
Independent Range Sampling

Xiaocheng Hu Miao Qiao Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

New Territories, Hong Kong
{xchu, mqiao, taoyf}@cse.cuhk.edu.hk

ABSTRACT

This paper studies the independent range sampling prob-
lem. The input is a set P of n points in R. Given an
interval q = [x, y] and an integer t ≥ 1, a query returns
t elements uniformly sampled (with/without replacement)
from P ∩ q. The sampling result must be independent from
those returned by the previous queries. The objective is to
store P in a structure for answering all queries efficiently.

If P fits in memory, the problem is interesting when P is
dynamic (i.e., allowing insertions and deletions). The state
of the art is a structure of O(n) space that answers a query
in O(t log n) time, and supports an update in O(log n) time.
We describe a new structure of O(n) space that answers a
query in O(log n+t) expected time, and supports an update
in O(log n) time.

If P does not fit in memory, the problem is challeng-
ing even when P is static. The best known structure in-
curs O(logB n + t) I/Os per query, where B is the block
size. We develop a new structure of O(n/B) space that an-
swers a query in O(log⋆(n/B)+logB n+(t/B) logM/B(n/B))
amortized expected I/Os, where M is the memory size, and
log⋆(n/B) is the number of iterative log2(.) operations we
need to perform on n/B before going below a constant.
We also give a lower bound argument showing that this
is nearly optimal—in particular, the multiplicative term
logM/B(n/B) is necessary.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures; H.3.1 [Information storage
and retrieval]: Content analysis and indexing—indexing
methods

Keywords

Independent range sampling, range reporting, lower bound

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2375-8/14/06 ...$15.00.

http://dx.doi.org/10.1145/2594538.2594545.

1. INTRODUCTION
A reporting query, in general, retrieves from a dataset all

the elements satisfying a condition. In the current big data
era, such a query easily turns into a “big query”, namely, one
whose result contains a huge number of elements. In this
case, even the simple task of enumerating all these elements
can prove to be problematic. For example, assuming that a
hard disk can write 4k bytes in one millisecond, it takes an
hour to write a query result of 4 billion integers. Note that
a query result of 4 billion elements is actually rather small
on a tera-byte scale dataset, while a tera bytes of data could
hardly be counted as “big” by today’s standard.

This phenomenon naturally brings back the notion of
query sampling, a classic concept that was introduced to the
database community several decades ago. The goal of query
sampling is to return, instead of an entire query result, only
a random sample set of the elements therein. The useful-
ness of such a sample set has long been recognized even in
the non-big-data days (see an excellent survey in [12]). The
unprecedented gigantic data volume we are facing nowadays
has only strengthened the importance of query sampling.
Particularly, this is an effective technique in dealing with the
big-query issue mentioned earlier in many scenarios where
acquiring a query result in its entirety is not compulsory.

This work aims to endow query sampling with indepen-
dence; namely, the samples returned by each query should
be independent from the samples returned by the previ-
ous queries. In particular, we investigate how to achieve
this purpose on range reporting, as it is a very fundamental
query in the database and data structure fields. Formally,
the problem we study can be stated as follows:

Problem 1 (Independent Range Sampling (IRS)).
Let P be a set of n points in R. Given an interval q = [x, y]
in R and an integer t ≥ 1, we define two types of queries:

• A with replacement (WR) query returns a se-
quence of t points, each of which is taken uniformly
at random from P (q) = P ∩ q.

• Requiring t ≤ |P (q)|, a without replacement
(WoR) query returns a subset R of P (q) with |R| =
t, which is taken uniformly at random from all the size-
t subsets of P (q). The query may output the elements
of R in an arbitrary order.

In both cases, the output of the query must be independent
from the outputs of all previous queries.

Guaranteeing independence among the sampling results
of all queries ensures a strong sense of fairness: the elements

satisfying a query predicate always have the same chance
of being reported (regardless of the samples returned pre-
viously), as is a desirable feature in battling the “big-query
issue”. Furthermore, the independence requirement also of-
fers convenience in statistical analysis and algorithm design.
In particular, it allows one to issue the same query multiple
times to fetch different samples. This is especially useful
when one attempts to test a property by sampling, but is
willing to accept only a small failure probability of drawing
a wrong conclusion. The independence guarantees that the
failure probability decreases exponentially with the number
of times the query is repeated.

Computation Models. We study IRS in both the scenar-
ios where the input set P fits or does not fit in memory,
respectively. In the former scenario, we discuss algorithms
on a random access machine (RAM), where it takes con-
stant time to perform a comparison, a + operation, and to
access a memory location. For randomized algorithms, we
make the standard assumption that it takes constant time
to generate a random integer in [0, 2w − 1], where w is the
length of a word.

In the latter scenario (where P does not fit in memory),
we adhere to the standard external memory (EM) model [2],
where a machine has M words of memory and a disk that
has been formatted into blocks of size B words. It always
holds that M ≥ 2B. An I/O either reads a block of data into
memory, or writes B words in memory to a disk block. The
cost of an algorithm is the number of I/Os performed (CPU
time is free), while the space of a structure is the number of
disk blocks occupied.

Finally, we define log(0) x = x, and log(i+1) x =
log2(log

(i) x) for any integer i ≥ 0. Define log⋆ x to be the

smallest i such that log(i) x ≤ 2.

Existing Results. Next we review the literature on IRS,
assuming first the WR semantics. In internal memory, the
problem is trivial when P is static. Specifically, we can
simply store the points of P in ascending order using an
array A. Given a query with parameters q = [x, y] and t, we
can first perform binary search to identify the subsequence
in A that consists of the elements covered by q. Then, we
can simply sample from the subsequence by generating t
random ranks and accessing t elements. The total query
cost is O(log n+ t).

The problem becomes much more interesting when P is
dynamic, namely, it admits insertions and deletions of el-
ements. This problem was first studied more than two
decades ago. The best solution to this date uses O(n) space,
answers a query in O(t log n) time, and supports an update
in O(log n) time (see [12] and the references therein). This
can be achieved by creating a “rank structure” on P that
allows us to fetch the i-th (for any i ∈ [1, n]) largest element
of P in O(log n) time. After this, we can then simulate the
static algorithm described earlier by spending O(log n) time,
instead of O(1), fetching each sample.

