronoi partition with seed set S. Denote by S[x] the
seed of each node x ∈ V in the graph G under S−1t before the
update of the weight of e(u, v) and S′[x] the seed of each node



Algorithm 3: Update-Increase
Input: Edge e(u, v) ∈ E, similarity w on e to update, Voronoi partition of

the level of interest in P
Output: Updated Voronoi partition

1 S−1
t (e)← w−1;

2 o← −1;
3 if e(u, v) and v are in shortest path tree Tu rooted at u then o← u;
4 else if e(u, v) and u are in shortest path tree Tv rooted at v then o← v;
5 else return the updated Voronoi partition;
6 Initialize a priority queue Q← ∅;
7 foreach x ∈ shortest tree To rooted at o do
8 dist(S[x], x)←∞, S[x]← −1;
9 foreach y ∈ N(x) \ To then Q.push(⟨dist(S[y], y), y, S[y]⟩);

10 while Q is not empty do
11 ⟨dist(S[x], x), x, S[x]⟩ ← Q.pop();
12 for each y ∈ N(x) do
13 if Probe(y, x,P) then Q.push(⟨dist(S[y], y), y, S[y]⟩);
14 return the updated Voronoi partition;
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Fig. 3: Updates on a Voronoi Partition

in the graph under S ′−1t right after the update. Let U ⊆ V be
the set of nodes x whose distance dist(x, S[x]) under S−1t is
different from dist(x, S′[x]) under S ′−1t or S[x] ̸= S′[x]. Let
U ′ ← U ∪ {u, v}, we have Lemma 11 and Lemma 12.

Lemma 11 (Local Update): The graph G′U (U
′, E∩U ′×U ′)

is connected.
Lemma 12 (Complexity of Algorithm 1 and 3): The costs of

both Algorithm 1 and Algorithm 3 are O(
∑

x∈U ′ deg(x)) up
to a logarithmic factor.

Example 6: Figure 3(a-e) shows 5 update examples on the
Voronoi partition of Figure 2(e). In (a), the weight under S−1t

of e(v5, v6) is decreased by 1, Update-Decrease first pushes
v5 and v6 into Q after updating the edge weight and then
runs in iterations. repetition 1, v5 is popped and probed. Its
neighbors v3, v7 cannot pass the Probe checking either; v6 is
reinserted to/updated (due to different implementation of the
priority queue) in Q. Iteration 2, v6 is popped out, updated
by Probe and its neighbors v9, v10 pass Probe checking and
are pushed into Q. Iteration 3, v10 is popped and updated
but none of its neighbors, v6 and v9, shall be pushed into Q.
Iteration 4, v9 is popped and updated but no new nodes can
have better distances triggered by v9 and therefore Q becomes
empty, the algorithm terminates. In (b), the weight of e(v1, v3)
is increased by 1. Only v3 is changed. In (c), the weight of
e(v8, v7) is increased by 1. In this case, only v3 is changed.
In (d), the weight of e(v8, v7) is increased by 5. Then seed v4
is closer to v7 than seed v8. In (e), the weight of e(v8, v7) is
decreased by 8, then seed v8 now is closer to v7 than seed v4.

Remarks. Due to the “local” feature of the update, we can
maintain a voting count (among Pyramids) for each level, each
edge in real time. This allows us to report changes on user
specified nodes at a cost equal to the reporting. Due to the
space limit, we leave the detailed algorithm in the technical
report of the paper [3]. It is also worth mentioning that the
log2(n)×k Voronoi partitions in P are mutually independent
in storage, update and query processing.

Lemma 13: The update of P is embarrassingly parallel and
can be deployed to achieve a speedup up to log2(n)× k.

VI. EXPERIMENTS

This section evaluates the efficiency and effectiveness of the
proposed approach on various real-world networks.
Our Methods. We proposed the following 3 versions of our
Activation Network Clustering (ANC) method supported by
the update algorithm UPDATE (Section V) and clustering
algorithm DirectedCluster (Section V).
1) ANCF: An offline method updates the index P for each

snapshot of St (Section IV-C) with a certain number of
repetitions of local reinforcement, rep. The default value
of parameter rep is 7. Its time complexity is O(k · m +
n · log n)

2) ANCO: An online method updates the index P for ini-
tial S0 with rep rounds (7 rounds by default) of local
reinforcement. Then at each timestamp t on an activation
stream, ANCO first updates St−1 to St (with no more local
reinforcement), then updates P with St. The initial edge
activeness is 1. Its time complexity is O(

∑
x∈U ′ deg(x)).

3) ANCOR: An online method that is similar to ANCO while
it applies local reinforcement at intervals (5 timestamps by
default) to update St, then updates P with St.

