
I/O-Efficient Join Dependency Testing,

Loomis-Whitney Join, and Triangle Enumeration∗

Xiaocheng Hu

Chinese University of Hong Kong

xchu@cse.cuhk.edu.hk

Miao Qiao

Massey University

m.qiao@massey.ac.nz

Yufei Tao

University of Queensland

taoyf@itee.uq.edu.au

April 21, 2016

Abstract

We revisit two fundamental problems in database theory. The join-dependency (JD) testing
problem is to determine whether a given JD holds on a relation r. We prove that the problem
is NP-hard even if the JD involves only relations each of which has only two attributes. The
JD-existence testing problem is to determine if there exists any non-trivial JD satisfied by r.
We present an I/O-efficient algorithm in the external memory model, which in fact settles the
closely related Loomis-Whitney enumeration problem. As a side product, we solve the triangle
enumeration problem with the optimal I/O-complexity, improving a recent result of Pagh and
Silvestri in PODS’14.

Keywords: Join Dependency, Loomis-Whitney Join, Triangle Enumeration, External Memory

∗A preliminary version of this article appeared in PODS’15.

1 Introduction

Given a relation r of d attributes, a key question in database theory is to ask if r is decomposable,
namely, whether r can be projected onto a set S of relations with less than d attributes such that
the natural join of those relations equals precisely r. Intuitively, a yes answer to the question
implies that r contains a certain form of redundancy. Some of the redundancy may be removed
by decomposing r into the smaller (in terms of attribute number) relations in S, which can be
joined together to restore r whenever needed. A no answer, on the other hand, implies that the
decomposition of r based on S will lose information, as far as natural join is concerned.

Join Dependency Testing. The above question (as well as its variants) has been extensively
studied by resorting to the notion of join dependency (JD). To formalize the notion, let us refer to
d as the arity of r. Denote by R = {A1, A2, ..., Ad} the set of names of the d attributes in r. R is
called the schema of r. Sometimes we may denote r as r(R) or r(A1, A2, ..., Ad) to emphasize on
its schema. Let |r| represent the number of tuples in r.

A JD defined on R is an expression of the form

J = ⊲⊳[R1, R2, ..., Rm]

where (i) m ≥ 1, (ii) each Ri (1 ≤ i ≤ m) is a subset of R that contains at least 2 attributes, and
(iii) ∪m

i=1Ri = R. J is non-trivial if none of R1, ..., Rm equals R. The arity of J is defined to be
maxmi=1 |Ri|, i.e., the largest size of R1, ..., Rm. Clearly, the arity of a non-trivial J is between 2 and
d− 1.

Relation r is said to satisfy J if

r = πR1
(r) ⊲⊳ πR2

(r) ⊲⊳ ... ⊲⊳ πRm(r)

where πX(r) denotes the projection of r onto an attribute set X, and ⊲⊳ represents natural join.
We are ready to formally state the first two problems studied in this article:

Problem 1. [λ-JD Testing] Given a relation r and a join dependency J of arity at most λ that is
defined on the schema of r, we want to determine whether r satisfies J .

Problem 2. [JD Existence Testing] Given a relation r, we want to determine whether there is any
non-trivial join dependency J such that r satisfies J .

Note the difference in the objectives of the above problems. Problem 1 aims to decide if r can
be decomposed according to a specific set J of projections. On the other hand, Problem 2 aims to
find out if there is any way to decompose r at all.

Computation Model. Our discussion on Problem 1 will concentrate on proving its NP-hardness.
For this purpose, we will describe all our reductions in the standard RAM model.

For Problem 2, which is known to be polynomial time solvable (as we will explain shortly), the
main issue is to design fast algorithms. We will do so in the external memory (EM) model [2],
which has become the de facto model for analyzing I/O-efficient algorithms. Under this model, a
machine is equipped with M words of memory, and an unbounded disk that has been formatted
into blocks of B words. It holds that M ≥ 2B. An I/O operation exchanges a block of data between
the disk and the memory. The cost of an algorithm is defined to be the number of I/Os performed.
CPU calculation is for free.