In external memory, the IRS problem is challenging even
when P is static. Note that accessing t random positions
from a disk-resident array is expensive: it takes O(t) I/Os
when the array size is large. As a result, the RAM algorithm
we discussed earlier incurs O(logB n + t) I/Os in external
memory, assuming a B-tree on the array A. This is nearly
a factor of B higher than the Θ(t/B) cost needed to write t

samples. Going back to the baseline solution, one can always
retrieve the entire P (q) = P ∩ q, and then sample t elements
from P (q) using a standard algorithm [7, 15]. Assuming
t ≤ k, the query cost is O(logB n + (k/B) logM/B(k/B)),
where k = |P (q)|. This cost is not necessarily better than
O(logB n+ t) because t can be arbitrarily smaller than k.

We are not aware of work that tackles specifically WoR
queries. However, we will see later that a WoR query with
parameters q, t can be answered by a constant number (in
expectation) of WR queries having parameters q, 2t. Hence,
the aforementioned performance guarantees also hold on
WoR queries in expectation.

The above represent the current state of the art on the IRS
problem. It is worth mentioning that if one does not require
independence of the sampling results of different queries,
query sampling can be supported as follows. For each i =
0, 1, ..., ⌈log n⌉, maintain a set Pi by independently including
each element of P with probability 1/2i. Given a query with
interval q = [x, y], Pi ∩ q serves as a sample set where each
element in P (q) is taken with probability 1/2i. However, by
issuing the same query again, one always gets back the same
samples, thus losing the benefits of IRS mentioned before.

Also somewhat relevant is the recent work of Wei and Yi
[16], in which they studied how to return various statistical
summaries (e.g., quantiles) on the result of range reporting.
They did not address the problem of query sampling, let
alone how to enforce the independence requirement. At a
high level, IRS may be loosely classified as a form of online
aggregation [8], because most research on this topic has been
devoted to the maintenance of a random sample set of a
long-running query (typically, aggregation from a series of
joins); see [10] and the references therein. As far as IRS is
concerned, we are not aware of any work along this line that
guarantees better performance than the solutions surveyed
previously.

It is worth mentioning that sampling algorithms have been
studied extensively in various contexts (for entry points into
the literature, see [1, 4, 5, 6, 7, 11, 14, 15]). These algo-
rithms aim at efficiently producing sample sets for different
purposes over a static or evolving dataset. Our focus, on
the other hand, is to design data structures for sampling the
results of arbitrary range queries.

Our Results. We present several new results on the IRS
problem. In Section 2, we give a dynamic RAM structure of
O(n) space that answers a WR or WoR query in O(log n+t)
expected time, and supports an update in O(log n) time. All
the expectations in this paper depend only on the random
choices made by our algorithms.

In EM, we first establish in Section 3 a lower bound
showing that one cannot hope to achieve a query cost such
as O(logB n + t/B) using a structure of reasonable space
even when P is static. Specifically, we prove that, when-
ever logM/B(n/B) ≤ B, any structure occupying nO(1)

blocks must perform Ω((t/B) logM/B(n/B)) expected I/Os
answering a WR query with parameters q = (−∞,∞) and
t ∈ [B,n]. In fact, this is true even if query cost is amortized.
That is, there is a sequence of queries such that every struc-
ture of nO(1) space must incur Ω(m · (t/B) logM/B(n/B))
I/Os in expectation processing the entire sequence, where
m is the number of queries in the sequence. A similar lower

bound also holds on WoR queries, except for t ∈ [B,n1−ǫ],
where ǫ > 0 is an arbitrarily small constant.

As a second step, in Section 4 we develop a structure that
uses O(n/B) space, and answers a WR or WoR query in
O(log⋆(n/B)+logB n+(t/B) logM/B(n/B)) amortized I/Os
in expectation. Our lower bound shows that the query cost
is optimal within only an additive factor of O(log⋆(n/B) +
logB n).

Interestingly, our RAM and EM structures are based on
different technical ideas. In RAM, our structure essentially
stores the elements of the input set P in a number of ar-
rays of various sizes. This idea, however, does not work in
EM due to the expensive I/O overhead of sampling directly
from an array. Instead, we develop an approach that pre-
computes independent samples even before a query comes.
Those samples are stored inside our data structure, which
is modified every time a query is answered so that we can
ensure there are always enough samples for the next query.
We show how to balance the work of sample computation
among the queries so that the amortized query cost remains
low.

The concept of independent query sampling can be inte-
grated with any reporting queries (e.g., multidimensional
range reporting, stabbing queries on intervals, half-plane re-
porting, etc.), and defines a new variant for every individual
problem. All these variants are expected to play increas-
ingly crucial roles in countering the big-query issue. The
techniques developed in this paper pave the foundation for
further studies in this line of research.

2. RAM STRUCTURES
Our discussion will assume WR queries by default because

as we will see there is an efficient reduction from WoR to
WR. Recall that a query specifies two parameters: a range
q = [x, y] and the number t of samples. We say that the
query is one-sided if x = −∞ or y = ∞; otherwise, the
query is two-sided. Next, we will first describe a structure
for one-sided queries, before attending to two-sided ones.

2.1 A One-Sided Structure
Structure. We build a weight-balanced B-tree (WBB-tree)
[3] on the input set P with leaf capacity b = 4 and branching
parameter f = 8. In general, a WBB-tree parameterized by
b and f is a B-tree where

• data elements are stored in the leaves. We label the
leaf level as level 0; if a node is at level i, then its
parent is at level i+ 1.

• a non-root node u at the i-th level has between bf i/4
and bf i elements stored in its subtree. We denote by
P (u) the set of those elements. This property implies
that an internal node has between f/4 and 4f child
nodes.

Each node u is naturally associated with an interval I(u)
defined as follows. If u is a leaf, then I(u) = (e′, e] where
e (or e′, resp.) is the largest element stored in u (or the
leaf preceding u, resp.); specially, if no leaf precedes u, then
e′ = −∞. If u is an internal node, then I(u) unions the
intervals of all the child nodes of u.

Let zℓ be the leftmost leaf (i.e., the leaf containing the
smallest element of P). Denote by Πℓ the path from the

root to zℓ. For every node u on Πℓ, store all the elements
of P (u) in an array A(u). Note that the element ordering
in A(u) is arbitrary. The total space of all arrays is O(n),
noticing that the arrays’ sizes shrink geometrically as we
descend Πℓ.

Query. A one-sided query with parameters q = (−∞, y]
and t is answered as follows. We first identify the lowest
node u on Πℓ such that I(u) fully covers q. If u is a leaf, we
obtain the entire P (q) = P ∩ q from u in constant time, after
which the samples can be obtained trivially in O(t) time. If
u is an internal node, we obtain a sequence R by repeating
the next step until the length of R is t: select uniformly at
random an element e from A(u), and append e to R if e is
covered by q. We return R as the query’s output. Note that
the R computed this way is independent from all the past
queries.