Baseline Methods. The following baselines are compared with
our methods listed above.
1) DYNA: An online method proposed by [43]. Its time

complexity is O(|∆E| · mn ) where |∆E| is the number of
edges that are activated [43].

2) LWEP: An online method proposed by [38]. Its time
complexity is O(d·|∆E|·n2) where d is the average degree.

3) LOUV: An offline method proposed by [12] which attempts
to maximize the modularity using a greedy optimization
approach. It is used as the offline method of DYNA. Its
time complexity is O(m) [43].

4) SCAN: An offline method proposed by [39]. Its time
complexity is O(m) [39].

5) ATTR: An offline method proposed by [33] with time
complexity O(k · d ·m), where k is number of repetitions.
All algorithms were implemented in Jave with library

JavaSE-9. All experiments were conducted on a machine
with Intel XeonE5-2697 CPU, 504GB main memory and
Linux(centos). Only one core is engaged for all the algorithms.
Data sets. The experiments were conducted on 17 real-world
graphs in Table I. The largest graph has more than 41M nodes
and 1.2B edges. The data sets include social networks, collab-
oration networks, and email networks downloaded from [1],



Name Dataset Vertex Size Edge Size Type

CO CollegeMsg 1,893 13,835 social
FB fb-combine 4,039 88,234 social
CA ca-GrQc 4,158 13,422 collaboration
MI socfb-MIT 6,402 251,230 social
LA lasftm-asia 7,624 27,806 social
CM ca-CondMat 21,363 91,286 collaboration
IE ia-email-eu 32,430 54,397 email
GI git-web-ml 37,770 289,003 social
EA email-EuAll 224,832 339,925 email
DB dblp 317,080 1,049,866 collaboration
AM amazon 334,863 925,872 product
YT youtube 1,134,890 2,987,624 social
DB2 dblp-2020 2,617,981 14,796,582 collaboration
OK orkut 3,072,441 117,185,083 social
LJ lj 3,997,962 34,681,189 social
TW2 twitter 4,713,138 17,610,953 social
TW twitter-rv 41,652,230 1,202,513,046 social

TABLE I: Data Set Description
Parameter Setting Parameter Setting
k 2, 4, 8, 16 rep 0, 1, 3, 5, 7, 9
ϵ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 µ 2, 3, 4, 5, 6, 7, 8, 9

TABLE II: Parameters
[2], [18]. We also constructed two real data sets DB2 and
TW2. The construction details are described in [3].
Parameters. Table II summarizes the parameters used in the
experiments. The default values of k (number of pyramids in
P) and rep (number of repetitions of local reinforcement) are
in bold. ϵ and µ determine the core nodes and are graph-
dependent, their value setting on data sets and sensitivity tests
are reported in [3]. Unless otherwise specified, all parameters
in the experiments follow this setting.

A. Effectiveness

Evaluating the Clustering Results Based on Ground Truth.
Static graphs LA, DB, AM, YT have 18, 11187, 11941, 3337
ground truth communities respectively. On activation graphs
with varying St, we use Spectral Clustering [22] to obtain the
clusters as ground truth. The number of ground truth clusters
on simulated activation graphs CO, FB, CA, MI, and LA are
set as 2×

√
n, i.e., 87, 127, 129, 160, 175 respectively. Though

the cluster number of all 5 baselines is fixed, for fair and
consistent comparison, the cluster number of all our methods
will select to be close to the ground truth number among
granularities. However, in experiments on static graphs, we let
the target number on LA, AM and YT be the number found
by SCAN, i.e., 99 and 16621 and 1658 respectively as their
ground truth numbers are beyond the range of cluster numbers
found by our method. All clusters with less than 3 nodes will
be regarded as noise and removed. With these, the clustering
quality is measured with 3 widely used metrics: Normalized
Mutual Information (NMI) [34], Purity and F1-Measure.
Evaluating the Clustering Results Based on Structural
Definitions. The structural properties of a “good” cluster
are cohesive and internally well connected while being well
separated from the rest of the network. Therefore, to compare
the discovered clusters on structural definitions, we apply
Conductance [40] and Modularity [23] in this study.
Exp 1: Performance on Static Networks. Table III shows the
scores obtained by ANCF and 4 baselines when varying rep
on static networks. For ANCF, increasing the parameter rep
from 1 to 9 constantly improves the scores of all 4 measures.

The improvements illustrate that the local reinforcement can
effectively capture the structural cohesiveness, which helps to
improve the performance.