To avoid rounding, we define lgx y = max{1, logx y}, and will describe all logarithms using lgx y.
In all cases, the value of an attribute is assumed to fit in a single word.

1

Loomis-Whitney Enumeration. As will be clear later, the JD existence-testing problem is
closely related to the so-called Loomis-Whitney (LW) join (this term was coined in [12]). Let
R = {A1, A2, ..., Ad} be a set of d attributes. For each i ∈ [1, d], define Ri = R \ {Ai}, that is,
removing Ai from R. Let r1, r2, ..., rd be d relations such that ri (1 ≤ i ≤ d) has schema Ri. Then,
the natural join r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd is called an LW join. Note that the schema of the join result is
R.

We will consider LW joins in the EM model, where traditionally a join must write out all the
tuples in the result to the disk. However, the result size can be so huge that the number of I/Os
for writing the result may (by far) overwhelm the cost of the join’s rest execution. Furthermore,
in some applications of LW joins (e.g., for solving Problem 2), it is not necessary to actually write
the result tuples to the disk; instead, it suffices to witness each result tuple once in the memory.

Because of the above, we follow the approach of [14] by studying an enumerate version of the
problem. Specifically, we are given a memory-resident routine emit(.) which requires O(1) words to
store. The parameter of the routine is a tuple t of d values (a1, ..., ad) such that ai is in the domain
of Ai for each i ∈ [1, d]. The routine simply sends out t to an outbound socket with no I/O cost.
Then, our problem can be formally stated as:

Problem 3. [LW Enumeration] Given relations r1, ..., rd as defined earlier where d ≤ M/2, we
want to invoke emit(t) once and exactly once for each tuple t ∈ r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd.

As a noteworthy remark, if an algorithm can solve the above problem in x I/Os using M − B
words of memory, then it can also report the entire LW join result of K tuples (i.e., totally Kd
values) in x+O(Kd/B) I/Os.

Triangle Enumeration. Besides being a stepping stone for Problem 2, LW enumeration has
relevance to several other problems, among which the most prominent one is perhaps the triangle
enumeration problem [14] due to its large variety of applications (see [8, 14] and the references
therein for an extensive summary).

Let G = (V,E) be an undirected simple graph, where V (or E) is the set of vertices (or edges,
resp.). A triangle is defined as a clique of 3 vertices in G. We are again given a memory-resident
routine emit(.) that occupies O(1) words. This time, given a triangle ∆ as its parameter, the
routine sends out ∆ to an outbound socket with no I/O cost (this implies that all the 3 edges of ∆
must be in the memory at this moment). Then, the triangle enumeration problem can be formally
stated as:

Problem 4. [Triangle Enumeration] Given graph G as defined earlier, we want to invoke emit(∆)
once and exactly once for each triangle ∆ in G.

Observe that this is merely a special instance of LW enumeration with d = 3 where r1 = r2 =
r3 = E (specifically, E is regarded as a relation with two columns, such that every edge (u, v) gives
rise to two tuples (u, v) and (v, u) in the relation), with some straightforward care to avoid emitting
a triangle twice in no extra I/O cost.

1.1 Previous Results

Join Dependency Testing. Beeri and Vardi [5] proved that λ-JD testing (Problem 1) is NP-hard
if λ = d − o(d); recall that d is the number of attributes in the input relation r. Maier, Sagiv,
and Yannakakis [11] gave a stronger proof showing that λ-JD testing is still NP-hard for λ = Ω(d)

2

(more specifically, roughly 2d/3). In other words, (unless P = NP) no polynomial-time algorithm
can exist to verify every JD ⊲⊳[R1, R2, ..., Rm] on r, when one of R1, ..., Rm has Ω(d) attributes.

However, the above result does not rule out the possibility of efficient testing when the JD has
a small arity, namely, all of R1, ..., Rm have just a few attributes (e.g., as few as just 2). Small-arity
JDs are important because many relations in reality can eventually be losslessly decomposed into
relations with small arities. By definition, for any λ1 < λ2, the λ1-JD testing problem may only
be easier than λ2-JD testing problem because an algorithm for the latter can be used to solve the
former problem, but not the vice versa. The ultimate question, therefore, is whether 2-JD testing
can be solved within polynomial time. Unfortunately, the arity of J being Ω(d) appears to be an
inherent requirement in the reductions of [5, 11].