We argue that the above algorithm runs in O(log log n+t)
expected time, focusing on the case where u is not a leaf.
Let k = |P (q)|. Node u can be found in O(log log n) time by
creating a binary search tree on the intervals of the nodes on
Πℓ. It is easy to see that the size of A(u) is at least k but at
most ck for some constant c ≥ 1. Hence, a random sample
e from A(u) has at least 1/c probability of falling in q. This
implies that we expect to sample no more than ct = O(t)
times before filling up R.

Update. Recall the well-known fact that an array can be
maintained in O(1) time per insertion and deletion1—this
is true even if the array’s size needs to grow or shrink—
provided that the element ordering in the array does not
matter. The key to updating our structure lies in modifying
the secondary arrays along Πℓ. Whenever we insert/delete
an element e in the subtree of a node u on Πℓ, e must be
inserted/deleted in A(u) as well. Insertion is easy: simply
append e to A(u). To delete e, we first locate e in A(u),
swap it with the last element of A(u), and then shrink the
size of A(u) by 1. The problem, however, is how to find
the location of e; although hashing does this trivially, the
update time becomes O(log n) expected.

The update time can be made worst case by slightly aug-
menting our structure. For each element e ∈ P , we maintain
a linked list of all its positions in the secondary arrays. This
linked list is updated in constant time whenever a position
changes (this requires some proper bookkeeping, e.g., point-
ers between a position in an array and its record in a linked
list). In this way, when e is deleted, we can find all its array
positions in O(log n) time. Taking care of other standard
details of node balancing (see [3]), we have arrived at:

Theorem 1. For the IRS problem, there is a RAM struc-
ture of O(n) space that can answer a one-sided WR query in
O(log log n+t) expected time, and can be updated in O(log n)
worst-case time per insertion and deletion.

2.2 A 2-Sided Structure of O(n logn) Space
By applying standard range-tree ideas to the one-sided

structure in Theorem 1, we obtain a structure for two-sided
queries with space O(n log n) and query time O(log n + t)
expected. However, it takes O(log2 n) time to update the
structure. Next, we give an alternative structure with im-
proved update cost.
1A deletion needs to specify where the target element is in
the array.

x y

u

u1

u
′

u
′′

u2

Figure 1: Answering a query at two nodes

Structure. Again, we build a WBB-tree T on the input set
P with leaf capacity b = 4 and branching parameter f = 8.
At each node u in the tree, we keep a count equal to |P (u)|,
i.e., the number of elements in its subtree. We also associate
u with an array A(u) that stores all the elements of P (u);
the ordering in A(u) does not matter. The overall space
consumption is clearly O(n log n).

Query. We will see how to use the structure to answer
a query with parameters q = [x, y] and t. Let k = |P (q)|.
Since we aim at query time of Ω(log n), it suffices to consider
only k > 0 (one can check whether k > 0 easily with a
separate “range count” structure). The crucial step is to
find at most two nodes u1, u2 satisfying two conditions:

c1 I(u1) and I(u2) are disjoint, and their union covers q;

c2 |P (u1)|+ |P (u2)| = O(k).

These nodes can be found as follows. First, identify the
lowest node u in T such that I(u) covers q. If u is a leaf
node, setting u1 = u and u2 = nil satisfies both conditions.

Now, suppose that u is an internal node. If q spans the
interval I(u′) of at least one child u′ of u, then once again
setting u1 = u and u2 = nil satisfies both conditions. Now,
consider that q does not span the interval of any child of
u. In this case, x and y must fall in the intervals of two
consecutive child nodes u′, u′′ of u, respectively. Define q1 =
q ∩ I(u′) and q2 = q ∩ I(u′′). We decide u1 (u2, resp.) as the
lowest node in the subtree of u′ (u′′, resp.) whose interval
covers q1 (q2, resp.); see Figure 1 for an illustration. The
lemma below shows that our choice is correct.

Lemma 1. The u1 and u2 we decided satisfy conditions
c1 and c2.

Proof. We will focus on the scenario where u is an inter-
nal node. Let k1 (k2, resp.) be the number of elements in the
subtree of u′ (u′′, resp.) covered by q. Clearly, k = k1+k2. It
suffices to show that |P (u1)| = O(k1) and |P (u2)| = O(k2).
We will prove only the former due to symmetry. In fact, if
u1 is a leaf, then both k1 and |P (u1)| are O(1). Otherwise,
q definitely spans the interval of a child node, say û, of u1.
Hence, |P (u1)| = O(|P (û)|) = O(k1).

Let us continue the description of the query algorithm,
given that u1 and u2 are already found. We conceptually
append A(u1) to A(u2) to obtain a concatenated array A.
Then, we repetitively perform the following step until an
initially empty sequence R has length t: sample uniformly
at random an element e from A, and append e to R if it

lies in q. Note that since we know both |A(u1)| and |A(u2)|,
each sample can be obtained in constant time. Since A has
size O(k) and at least k elements covered by q, we expect to
sample O(t) elements before filling up R. The total query
cost is therefore O(log n+ t) expected.

Update. The key to updating our structure is to modify the
secondary arrays, as can be done using the ideas explained
in Section 2.1 for updating our one-sided structure. The
overall update time is O(log n).

Lemma 2. For the IRS problem, there is a RAM structure
of O(n log n) space that can answer a two-sided WR query
in O(log n+t) expected time, and can be updated in O(log n)
worst-case time per insertion and deletion.

2.3 A 2-Sided Structure of O(n) Space
In this subsection, we improve the space of our two-sided

structure to linear using a two-level sampling idea.

Structure. Let s be an integer between log2 n − 1 and
log2 n + 1. We divide the domain R into a set I of g =
Θ(n/ log n) disjoint intervals I1, ..., Ig such that each Ii (1 ≤
i ≤ g) covers between s/2 and s points of P . Define Ci =
Ii ∩P , and call it a chunk. Store the points of each Ci in an
array (i.e., one array per chunk).

We build a structure T of Lemma 2 on {I1, ..., Ig}. T
allows us to sample at the chunk level, when given a query
range q∗ = [x∗, y∗] aligned with the intervals’ endpoints (in
other words, q∗ equals the union of several consecutive in-
tervals in I). More specifically, given a query with such a
range q∗ and parameter t, we can use T to obtain a sequence
S of t chunk ids, each of which is taken uniformly at random
from the ids of the chunks whose intervals are covered by q∗.
We slightly augment T such that whenever a chunk id i is
returned in S, the chunk size |Ci| is always returned along
with it. The space of T is O(g log g) = O(n).

We will also need a rank structure on P , which (as ex-
plained in Section 1) allows us to obtain t samples from any
query range in O(t log n) time.