The overall performance of ANCF on structural measures
is comparable to baselines. On Modularity, our method con-
stantly outperforms all 4 baselines except LOUV: the average
Modularity of ANCF9 over 4 datasets is 5, 8 and 55 times that
of SCAN, ATTR and LWEP respectively. Although LOUV
is an algorithm that specifically optimizes the Modularity,
ANCF9 achieves only 18% lower Modularity than LOUV.
The Conductance of ANCF9 is comparable to that of the
baselines, specifically, our method is 20% lower and 12%
higher than SCAN and ATTR. LOUV reports significantly
smaller cluster number than the ground truth and our methods
(will elaborate this in the last paragraph of Exp 1) and thus
achieves biased 35% lower conductance since the number of
inter-cluster edges [10], [40] is greatly reduced.
ANCF substantially outperforms all 4 baselines on ground

truth-based measures. On NMI, except on LA, where LOUV
is 3% higher than us, our method ANCF9 outperforms SCAN,
ATTR, LOUV and LWEP by an average of 847%, 159%,
21%, 1192% respectively. Even with 1 repetition of local
reinforcement only, ANCF1 can gain higher NMI than the
baselines. On Purity, except on LA, where LOUV is 4%
higher than us, ANCF9 is on average 137% higher than the
best baseline LOUV. On F1-Measure, ANCF gains the highest
scores on LA and AM and gives comparable scores on DB
and YT to the best one.
LOUV tends to find a small cluster number. For example,

on DB, it finds 190 clusters while ground truth number is
11187 and that of ours is 11115. On AM, LOUV finds 350
times fewer clusters than ground truth. The extremely small
cluster number found by LOUV may not conform to the real
communities as the real-world networks tend to consist of a
large number of small-sized clusters [20].
Exp 2: Performance on Activation Networks. We generated
activation networks (λ = 0.1) for timestamps 0-100, each
timestamp randomly activated 5% of the edges on the graph.
For graph snapshot of each timestamp, we generate the ground
truth clusters using spectral clustering with uniform cluster
numbers (Section VI-A). We evaluated 8 methods on 5 acti-
vation networks: 4 offline methods that need to re-compute the
clusters of the snapshot at each timestamp, 4 online methods
that incrementally update the clusters/indices.

Table IV shows the amortized time costs for handling
each activation (of an edge per granularity level). ANCO is
constantly the fastest method and ANCOR is the second. This
conforms our theoretical analysis (Lemma 12). Among offline
methods, ANCF is 25% and 14% faster than LOUV and SCAN
on average. Among online methods, ANCO is constantly faster
than DYNA by 3 orders of magnitude on average, and ANCOR
is 99.97% faster than DYNA. Furthermore, our offline method
ANCF is 18% faster than DYNA on average. The inferior
performance of DYNA on activation networks is due to the
edge update – the weight of all edges has to be updated at
every timestamp even with no activation. This shows that the



Modularity Conductance NMI Purity F1-Measure
LA DB AM YT LA DB AM YT LA DB AM YT LA DB AM YT LA DB AM YT

SCAN 0.25 0.41 0.47 0.03 0.04 0.24 0.07 0.02 0.37 0.57 0.02 0.36 0.17 0.25 0.39 0.12 0.39 0.34 0.37 0.38
ATTR 0.03 0.19 0.72 0.15 0.06 0.17 0.08 0.03 0.11 0.31 0.56 0.37 0.03 0.11 0.43 0.15 0.06 0.29 0.36 0.48
LOUV 0.81 0.72 0.83 0.71 0.05 0.06 0.02 0.05 0.62 0.42 0.59 0.50 0.75 0.06 0.31 0.15 0.59 0.31 0.36 0.56
LWEP 0.03 0.01 0.01 - 0.74 0.12 0.58 - 0.13 0.02 0.58 - 0.24 0.01 0.07 - 0.15 0.33 0.22 -
ANCF1 0.61 0.62 0.69 0.39 0.08 0.23 0.12 0.04 0.56 0.62 0.66 0.51 0.64 0.26 0.54 0.24 0.58 0.27 0.36 0.38
ANCF5 0.67 0.68 0.72 0.40 0.07 0.22 0.10 0.04 0.56 0.65 0.67 0.54 0.69 0.29 0.55 0.26 0.61 0.28 0.37 0.40
ANCF9 0.69 0.69 0.74 0.42 0.06 0.18 0.10 0.04 0.60 0.66 0.67 0.58 0.72 0.29 0.55 0.29 0.65 0.30 0.37 0.45

TABLE III: Performance on Static Networks
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Fig. 4: Performance on Activation Networks (The x-axis is the timestamp and the y-axis is the score)