We note that a large body of beautiful theory has been developed on dependency inference,
where the objective is to determine whether a target dependency can be inferred from a set Σ of
dependencies (see [1, 10] for excellent guides into the literature). When the target dependency is
a join dependency, the inference problem has been proven to be NP-hard in a variety of scenarios,
most notably: (i) when Σ contains one join dependency and a set of functional dependencies [5, 11],
(ii) when Σ is a set of multi-valued dependencies [6], and (iii) when Σ has one domain dependency
and a set of functional dependencies [9]. The proofs of [5, 11] are essentially the same ones used
to establish the NP-hardness of Ω(d)-JD testing, while those of [6, 9] do not imply any conclusions
on λ-JD testing.

JD Existence Testing and LW Join. There is an interesting connection between JD existence
testing (Problem 2) and LW join. Let r(R) be the input relation to Problem 2, where R =
{A1, A2, ..., Ad}. For each i ∈ [1, d], define Ri = R\{Ai}, and ri = πRi

(r). Nicolas showed [13] that
r satisfies at least one non-trivial JD if and only if r = r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd. In fact, since it is always
true that r ⊆ r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd, Problem 2 has an answer yes if and only if r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd
returns exactly |r| result tuples.

Therefore, Problem 2 boils down to evaluating the result size of the LW join r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd.

Atserias, Grohe, and Marx [4] showed that the result size can be as large as (n1n2...nd)
1

d−1 , where
ni = |ri| for each i ∈ [1, d]. They also gave a RAM algorithm to compute the join result in

O(d2 · (n1n2...nd)
1

d−1 ·
∑n

i=1 ni) time. Since apparently ni ≤ n = |r| (1 ≤ i ≤ d), it follows that
their algorithm has running time O(d2 · nd/(d−1) · dn) = O(d3 · n2+o(1)), which in turn means that
Problem 2 is solvable in polynomial time. Ngo et al. [12] designed a faster RAM algorithm to

perform the LW join (hence, solving Problem 2) in O(d2 · (n1n2...nd)
1

d−1 + d2
∑d

i=1 ni) time. For
constant d, Veldulzen [15] presented a simplified algorithm to achieve the same complexity.

Problems 2 and 3 become much more challenging in external memory (EM). All the algorithms
of [4, 12, 15] rely on the fact that dictionary search, i.e., finding a specific element in a set, can
be done efficiently in RAM (either in O(1) expected time or logarithmic worse-case time). In EM,
however, spending even just one I/O per for dictionary search is excessively expensive for a problem
like LW join because the number of such searches is huge. Because of this, when adapted to EM, the
algorithms of [4, 12, 15] do not offer competitive efficiency; for instance, that of [12] can entail up

to O(d2 · (n1n2...nd)
1

d−1 + d2
∑d

i=1 ni) I/Os. When d is small, this may be even worse than a naive
generalized blocked-nested loop, whose I/O complexity for d = O(1) is O(n1n2...nd/(M

d−1B))
I/Os. Recall that B and M are the sizes of a disk block and memory, respectively.

Triangle Enumeration. Problem 4 has received a large amount of attention from the database
and theory communities (see [8] for a survey). Recently, Pagh and Silvestri [14] solved the problem
in EM with a randomized algorithm whose I/O cost is O(|E|1.5/(

√
MB)) expected, where |E| is

3

the number of edges in the input graph. They also presented a sophisticated de-randomization

technique to convert their algorithm into a deterministic one that performs O(|E|1.5√
MB

· logM/B
|E|
B)

I/Os. An I/O lower bound of Ω(|E|1.5/(
√
MB)) has been independently developed in [8, 14] on

the witnessing class of algorithms.

1.2 Our Results

Our first main result is:

Theorem 1. 2-JD testing is NP-hard.

The theorem officially puts a negative answer to the question whether a small-arity JD can be
tested efficiently (remember that 2 is already the smallest possible arity). As a consequence, we
know that Problem 2 is NP-hard for every value λ ∈ [2, d − 1]. Our proof is completely different
from those of [5, 11], and is based on a novel reduction from the Hamiltonian path problem.