Query. We answer a query with parameters q = [x, y] and
t as follows. First, in O(log n) time, we can identify the
intervals Ii and Ii′ that contain x and y, respectively. If
i = i′, we answer the query bruteforce by reading all the
O(log n) points in Ci.

If i 6= i′, we break q into three disjoint intervals q1 =
[x, x∗], q2 = [x∗, y∗], and q3 = [y∗, y], where x∗ (y∗, resp.) is
the right (left, resp.) endpoint of Ii (Ii′ , resp.). In O(log n)
time (using the rank structure on P), we can obtain the
number of data points in the three intervals: k1 = |q1 ∩P |,
k2 = |q2 ∩P |, and k3 = |q3 ∩P |. Let k = k1 + k2 + k3.

We now determine the numbers t1, t2, t3 of samples to take
from q1, q2, and q3, respectively. To do so, generate t random
integers in [1, k]; t1 equals how many of those integers fall
in [1, k1], t2 equals how many in [k1+1, k1+k2], and t3 how
many in [k1+k2+1, k]. We now proceed to take the desired
number of samples from each interval (we will clarify how to
do so shortly). Finally, we randomly permute the t samples
in O(t) time, and return the resulting permutation.

Sampling t1 and t3 elements from q1 and q3 respectively
can be easily done in O(log n) time. Next, we concentrate
on taking t2 samples from q2. If t2 ≤ 6 ln 2, we simply obtain
t2 samples from the rank structure in O(t2 log n) = O(log n)

time. For t2 > 6 ln 2, we first utilize T to obtain a sequence S
of 4t2 chunk ids for the range q2 = [x∗, y∗]. We then generate
a sequence R of samples as follows. Take the next id j from
S. Toss a coin with head probability |Cj |/s.

2 If the coin
tails, do nothing; otherwise, append to R a point selected
uniformly at random from Cj . The algorithm finishes as
soon as R has collected t2 samples. It is possible, however,
that the length of R is still less than t2 even after having
processed all the 4t2 ids in S. In this case, we restart the
whole query algorithm from scratch.

We argue that the expected cost of the algorithm is
O(log n + t). As |Cj |/s ≥ 1/2 for any j, the coin we toss
in processing S heads at least 4t2/2 = 2t2 times in expec-
tation. A simple application of Chernoff bounds shows that
the probability it heads less than t2 times is at most 1/2
when t2 > 6 ln 2. This means that the algorithm terminates
with probability at least 1/2. Each time the algorithm is
repeated, its cost is bounded by O(log n + t) (regardless of
whether another round is needed). Therefore, overall, the
expected running time is O(log n+ t).

Update. T is updated whenever a chunk (either its interval
or the number of points therein) changes. This can be done
in O(log n) time per insertion/deletion of a point in P . A
chunk overflow (i.e., size over s) or underflow (below s/2)
can be treated in O(s) time by a chunk split or merge, re-
spectively. Standard analysis shows that each update bears
only O(1) time amortized. Finally, to make sure s is be-
tween log2 n− 1 and log2 n+ 1, we rebuild the whole struc-
ture whenever n has doubled or halved, and set s = log2 n.
Overall, the amortized update cost is O(log n). The amor-
tization can be removed by standard techniques [13]. We
have now established:

Theorem 2. For the IRS problem, there is a RAM struc-
ture of O(n) space that can answer a two-sided WR query in
O(log n + t) expected time, and can be updated in O(log n)
worst-case time per insertion and deletion.

2.4 Reduction from WoR to WR
We will need the fact below (see appendix for a proof):

Lemma 3. Let S be a set of k elements. Consider taking
2s samples uniformly at random from S with replacement,
where s ≤ k/(3e). The probability that we get at least s
distinct samples is at least 1/2.

A two-sided WoR query with parameters q, t on dataset P
can be answered using a structure of Theorem 2 as follows.
First, check whether t ≥ k/(3e) where k = |P (q)| can be
obtained in O(log n) time. If so, we run a sampling WoR
algorithm (e.g., [15]) to take t samples from P (q) directly,
which requires O(log n+ k) = O(log n+ t) time. Otherwise,
we run a WR query with parameters q, 2t to obtain a se-
quence R of samples in O(log n+ t) expected time. If R has
at least t distinct samples (which can be checked in O(t)
expected time using hashing), we collect all these samples
into a set S, and sample WoR t elements from S; the to-
tal running time in this case is O(log n + t). On the other
hand, if R has less than t distinct elements, we repeat the
above by issuing another WR query with parameters q, 2t.

2This can be done without division: generate a random in-
teger in [1, s] and check if it is smaller than or equal to |Cj |.

By Lemma 3, a repeat is necessary with probability at most
1/2. Therefore, overall the expected query time remains
O(log n+ t).

Similarly, a one-sided WoR query can be answered using
a structure of Theorem 1 in O(log log n+ t) expected time.

3. A TIGHT I/O LOWER BOUND
Having gained some experience about IRS, we now turn

our attention to external memory, where the problem is
much more challenging. The first question we will answer
is: would it be possible to achieve a query cost such as
O(logB n + t/B) with a small-space structure, especially
given the RAM result in Theorem 2?

For this purpose, it suffices to look at a special instance of
the IRS problem where all queries’ search intervals are fixed
to q = (−∞,∞). Formally, our objective is to preprocess
a set S of n elements such that all queries of the following
form can be answered efficiently: given an integer t ≥ 1,
randomly sample t elements WR or WoR from S. We refer
to this special instance as the set sampling problem.

We will prove a query cost lower bound under the indivis-
ibility assumption that every element in S must always be
stored as an atom. This assumption was first introduced to
prove a sorting lower bound in EM [2] (which still remains
the best today), and is a key assumption in the indexability
model [9] which encapsulates almost all the existing lower
bounds on EM data structures. Specifically, our result is:

Theorem 3. Let c be an arbitrary constant. For the set
sampling problem, when n ≥ B2, every structure occupying
at most nc blocks must incur

Ω

(

min

{

t,
t

B
logM/B

n

B

})

amortized I/Os in expectation answering:

• a WR query with parameter t ∈ [B, n].

• a WoR query with parameter t ∈ [B,n1−ǫ], where ǫ > 0
is an arbitrarily small constant.

Notice that the lower bound is on amortized query cost
(and hence, stronger than a worst-case lower bound). In
other words, a structure is allowed to balance the work
among queries in an attempt to keep the cost low on av-
erage, but the lower bound says that the average cost must
still be high. Furthermore, note that the bound holds rules
out any structure of O(nc) space on the IRS problem with
query cost O(logB n + t/B)—such a structure can be used
to answer a set sampling query with t ≥ B logB n in O(t/B)
I/Os.