CO FB CA MI LA

Offline
Recomputation

SCAN 0.01906 0.38861 0.01425 1.47617 0.03500
ATTR 5.92000 42.78833 0.28167 1140.557 0.00333
LOUV 0.06393 0.14704 0.05593 1.17213 0.183650
ANCF 0.02291 0.29376 0.01052 1.26654 0.02630

Online Update
per

Activation

DYNA 0.02379 0.26285 0.05105 0.74025 0.06740
LWEP 1.06683 5.09067 6.44100 11.57367 25.44867
ANCOR 0.00001 0.00006 0.00001 0.00017 0.00002
ANCO 0.00001 0.00006 0.00001 0.00006 0.00001

TABLE IV: Time Costs on Activation Networks

activation networks pose new challenges to existing online
methods in the literature. Besides, ANCO takes longer time on
denser graph e.g., MI, which is consistent with its theoretical
complexity that is related to the node degrees.

Figure 4 shows the clustering quality, each row for a data
set. For each measure, we use two adjacent subfigures to
present the results for a better readability: the left shows
the comparison between our methods and online baseline
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Fig. 5: Index Time
methods and the right shows the comparison between our
methods and offline baselines. Overall, for all online methods,
their performances deteriorate as time goes by. All offline
methods have stable performance except SCAN due to its
graph-sensitive parameter setup.

Among online methods, ANCOR constantly performs the
best over time except on F1 Measure: F1-scores by DYNA
are higher at the beginning while they gradually drop by an
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average of 16%, ANCF then overtakes it at timestamp 60.
Compared with DYNA, ANCOR and ANCO respectively gain
13% and 9% higher NMI on average, 62% and 83% higher
Purity, and 6% and 12% lower F1-Measure. As time goes
by, DYNA deteriorates (scores drop 0.12% per timestamp on
average). This is because DYNA is a rule-based method that
fully depends on the current updates and clusters, and the
activation would gradually trap it to suboptimal solutions [43].
Among offline methods, ANCF constantly performs the best
over time except on F1-Measure where ANCF is comparable to
LOUV. Compared with SCAN and LOUV respectively, ANCF
gains 48% and 19% higher NMI, 108% and 100% higher
Purity, and 28% and 1.6% higher F1-Measure. Furthermore,
compared with offline method LOUV, our online methods
ANCOR and ANCO also gain 8% and 13% higher NMI, 80%
and 60% higher Purity respectively. On F1-Measure, they are
9% and 16% lower than LOUV.

We also compare 3 versions of our methods. They have
the same performance at time 0 but ANCOR and ANCO
deteriorate as time goes by as the captured structural cohe-
siveness dissipates due to edge activation. The performance of
ANCOR is constantly better than that of ANCO and it has less
deterioration than ANCO over time. The better performance
(an average improvement of 9% on measures) with the cost
of longer update time (but still on average 69% faster than
DYNA) suggests that there is a trade-off between cluster
quality and frequency of local reinforcement.

B. Efficiency

Exp 3: Index Time. Figure 5 shows the index time of P with
varying numbers of pyramids, k. We can see that the index
time increases linearly with k. Although the vertex sizes of
both OK and LJ are million-scale, the time for indexing OK
is 3.5 times more than that of LJ, because OK is denser. This
verifies Lemma 7. The indexing for TW with a billion edges
takes only 1 hour.
Exp 4: Index Size. Figure 6 shows the index size of P with
k = 4 to 16 pyramids (the space for storing the graph is
excluded). The index memory usage increases linearly with

k and is highly related to the vertices number in the graph,
echoing Lemma 7. We computed the data size and our index
size on all real data sets in Table I with more than 1M edges.
The average ratio of dataset size/index size is 0.53.
Exp 5: Query Time. Figure 7 shows the running time of
DirectedCluster at different levels on different graphs. The
clustering time grows linearly as the graph edge size increases
as its complexity is O(m log(n)). On different levels, the
extraction time is basically the same which verifies Lemma 8.
Exp 6: Update Time. Figure 8 shows the update time of
UPDATE and RECONSTRUCT with the batch size varying
from 1 to 1024. The cut-off update time was 1 hour. The
update time of UPDATE grows linearly with the activation
number in the batch. On average, the single update UPDATE
is up to six orders of magnitude faster than RECONSTRUCT,
e.g., UPDATE is 197296× faster than RECONSTRUCT on
LJ, attributing to the local update property in Lemma 11.

Figure 9 shows, on TW2 over a day (λ = 0.01), the update
time of UPDATE. We split the activations from June 25 to June
26, 2019 into 1440 sets, each set arrives as a batch per minute.
As figure shows, though there are some bursty activations, 95%
(marked by a dashed line) of the sets can be processed within
6.5 seconds. Note that we are processing the activations on a
single core, which is not compatible with the large application
of twitter. Given Lemma 13, we can easily handle the bursty
cases/sets by engaging multiple cores.