Our second main result is an I/O-efficient algorithm for LW enumeration (Problem 3). Let
r1, r2, ..., rd be the input relations; and set ni = |ri|. We will prove:

Theorem 2. There is an EM algorithm that solves the LW enumeration problem with I/O com-
plexity:

O
(

sort
[

d3+o(1)
(Πd

i=1ni

M

)
1

d−1

+ d2
d
∑

i=1

ni

])

.

where function sort(x) = (x/B) lgM/B(x/B).

The main obstacle we faced in performing LW enumeration I/O-efficiently is that, we can no
longer rely on repetitive dictionary search, as is a key component of all the RAM algorithms
[4, 12, 15]. As mentioned in Section 1.1, while performing a dictionary search in O(1) time is
good in RAM, it is prohibitively expensive to spend O(1) I/Os for the same purpose in EM. To
overcome the obstacle, we abandoned dictionary search completely; in fact, our major contribution
is a delicate piece of recursive machinery, which resorts to only sorting and scanning.

As our third main result, we prove in Section 4 an improved version of Theorem 2 for d = 3:

Theorem 3. There is an EM algorithm that solves the LW enumeration problem of d = 3 with
I/O complexity O(1

B

√

n1n2n3

M + sort(n1 + n2 + n3)).

By combining the above two theorems with the reduction from JD existence testing to LW
enumeration described in Section 1.1, we obtain the first non-trivial algorithm for I/O-efficient JD
existence testing (Problem 2):

Corollary 1. Let r(R) be the input relation to the JD existence testing problem, where R =
{A1, ..., Ad}. For each i ∈ [1, d], define Ri = R \ {Ai}, and ni as the number of tuples in πRi

(r).
Then:

• For d > 3, the problem can be solved with the I/O complexity in Theorem 2.

• For d = 3, the I/O complexity can be improved to the one in Theorem 3.

Finally, when n1 = n2 = n3 = |E|, Theorem 3 directly gives a new algorithm for triangle
enumeration (Problem 4), noticing that sort(|E|) = O(|E|1.5/(

√
MB)):

4

Corollary 2. There is an algorithm that solves the triangle enumeration problem optimally in
O(|E|1.5/(

√
MB)) I/Os.

Our triangle enumeration algorithm is deterministic, and strictly improves that of [14] by a
factor of O(lgM/B(|E|/B)). Furthermore, the algorithm belongs to the witnessing class [8], and is
the first (deterministic algorithm) in this class achieving the optimal I/O complexity for all values
of M and B.

2 NP-Hardness of 2-JD Testing

This section will establish Theorem 1 with a reduction from the Hamiltonian path problem. Let
G = (V,E) be an undirected simple graph (a graph is simple if it has at most one edge between any
two vertices). with a vertex set V and an edge set E. Set n = |V | and m = |E|. A path of length ℓ
in G is a sequence of ℓ vertices v1, v2, ..., vℓ such that E has an edge between vi and vi+1 for each
i ∈ [1, ℓ − 1]. The path is simple if no two vertices in the path are the same. A Hamiltonian path
is a simple path in G of length n (such a path must pass each vertex in V exactly once). Deciding
whether G has a Hamiltonian path is known to be NP-hard [7].

Let R be a set of n attributes: {A1, A2, ..., An}. We will create
(

n
2

)

relations. Specifically, for
each pair of i, j such that 1 ≤ i < j ≤ n, we generate a relation ri,j with attributes Ai, Aj . The
tuples in ri,j are determined as follows:

• Case j = i+1: Initially, ri,j is empty. For each edge E between vertices u and v, we add two
tuples to ri,j : (u, v) and (v, u). In total, ri,j has 2m tuples.

• Case j ≥ i + 2: ri,j contains n(n − 1) tuples (x, y), for all possible integers x, y such that
x 6= y, and 1 ≤ x, y ≤ n.

The total number of tuples in the ri,j of all possible i, j is O(nm+ n4) = O(n4). Define:

Clique = the output of the natural join of all ri,j(1 ≤ i < j ≤ n).