Also notice that the ranges of t are different for WR
and WoR queries in Theorem 3. In fact, the two types
of queries are indeed separated in terms of hardness for t
close to n. This is most intuitive when t = n, in which
case a (set sampling) WoR query can simply return the en-
tire dataset S in O(n/B) I/Os, whereas a WR query must
(essentially) produce a random permutation of S, and incur
Ω((n/B) logM/B(n/B)) I/Os as shown in the theorem.

As a second step, we will match the lower bound with a
set sampling structure:

Theorem 4. For the set sampling problem, there is a
structure of O(n/B) space that answers a WR or WoR query
in O(1 + (t/B) logM/B(n/B)) amortized I/Os.

It is worth mentioning that one can always answer a WR
query in O(t) I/Os by sampling directly from an array (i.e.,
just apply a RAM algorithm by ignoring blocking), and an-
swer a WoR query in O(t) expected I/Os by resorting to the
reduction in Section 2.4. Thus, both cases of the query cost
in Theorem 3 are tight. The rest of the section gives our
proofs for the two theorems.

3.1 Proof of Theorem 3

WoR Lower Bound for t ∈ [B,n1−ǫ]. We will first
prove the WoR branch of Theorem 3. At a high level, our
proof works as follows. We issue m queries of the same pa-
rameter t for some large m to be chosen later, and ask them
to write their retrieved sample sets sequentially in the disk.
At the end, we get a final sequence of m sample sets3. Be-
cause of queries’ independence, the number of possible final
sequences is huge. On the other hand, if the amortized query
cost has to be low, then the query algorithm can perform
only a small number of I/Os in total, such that it will not
be able to produce that many possible final sequences. This
puts a constraint on how low the query cost can possibly
be. The complication, however, is that the data structure is
randomized (no deterministic structure can solve the prob-
lem). To make the above idea work, we need to argue that
the structure must nonetheless still produce numerous final
sequences from at least one “initial state”.

We will regard each block as a set of elements (i.e., ig-
noring the ordering of the elements therein). Denote by Σ
the set of all possible final sequences. It is easy to see that
|Σ| =

(

n
t

)m
. We define an initial state of a randomized data

structure as the sequence of non-empty blocks in memory
followed by those in the disk at the time the structure an-
swers the first query. Let Π be the set of all possible initial
states. Since an initial state has at most M/B + nc < nc+1

blocks, we know that |Π| <
(

n
B

)nc+1

.

Given a final sequence σ ∈ Σ and an initial state π ∈ Π,
define cost(σ, π) as the minimum I/O cost of all possible
algorithms (of an indivisible structure) to produce σ, when
the memory and disk currently have the contents π. For
each σ, define its best initial state—denoted as πσ—as the
π with the smallest cost(σ, π).

Let H be the expected cost of the structure in processing
all the m queries we issued. It suffices to consider H ≤ nm.4

We observe:

Lemma 4.
∑

σ∈Σ cost(σ, πσ) ≤ H · |Σ|.

Proof. Let X be a random variable that equals the final
sequence produced by the structure. Since queries are inde-
pendent and each query returns a size-t WoR sample set of
S, we know that Pr[X = σ] = 1/|Σ| for each σ ∈ Σ. Let Y
be another random variable that equals the actual number
of I/Os the structure performs. We know that

H = E[Y] =
∑

σ∈Σ

E[Y | X = σ] ·Pr[X = σ].

3Note that this is a sequence of sets; the ordering of the
elements in the same sample set does not matter.
4Otherwise, H/m > n > t, in which case our claim
Ω(min{t, (t/B) logM/B(n/B)}) already holds.

By definition, cost(σ, πσ) ≤ E[Y | X = σ]. The lemma then
follows.

Let Σ∗ be the set of all such σ ∈ Σ that cost(σ, πσ) ≤ 2H .
Lemma 4 implies that |Σ∗| ≥ |Σ|/2. Given an initial state
π ∈ Π, let its power—denoted as power(π)—be the number
of final sequences σ ∈ Σ∗ that finds π as their best initial
state, namely, π = πσ. Let π∗ be the initial state with the
greatest power. Obviously:

power(π∗) ≥ |Σ∗|/|Π|.

Let us define the final state of a structure as the com-
bination of (i) the set of elements in memory, and (ii) the
sequence of occupied blocks in the disk, both at the moment
when it has answered all m queries. Starting from π∗, how
many different final states can we leave the structure in after
2H I/Os? By a standard permutation argument [2], the an-
swer is at most (2(nc +2H)

(

M
B

)

)2H ≤ (2(nc +2nm)
(

M
B

)

)2H .
As this number must be at least power(π∗), we have:

(

2(nc + 2nm)

(

M

B

))2H

≥ |Σ∗|/|Π|

≥
(1/2)

(

n
t

)m

(

n
B

)nc+1

(by t ∈ [B, n1−ǫ]) ≥
1

2

(

n

t

)m−nc+1

.

Now we fix m = 2nc+1 so that the above gives

(

nc+3

(

M

B

))2H

≥
1

2

(

n

t

)m/2

⇒
H

m
≥

(t/8) ln(n/t)

(c+ 3) lnn+B(1 + ln(M/B))
.

Note that ln(n/t) = Ω(log n), and that when n ≥ B2,
ln(n/B) = Θ(log n). Hence, the above inequality implies
that H/m = Ω(min{t, (t/B) logM/B(n/B)}) as claimed.

WR Lower Bound for t ∈ [B,n]. We now prove the
WR branch of Theorem 3. Let us start with t = B. In fact,
this follows immediately from the reduction in Section 2.4;
namely, when n ≥ B2, if there is an algorithm answering a
WR query with t = B in H amortized expected I/Os, we
can apply the algorithm to answer a WoR query with t = B
in O(H) amortized expected I/Os. Hence, a WR query with
t = B must incur Ω(min{B, logM/B(n/B)}) amortized cost
in expectation.

Now consider any t ∈ [B,n]. Observe that if an algorithm
can answer a WR query with parameter t = τ > B in H
amortized expected I/Os, we can use it to answer a WR
query with t = B in O(HB/τ) amortized expected I/Os.
This is because by running a t = τ query once we get enough
samples for the next ⌊τ/B⌋ queries of t = B. With this, we
have completed the whole proof of Theorem 3.

3.2 Proof of Theorem 4
We prove the theorem by developing such a structure.

We store all the elements of S in an arbitrary order using an
array. In addition, we also take n samples WR from S, and
store these samples in a separate array A, which is called the

sample pool. With sorting, all these samples can be obtained
in O((n/B) logM/B(n/B)) I/Os.