Figure 10 shows the total time costs that online methods
take to process the workload over the day on TW2. To
simulate the workload, we randomly replace real activations
with simulated queries by varying the percentage in 1%-32%.
For each query node, we report the cluster it belongs to with
an average size of 300. For DYNA and LWEP, we randomly
sampled 100 timestamps among 1440 total timestamps to
estimate the total cost. As we can see, ANCO is constantly the
fastest and 270 times faster than DYNA on average. Neither
DYNA nor LWEP can process the whole workload within
24 hours, which shows that they are overwhelmed by real
activation networks while ANCO can easily handle this (takes
2450 seconds on average). Furthermore, as the replacement
percentage increases from 1% to 32%, the total time taken
by ANCO decreases by 32%. It is because the querying
is node-dependent (local active community) and granularity-
dependent. Update is likely to take longer time than querying,
thus a large percentage of queries reduces the total time cost.

C. Case Study on Clustering with Index P

In order to show the effectiveness of our solution in real
applications, especially the support of the three operations
described in Problem 1, we conduct a case study on a subgraph
of real data set DB2. The subgraph consists of 29 nodes
and 735 activations in the time span of 30 years. Since the
data provides only yearly information, we treat each year as
a time step. This graph is an activation network (Section I)
instead of only an/a evolving/dynamic network in a broad
sense because: (1) there is no edge/node insertion/deletion,
(2) there is a sequence of activations along the network, and
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(3) the edge weights globally decay. We focus on node v8 and
5 of its neighbors v0, v5, v7, v11 and v26, which are plotted
in larger size for easy recognition. Specifically, we inspect
three questions. 1) Given a granularity level l, what are all
the clusters and how do these clusters evolve? 2) How do the
clusters that our target users belong to change over 30 years
under the update of our proposed index? 3) How do different
granularity levels reflect the information on different scales?

Figure 11 shows the monitoring of the clusters with user
input nodes of interest v8. Figure 11 (1)(3)(5) are the sub-
graphs at time t10, t20, t30 respectively, on granularity level
l2. Figure 11 (2)(4)(6) are the subgraphs on l3, where t10

corresponds to 1995 and t20 corresponds to 2005. The node-
author mappings are shown in [3]. We show the dis-similarities
(initially 1 at t0) on the edge between v8 and its interested
neighbors, e.g., the dis-similarity between v8 and v0 decrease
from 20.0 at t10 to 0.4 at t20.

From t0 to t10, ground truth discloses that v8 collaborated
with v7 at t5-t11, while other neighbors collaborated with
others, e.g., v5 collaborated with v4, v6, v9 and v0 collaborated
with v1, v2, v3 etc.. Figure 11 (1),(2) show that, till t10, the
dis-similarity of v8 to v7 decreases while to other neighbors
increase because no collaboration results in the decay of
activeness and therefore the increase of dis-similarity. On both
l2 and l3, our approach reports v8 is in the same cluster with
v7 but not v0, v5, v11, which is consistent with the ground
truth. From t10 to t20, the ground truth discloses that v8
collaborated with v11, v0 and v5 at time t11-t22, t11-t35 and
t17-t26 respectively. Figure 11 (3),(4) show that, till t20, on
both granularities, our approach reports v8 is changed to be in
the same cluster with v0 and v11 instead of v7. For t20-t30, v8
starts to collaborate with v26 at t23 till t32. Figure 11 (5),(6)
show that, till t30, the dis-similarities of v8 to v5, v7 and v11
increase as they did not collaborate with v8 since t26, t18 and
t22 respectively and therefore their activeness decays.

Lower level of granularity observes more detailed informa-
tion. For example, for v8 and v26, on l2, they are constantly
in the same cluster regardless of the truth that v8 has not
collaborated with v26 until t23. In comparison, the changes
can be captured on l3: v8 and v26 are in different clusters at
both t10 and t20 and they are put into the same cluster at t30.

VII. CONCLUSIONS

This paper proposes a concise solution to scalable and
effective clustering on massive dynamic graphs with time-
decay edge weights. To avoid decay-triggered updates, a
global decay factor is proposed to provide low cost activation-
triggered updates. A framework that integrates the local struc-
tural coherence and decaying edge weights into a consistent
distance metric is also proposed for hierarchical clustering
with bounded updates and efficient query processing. Exten-
sive experiments verify the effectiveness and efficiency of our
solution on real datasets.
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