As an example, for n = 3, Clique = r1,2 ⊲⊳ r1,3 ⊲⊳ r2,3. In general, Clique is a relation with
schema R. It should be easy to observe the fact below:

Proposition 1. G has a Hamiltonian path if and only if Clique is not empty.

For each pair of i, j satisfying 1 ≤ i < j ≤ n, define an attribute set Ri,j = {Ai, Aj}. Denote
by J the JD that “corresponds to” Clique, namely:

J = ⊲⊳[Ri,j , ∀i, j s.t. 1 ≤ i < j ≤ n].

For instance, for n = 3, J = ⊲⊳ [R1,2, R1,3, R2,3]. Note that J has arity 2, and R = ∪i,jRi,j in
general.

Next, we will construct from G a relation r∗ of schema R such that Clique is empty if and
only if r∗ satisfies J . Initially, r∗ is empty. For every tuple t in every relation ri,j (1 ≤ i < j ≤ n),
we will insert a tuple t′ into r∗. Recall that ri,j has schema {Ai, Aj}. Suppose, without loss of
generality, that t = (ai, aj). Then, t

′ is determined as follows:

• t′[Ai] = ai (t
′[Ai] is the value of t′ on attribute Ai)

• t′[Aj] = aj

5

• For any k ∈ [1, n] but k 6= i and k 6= j, t′[Ak] is set to a dummy value that appears only once
in the whole r∗.

Since there are O(n4) tuples in the ri,j of all i, j, we know that r∗ has O(n4) tuples, and hence, can
be built in O(n5) time.

Lemma 1. Clique is empty if and only if r∗ satisfies J .

Proof. We first point out three facts:

1. Every tuple in r∗ has n− 2 dummy values.

2. Define r∗i,j = πAi,Aj
(r∗) for i, j satisfying 1 ≤ i < j ≤ n. Clearly, r∗i,j and ri,j share the same

schema Ri,j . It is easy to verify that ri,j is exactly the set of tuples in r∗i,j that do not contain
dummy values.

3. Define:

Clique∗ = the output of the natural join of all r∗i,j (1 ≤ i < j ≤ n).

Then, r∗ satisfies J if and only if r∗ = Clique∗.

Equipped with these facts, we now proceed to prove the lemma.

For the “if” direction, assuming that r∗ satisfies J , we need to show that Clique is empty.
Suppose, on the contrary, that (a1, a2, ..., an) is a tuple in Clique. Hence, (ai, aj) is a tuple in ri,j
for any i, j satisfying 1 ≤ i < j ≤ n. As neither ai nor aj is dummy, by Fact 2, we know that
(ai, aj) belongs to r∗i,j . It thus follows that (a1, a2, ..., an) is a tuple in Clique∗. However, by Fact
1, (a1, a2, ..., an) cannot belong to r∗, thus giving a contradiction against Fact 3.

For the “only-if” direction, assuming that Clique is empty, we need to show that r∗ satisfies
J . Suppose, on the contrary, that r∗ does not satisfy J , namely, r∗ 6= Clique∗ (Fact 3). Let
(a∗1, a

∗
2, ..., a

∗
n) be a tuple in Clique∗ but not in r∗. We distinguish two cases:

• Case 1: none of a∗1, ..., a
∗
n is dummy. This means that, for any i, j satisfying 1 ≤ i < j ≤ n,

(a∗i , a
∗
j) is a tuple in ri,j (Fact 2). Therefore, (a∗1, a

∗
2, ..., a

∗
n) must be a tuple in Clique,

contradicting the assumption that Clique is empty.

• Case 2: a∗k is dummy for at least one k ∈ [1, n]. Since every dummy value appears exactly
once in r∗, we can identify a unique tuple t∗ in r∗ such that t∗[Ak] = a∗k. Next, we will show
that t∗ is precisely (a∗1, a

∗
2, ..., a

∗
n), thus contradicting the assumption that (a∗1, a

∗
2, ..., a

∗
n) is not

in r∗, which will then complete the proof.