When the structure is newly built, all samples are marked
as clean. To answer a query with parameter t, we simply
return the next t clean samples from the pool, and mark
them dirty. When the pool runs out of clean samples, we
rebuild it in O((n/B) logM/B(n/B)) I/Os. The cost can be
amortized on the n samples already returned, so that each
of them is charged only O((1/B) logM/B(n/B)) I/Os. The
amortized query cost is therefore O(1+(t/B) logM/B(n/B)).

4. I/O-EFFICIENT IRS STRUCTURES
In this section, we present I/O-efficient structures for solv-

ing the IRS problem, focusing on the scenario where the
input set P is static. We will discuss only WR queries be-
cause the extension to WoR queries is straightforward by
the reduction in Section 2.4.

4.1 A One-Sided Structure
The one-sided RAM structure in Section 2.1 can be

adapted to work in EM, by still using a constant fanout
for the base tree, and replacing each secondary array with
a set sampling structure of Theorem 4. It answers an
IRS query in O(logB log2 n + (t/B) logM/B(n/B)) amor-

tized expected I/Os5. Next, we improve the query cost
to O(logB logB n + (t/B) logM/B(n/B)). The improvement
owes to a new idea we call sample replenishing. This idea
also lies at the core of our other EM structures.

Structure. We build a B-tree T on P with leaf capacity
and branching parameter both set to B. Let Πℓ be the path
from the root to the leftmost leaf. For each node u that
either is the root or has its parent on Πℓ, we build a set
sampling structure T(u) of Theorem 4 on P (u) (the set of
elements in the subtree of u). All the set sampling structures
occupy O(n/B) space in total.

Given an internal node u, we use u[i] to denote the i-
th child node of u, counting from the left. Consider now
u as an internal node on Πℓ with f child nodes. For each
i ∈ [1, f], we record in u the value of |P (u[i])|. We also store
log2 f bags (i.e., multi-sets) of samples at u but of different
sizes such that in total all the samples occupy O(f) blocks.
Specifically, for each l = 1, 2, ..., log2 f , we store a bag Su(l)
of 2lB samples, each of which is an element randomly taken

WR from
⋃2l

i=1 P (u[i]). All samples are marked as clean at
this point. It is easy to see that the overall space of our
structure still remains O(n/B).

Query. As before, given a node u in T , we use I(u) to
represent the interval associated with u. To answer a one-
sided IRS query with parameters q = (−∞, x] and t, we first
identify in O(logB logB n) I/Os the lowest node u on Πℓ such
that I(u) covers q. Let l be the smallest integer such that q
is contained in the union of the intervals of the leftmost 2l

child nodes of u. We repeat the following step to generate a
bag R of t samples: take the next clean sample e from Su(l),
and add it to R if e falls in q. We mark e dirty regardless of
whether it has been added to R. Due to the choice of l, we
expect to repeat the step at most 2t times. The total query
cost is therefore O(logB logB n+ t/B) expected so far.

5We adopt the convention that O(logb x) should be under-
stood as O(max{1, logb x}).

When Su(l) runs out of clean samples, we launch a re-
plenishing process to re-compute a new bag Su(l) of 2lB
samples. For this purpose, we first determine how many
samples to get from each child node of u, by generating 2lB

random ranks from 1 to
∑2l

i=1 |P (u[i])|. Then, for every

u[i] with i ∈ [1, 2l], we take the desired number of sam-
ples from P (u[i]) using the set sampling structure T(u[i]).
By Theorem 4, doing so to all the 2l child nodes requires
O(2l + (2lB/B) logM/B(n/B)) = O(2l logM/B(n/B)) amor-
tized I/Os in total. Finally, we generate a random permuta-
tion of the 2lB samples in O(2l logM/B(n/B)) I/Os [7], and
store the permutation as the newly computed Su(l). All
these samples are marked as clean.

Overall, replenishing Su(l) takes O(2l logM/B(n/B))

amortized I/Os. However, 2lB samples must have been
reported from Su(l) since its last replenishment. We can
thus amortize the cost over those samples, so that each of
them bears only O((1/B) logM/B(n/B)) I/Os. Therefore,
the amortized query cost is bounded by O(logB logB n +
(t/B) logM/B(n/B)) expected.

Theorem 5. For the IRS problem, there is a structure of
O(n/B) space that answers a one-sided WR or WoR query
in O(logB logB n + (t/B) logM/B(n/B)) amortized I/Os in
expectation.

4.2 A 2-Sided Structure of Near-Linear Space
In this subsection, we will give a structure of

O((n/B) log⋆(n/B)) space that answers a 2-sided IRS query
in O(logB n+(t/B) logM/B(n/B)) amortized expected I/Os.
We achieve this by utilizing our set sampling and 1-sided
structures, and the sample replenishing technique.

Structure. We will build a tree T on P of h = 1+log⋆(n/B)
levels where the fanout decreases very rapidly as we descend
the tree. First, create a root node, and associate it with all
the points in P . In general, a node u at level h− i (0 ≤ i ≤

h) is associated with a set P (u) of at most 2B log(i)(n/B)
points in an interval I(u) satisfying:

• P (u) = I(u)∩P

• the intervals of all nodes at the same level are disjoint,
and their union is R.

If u is the root, i = 0, P (u) = P , and I(u) = R. For
i < h, we obtain the child nodes of u as follows. Divide I(u)
into a set of intervals, such that each interval covers exactly
⌊B log(i+1)(n/B)⌋ points in P (u), except possibly the last

one which is allowed to have between ⌊B log(i+1)(n/B)⌋ and

2⌊B log(i+1)(n/B)⌋ points. Create a child node of u for each
interval, and associate it with the points covered.

Now, consider an internal node u in T . Let u[1], ..., u[f]
be the child nodes of u (the value of f depends on the level
of u). We store |P (u)| at u, and associate u with some
secondary structures:

• A set sampling structure of Theorem 4 on P (u).

• A one-sided structure of Theorem 5 on P (u).

• A binary search tree T(u) on the intervals
I(u[1]), ..., I(u[f]). Let v be a node in T(u), and
suppose that I(u[j]), ..., I(u[j′]) are the intervals
covered in the subtree of v. Define I(v) as the union

of these intervals, and P (v) = P (u[j]) ∪ ... ∪ P (u[j′])
(clearly, P (v) = I(v)∩P). We store at v the value of
|P (v)|, and a bag S(v) of (j′ − j + 1)B samples, each
of which is taken randomly WR from P (v).