Consider any i such that 1 ≤ i < k. That (a∗1, a
∗
2, ..., a

∗
n) is in Clique∗ implies that (a∗i , a

∗
k) is

in r∗i,k. However, because in r∗ the value a∗k appears only in t∗, it must hold that t∗[Ai] = a∗i .
By a similar argument, for any j such that k < j ≤ n, we must have t∗[Aj] = a∗j . It thus
follows that (a∗1, a

∗
2, ..., a

∗
n) is precisely t∗.

From the above discussion, we know that any 2-JD testing algorithm can be used to check
whether Clique is empty (Lemma 1), and hence, can be used to check whether G has a Hamiltonian
path (Lemma 1). We thus conclude that 2-JD testing is NP-hard.

6

3 LW Enumeration

The discussion from the previous section has eliminated the hope of efficient JD testing no matter
how small the JD arity is (unless P = NP). We therefore switch to the less stringent goal of JD
existence testing (Problem 2). Based on the reduction described in Section 1.1, next we concentrate
on LW enumeration as formulated in Problem 3, and will establish Theorem 2.

Let us recall a few basic definitions. We have a “global” set of attributes R = {A1, A2, ..., Ad}.
For each i ∈ [1, d], let Ri = R \ {Ai}. We are given relations r1, r2, ..., rd where ri (1 ≤ i ≤ d) has
schema Ri. The objective of LW enumeration is that, for every tuple t in the result of r1 ⊲⊳ r2 ⊲⊳
... ⊲⊳ rd, we should invoke emit(t) once and exactly once. We want to do so I/O-efficiently in the
EM model, where B and M represent the sizes (in words) of a disk block and memory, respectively.

For each i ∈ [1, d], set ni = |ri|, and define dom(Ai) as the domain of attribute Ai. Given a
tuple t and an attribute Ai (in the schema of the relation containing t), we denote by t[Ai] the value
of t on Ai. Furthermore, we assume that each of r1, ..., rd is given in an array, but the d arrays do
not need to be consecutive.

3.1 Basic Algorithms

Let us first deal with two scenarios under which LW enumeration is easier.

3.1.1 Small Join

The first scenario arises when there is an ni (for some i ∈ [1, d]) satisfying ni = O(M/d). In such
a case, we call r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd a small join. Next, we prove:

Lemma 2. Given a small join, we can emit all its result tuples in O(d+ sort(d
∑d

i=1 ni)) I/Os.

Without loss of generality, suppose that r1 has the smallest cardinality among all the input
relations. Let us first assume that n1 ≤ cM/d where c is a sufficiently small constant so that r1
can be kept in memory throughout the entire algorithm. With r1 already in memory, we merge all
the tuples of r2, ..., rd into a set L, sorted by attribute A1. For each a ∈ dom(A1), let L[a] be the
set of tuples in L whose A1-values equal a.

Next, for each a ∈ dom(A1), we use the procedure below to emit all such tuples t∗ ∈ r1 ⊲⊳ r2 ⊲⊳
... ⊲⊳ rd that t∗[A1] = a. First, initialize empty sets S2, ..., Sd in memory. Then, process each tuple
t ∈ L[a] as follows. Suppose that t originates from ri for some i ∈ [2, d]. Check whether r1 has a
tuple t′ satisfying

t′[Aj] = t[Aj], ∀j ∈ [2, d] \ {i}. (1)

If the answer is no, t is discarded; otherwise, we add it to Si. Note that the checking happens in
memory and entails no I/O. Having processed all the tuples of L[a] this way, we emit all the tuples
in the result of r1 ⊲⊳ S2 ⊲⊳ S3 ⊲⊳ ... ⊲⊳ Sd (these are exactly the tuples in r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd whose
A1-values equal a). The above tuple emission incurs no I/Os due to the following lemma.

Lemma 3. r1, S2, ..., Sd fit in memory.

Proof. It is easy to show that |Si| ≤ n1 ≤ cM/d for each i ∈ [2, d]. A naive way to store Si takes
d|Si| words, in which case we would need Ω(dM) words to store r1, S2, ..., Sd, exceeding the memory
capacity M . To remedy this issue, we store Si using only |Si| words as follows. Given a tuple t ∈ Si,
we store a single integer that is the memory address of the tuple t′ in (1), which requires only lg2 n1

7

bits by storing an offset. This does not lose any information because we can recover t by resorting
to (1) and the fact that t[A1] = a. Therefore, r1, S2, ..., Sd can be represented in O(d · n1) words,
which is smaller than M when the constant c is sufficiently small.

The overall cost of the algorithm is dominated by the cost of (i) merging r2, ..., rd into L, which
takes O(d+(d/B)

∑d
i=2 ni) I/Os, and (ii) sorting L, which takes O(sort(d

∑d
i=2 ni)) I/Os, using an

algorithm of [3] (see Theorem 1 of [3]) for string sorting in EM. Hence, the overall I/O complexity
is as claimed in Lemma 2.

For the case where n1 > cM/d, we simply divide r1 arbitrarily into O(1) subsets each with
cM/d tuples, and then apply the above algorithm to emit all the result tuples produced from each
of the subsets. This concludes the proof of Lemma 2.

3.1.2 Point Join

The second scenario where LW enumeration is relatively easy takes a bit more efforts to explain.
In addition to r1, ..., rd, we accept two more input parameters:

• an integer H ∈ [1, d]

• a value a ∈ dom(AH).

It is required that a should be the only value that appears in the AH attributes of
r1, ..., rH−1, rH+1, ..., rd (recall that rH does not have AH). In such a case, we call r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd
a point join. Next, we prove:

Lemma 4. Given a point join, we can emit all its result tuples in O(d + sort(d2nH +
d
∑

i∈[1,d]\{H} ni)) I/Os.

Proof. For each i ∈ [1, d]\{H}, define Xi = Ri ∩RH (i.e., Xi includes all the attributes in R except
Ai and AH).

In ascending order of i ∈ [1, d] \ {H}, we invoke the procedure below to process ri and rH ,
which continuously removes some tuples from rH . First, sort ri and rH by Xi, respectively. Then,
synchronously scan ri and rH according to the sorted order. For each tuple t in rH , we check
during the scan whether ri has a tuple t′ that has the same values as t on all the attributes in
Xi—note that such t′ (if exists) must be unique, due to the fact that a is the only AH value in
ri. The sorted order ensures that if t′ exists, then t and t′ must appear consecutively during the
synchronous scan. If t′ exists, t is kept in rH ; otherwise, we discard t from rH (t cannot produce
any tuple in r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd).

After the above procedure has finished through all i ∈ [1, d] \ {H}, we know that every tuple t
remaining in rH must produce exactly one result tuple t′′ in r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd where t′′[Ai] = t[Ai]
for all i ∈ [1, d] \ {H}, and t′[AH] = a. Therefore, we can emit all such t′ with one more scan of
the (current) rH .

The claimed I/O cost follows from the fact that rH is sorted d − 1 times in total, while ri is
sorted once for each i ∈ [1, d] \ {H}.

In what follows, we will denote the algorithm in the above lemma as PtJoin(H, a, r1, r2, ..., rd).

8

3.2 The Full Algorithm

This subsection presents an algorithm for solving the general LW enumeration problem. If n1 ≤
2M/d, we solve the problem directly by Lemma 2. The subsequent discussion focuses on n1 > 2M/d.

Define:

U =

(

∏d
i=1 ni

M

)
1

d−1

(2)

τi =
n1n2...ni

(U · d
1

d−1)i−1
for each i ∈ [1, d]. (3)

Notice that τ1 = n1 and τd = M/d.

Our algorithm is a recursive procedure Join(h, ρ1, ..., ρd), which has three requirements:

• h is an integer in [1, d];

• Each ρi (1 ≤ i ≤ d) is a subset of the tuples in ri.

• The size of ρ1 satisfies:

|ρ1| ≤ τh. (4)

Join(h, ρ1, ..., ρd) emits all result tuples in ρ1 ⊲⊳ ... ⊲⊳ ρd. The LW enumeration problem can be
settled by calling Join(1, r1, ..., rd).