To analyze the space, let u be an internal node at
level h − i. The number f of its child nodes is at most

2B log(i)(n/B)

⌊B log(i+1)(n/B)⌋
= O(log(i)(n/B)

log(i+1)(n/B)
). T(u) as well as all the

sample bags in its nodes occupy O(f log f) blocks. As there

are at most n/⌊B log(i)(n/B)⌋ nodes at level h− i, all their
secondary structures occupy

n

⌊B log(i)(n/B)⌋
·O(f log f)

= O

(

n

B log(i)(n/B)
·

log(i)(n/B)

log(i+1)(n/B)
log log(i)(n/B)

)

= O(n/B).

Therefore, the overall space is O((n/B) log⋆(n/B)).

Query. To answer a 2-sided query with parameters q =
[x, y] and t, we first identify the lowest node u in T such
that I(u) covers q. This can be done in O(logB n) I/Os,
because the fanout is exponentially lower every level down.
If u is a leaf, we answer the query by reading all the O(B)
points in P (u).

If u is an internal node, then based on the intervals of the
child nodes of u, we can break the query into two 1-sided
queries (which will be answered at two child nodes of u), and
a 2-sided query with a range q∗ that is aligned with the inter-
vals’ endpoints. We can process each query separately, after
determining appropriately how many samples to take from
them, respectively, and then perform a random permutation
on all the collected t samples in O((t/B) logM/B(t/B)) I/Os.
The samples are then output in the permuted order. Given
Theorem 5, it suffices to explain how to handle the query
with q∗.

Suppose that we want to take t∗ samples from q∗. Let
k∗ = |P ∩ q∗|. Using the approach explained in Section 2.2,
we can identify two nodes v1, v2 in T(u) such that (i) I(v1)
and I(v2) are disjoint, and their union covers q, and (ii)
|P (v1)| + |P (v2)| = O(k∗). This can be done in O(logB n)
I/Os by applying the standard idea of packing the routing
information of multiple nodes of T(u) in a block. We then
generate a bag R of t∗ samples by repeating the following
two-step procedure. First, take t∗ samples WR from P (v1)∪
P (v2) (we will discuss how to do so shortly). Second, add to
R all the samples falling in q∗. We can fill up R by running
the procedure only O(1) times in expectation.

Next, we clarify how to obtain t∗ samples from P (v1) ∪
P (v2). From |P (v1)|, |P (v2)|, and t∗, we can decide how
many samples to take from P (v1) and P (v2), respectively,
by generating random ranks in memory. Then, we simply
pull the desired number of samples from S(v1) and S(v2),
respectively. If S(v1) has been exhausted (the case with
S(v2) is similar), we perform sample replenishing as follows.
Let u[j], ..., u[j′] be the child nodes of u whose intervals are
covered by I(v1). Recall that S(v1) had (j′−j+1)B samples
after it was newly computed. We obtain a new S(v1) of this
size from P (u[j]) ∪ ... ∪ P (u[j′]) in two steps:

1. Decide how many samples to take from each of
P (u[j]), ..., P (u[j′]). For this purpose, generate (j′ −

j + 1)B random ranks from 1 to |P (v1)|, sort them,
and see how many ranks fall in each of those subtrees
according to the values of |P (u[j])|, ..., |P (u[j′])|. This
can be done in O((j′ − j + 1) logM/B(n/B)) I/Os.

2. Query the set sampling structures of u[j], ... u[j′] to
get the desired numbers of samples, and then carry
out a random permutation over all the samples. This
demands O((j′ − j+1) logM/B(n/B)) amortized I/Os.

Each sample already output is thus amortized only
O((1/B) logM/B(n/B)) I/Os. This completes the descrip-
tion of our query algorithm.

Lemma 5. For the IRS problem, there is a structure of
O((n/B) log⋆(n/B)) space that answers a two-sided WR or
WoR query in O(logB n + (t/B) logM/B(n/B)) amortized
I/Os in expectation.

4.3 Two-Level IRS
This subsection tackles a separate problem which we call

two-level IRS, whose solution is the key to obtaining an
O(n/B)-space structure for 2-sided IRS queries.

In the two-level IRS problem, we have a set I of g disjoint
intervals I1, ..., Ig whose union is R. Each interval Ii (1 ≤
i ≤ g) covers a set Ci of points (whose concrete locations
within Ii are irrelevant). We refer to Ci as a chunk. Define
P =

⋃g
i=1 Ci, and n = |P |. A query specifies an integer

t ≥ 1 and a range q = [x, y] that is always aligned with
the intervals’ endpoints (namely, q always equals the union
of several consecutive intervals in I). The query returns t
samples each taken randomly WR from P (q) = P ∩ q.

One can apply Lemma 5 to solve this problem, but we aim
to meet a different space budget:

Lemma 6. For the two-level IRS problem, there is a
structure of O(n/B + g log⋆ g) space that answers a query
in O(logB n+(t/B) logM/B(n/B)) amortized I/Os in expec-
tation.

The rest of the subsection proves the lemma by describing
such a structure.

Structure. We create a set sampling structure of Theo-
rem 4 on each Ci (i ∈ [1, g]). They occupy O(g + n/B)
blocks in total. We also need a separate structure at the
chunk level, which is similar to the one in Section 4.2, but
differs in the secondary structures, as explained next.

We build a tree T on I of h = 1 + log⋆ g levels such that
a node u at level h − i (0 ≤ i ≤ h) is associated with an
interval I(u) with all the properties below:

• I(u) is the union of between ⌊log(i) g⌋ and 2 log(i) g
consecutive intervals in I.

• The nodes at the same level have disjoint intervals,
whose union is R.

• The interval of an internal node is always the union of
its child nodes’ intervals.

Define P (u) = I(u)∩P .

Now consider an internal node u. Let Ij , Ij+1, ..., Ij′ be
the intervals covered by I(u) in ascending order, and λ =
j′ − j+1. We associate u with several secondary structures:

• The first one allows us to do set sampling on P (u),
that is, to extract t random samples WR from P (u)
in O(1 + (t/B) logM/B(n/B)) amortized I/Os. Our
aim, however, is to use only O(λ) blocks; thus, we
cannot simply create a set sampling structure of The-
orem 4 on P (u). Instead, we store a pool of λB sam-
ples from P (u). Upon a set sampling request, we sim-
ply return the next t samples from the pool. When
the pool is exhausted, a new pool of λB samples is
generated by querying the set sampling structures of
chunks Cj , Cj+1..., Cj′ , and then performing a random
permutation in O(λ logM/B(n/B)) amortized I/Os.

• The second one allows us to answer a one-sided query
on P (u). The space budget is still O(λ), and thus
disallows a direct application of Theorem 5. Instead,
we apply once again an idea developed in Section 4.1:
prepare log2 λ bags of samples of size B, 2B, 4B,
..., λB, respectively, where the l-th bag (1 ≤ l ≤
⌈log2 λ⌉) of samples is taken from Cj ∪ ... ∪ Cj+2l−1.
A one-sided query can be answered in O(logB log2 λ+
(t/B) logM/B(n/B)) amortized expected I/Os from an
appropriate bag. When a bag is exhausted, replenish it
by querying the set sampling structures of the relevant
chunks and a random permutation.

• Let u[1], ..., u[f] be the child nodes of u. The third sec-
ondary structure allows us to answer a two-sided query
whose query interval is the union of several continuous
intervals in {I(u[1]), ..., I(u[f])}. For this purpose, we
directly use the same structure T(u) as described in
Section 4.2.

T has O(g/ log(i) g) nodes at level h− i (0 ≤ i ≤ h), each

with at most f = O(log(i) g

log(i+1) g
) child nodes, and thus requir-

ing O(f log f) blocks for its secondary structures. Hence, all
these nodes occupy O(g) blocks in total. Overall, T requires
O(g log⋆ g) space.

Query. The query algorithm is completely the same as the
one in Section 4.2 (remember that each node u in T has
been given secondary structures with the same functionality
as those in the previous subsection). We thus conclude the
proof of Lemma 6.

4.4 A 2-Sided Structure of Linear Space
We are now ready to describe our O(n/B)-space structure

for answering two-sided IRS queries. Set s = B log⋆(n/B).
We divide R into a set I of g = Θ(n/s) intervals I1, ..., Ig .
Each interval covers exactly s points of the input set P ,
except possibly the last one which can contain between s
and 2s points of P . In any case, define Ci = Ii ∩P for each
i ∈ [1, g]. Build a structure of Lemma 6 on the two-level IRS
problem defined by I and C1, ..., Cg. This structure occupies
O(n/B + g log⋆ g) = O(n/B) blocks.

Now we explain how to process a query with parameter
q = [x, y] and t. If q is covered by some interval Ii, we answer
it within chunk Ci. First, scan Ci to obtain S = Ci ∩ q, and
store S in an array; this requires O(s/B) I/Os. Second,
generate t random ranks in the range [1, |S|], and sort them
in ascending order. Third, obtain t samples by merging the
rank list and S in O(s/B) I/Os. Finally, compute a random
permutation of the t samples. Therefore, the total query

cost is O(log⋆(n/B) + logB n + (t/B) logM/B(t/B)), where
the second term is for finding Ii.

If q intersects at least two intervals in I, we break the
query into two one-sided queries (each of which will be an-
swered within a chunk) and one two-sided query with a range
q∗ that equals the union of several intervals in I. We process
the two one-sided queries by the “within-chunk” algorithm
we have just described, and the query with range q∗ by the
two-level IRS structure, after deciding the sample sizes for
these queries appropriately. Finally, we perform a random
permutation of all the samples fetched. The query cost is
O(log⋆(n/B) + logB n+ (t/B) logM/B(n/B)) amortized ex-
pected. We have thus established the last main result of this
paper:

Theorem 6. For the IRS problem, there is a structure of
O(n/B) space that answers a two-sided WR or WoR query
in O(log⋆(n/B) + logB n + (t/B) logM/B(n/B)) amortized
I/Os in expectation.

ACKNOWLEDGEMENTS

This work was supported in part by projects GRF 4165/11,
4164/12, and 4168/13 from HKRGC.

5. REFERENCES

[1] S. Acharya, P. B. Gibbons, and V. Poosala.
Congressional samples for approximate answering of
group-by queries. In Proceedings of ACM Management
of Data (SIGMOD), pages 487–498, 2000.

[2] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM (CACM),
31(9):1116–1127, 1988.

[3] L. Arge and J. S. Vitter. Optimal external memory
interval management. SIAM Journal of Computing,
32(6):1488–1508, 2003.

[4] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal
sampling from sliding windows. Journal of Computer
and System Sciences (JCSS), 78(1):260–272, 2012.

[5] P. Efraimidis and P. G. Spirakis. Weighted random
sampling with a reservoir. Information Processing
Letters (IPL), 97(5):181–185, 2006.

[6] R. Gemulla, W. Lehner, and P. J. Haas. Maintaining
bernoulli samples over evolving multisets. In
Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 93–102, 2007.

[7] J. Gustedt. Efficient sampling of random
permutations. Journal of Discrete Algorithms,
6(1):125–139, 2008.

[8] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proceedings of ACM Management of
Data (SIGMOD), pages 171–182, 1997.

[9] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker,
C. H. Papadimitriou, and V. Samoladas. On a model
of indexability and its bounds for range queries.
Journal of the ACM (JACM), 49(1):35–55, 2002.

[10] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra.
Scalable approximate query processing with the dbo
engine. ACM Transactions on Database Systems
(TODS), 33(4), 2008.

[11] S. Nath and P. B. Gibbons. Online maintenance of
very large random samples on flash storage. The
VLDB Journal, 19(1):67–90, 2010.

[12] F. Olken. Random Sampling from Databases. PhD
thesis, University of California at Berkeley, 1993.

[13] M. H. Overmars. The Design of Dynamic Data
Structures. Springer-Verlag, 1983.

[14] A. Pol, C. M. Jermaine, and S. Arumugam.
Maintaining very large random samples using the
geometric file. The VLDB Journal, 17(5):997–1018,
2008.

[15] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985.

[16] Z. Wei and K. Yi. Beyond simple aggregates: indexing
for summary queries. In Proceedings of ACM
Symposium on Principles of Database Systems
(PODS), pages 117–128, 2011.

Appendix: Proof of Lemma 3

Denote by R the set of samples we obtain after eliminating
duplicates. Consider any t < s, and an arbitrary subset S′

of S with |S′| = t. Thus, Pr[R ⊆ S′] = (t/k)2s. Hence, the
probability that R = S′ is at most (t/k)2s. Therefore:

Pr[|R| < s] =

s−1
∑

t=1

Pr[|R| = t]

≤

s−1
∑

t=1

(

k

t

)

(t/k)2s

≤
s−1
∑

t=1

(ek/t)t · (t/k)2s

(by et < es < e2s−t) <
s−1
∑

t=1

(et/k)2s−t

<
s−1
∑

t=1

(es/k))2s−t

≤
es/k

1− es/k
≤

1/3

2/3
= 1/2.

The lemma thus follows.