If τh ≤ 2M/d, |ρ1| ≤ τh = O(M/d); Join(h, ρ1, ..., ρd) simply runs the small-join algorithm of
Lemma 2. Next, we focus on τh > 2M/d. Define:

H = min{i ∈ [h+ 1, d] | τi < τh/2}. (5)

H always exists because τd = M/d < τh/2. Given a value a ∈ dom(AH), define

freq(a) = |{t ∈ ρ1 | t[AH] = a}| .
We collect all the frequent values a into a set Φ:

Φ = {a ∈ dom(AH) | freq(a) > τH/2}. (6)

For each i ∈ [1, d] \ {H}, we partition ρi into:

ρheavyi = {t ∈ ρi | t[AH] ∈ Φ}
ρlighti = {t ∈ ρi | t[AH] /∈ Φ}

It is rudimentary to produce Φ, as well as ρheavyi and ρlighti for each i ∈ [1, d] \ {H}, by sorting
on AH . Specifically, each element to be sorted is a tuple of d − 1 values where d ≤ M/2 (see
the definition of Problem 3). Using an EM string sorting algorithm of [3], all the sorting can be
completed with O(d+ sort(d

∑

i∈[1,d]\{H} |ρi|)) I/Os in total.

A result tuple t∗ ∈ ρ1 ⊲⊳ ... ⊲⊳ ρd is said to be heavy if t∗[AH] ∈ Φ, or light otherwise. The set
of heavy tuples is precisely

ρheavy1 ⊲⊳ ... ⊲⊳ ρheavyH−1 ⊲⊳ ρH ⊲⊳ ρheavyH+1 ⊲⊳ ... ⊲⊳ ρheavyd ,

whereas the set of light tuples is

ρlight1 ⊲⊳ ... ⊲⊳ ρlightH−1 ⊲⊳ ρH ⊲⊳ ρlightH+1 ⊲⊳ ... ⊲⊳ ρlightd .

We will emit heavy and light tuples separately, as explained next.

9

3.2.1 Enumerating Heavy Tuples

For every a ∈ Φ, define for each i ∈ [1, d] \ {H}:

ρheavyi [a] = {t ∈ ρheavyi | t[AH] = a}.

The tuples of ρheavyi [a] are stored consecutively in the disk because we have sorted ρheavyi by AH

earlier. Hence, all the heavy tuples t∗ with t∗[AH] = a can be emitted by a point join:

PtJoin(H, a, ρheavy1 [a], ..., ρheavyH−1 [a], ρH , ρheavyH+1 [a], ..., ρ
heavy
d [a]).

3.2.2 Enumerating Light Tuples

For each i ∈ [1, d] \ {H}, given an interval I in dom(AH), define:

ρlighti [I] = {t ∈ ρlighti | t[AH] ∈ I}.

With one scan of ρ1 (which has been sorted by AH), we can obtain a sequence of disjoint intervals
I1, I2, ..., Iq with the properties below:

• q = O(1 + |ρ1|/τH);

• I1, I2, ..., Iq are in ascending order, and constitute a partition of dom(AH);

• The following balancing condition is fulfilled:

– |ρlight1 [Ij]| ∈ [τH/2, τH] for every j ∈ [1, q − 1];

– |ρlight1 [Iq]| ∈ [1, τH].

Next, for all i ∈ [2, d] \ {H}, we produce ρlighti [I1], ρ
light
i [I2], ..., ρ

light
i [Iq] by sorting. To emit all

the light tuples, we recursively invoke our algorithm for each j ∈ [1, q]:

Join(H, ρlight1 [Ij], ..., ρ
light
H−1[Ij], ρH , ρlightH+1[Ij], ..., ρ

light
d [Ij]).

This completes the description of our LW enumeration algorithm.

We remark that a crucial design of our recursive machinery is in how the parameter h in
Join(h, ρ1, ..., ρd) increases. Specficailly, this parameter does not increase by 1 each time; rather,
it will be set to the value of H as given by (5), which is at least h+ 1 but can be larger.

3.3 A Recurrence on the I/O Cost

This and the next subsections will analyze the performance of our algorithm. Define a sequence of
integers as follows:

• h1 = 1;

• Provided that hi (i ≥ 1) has been defined:

– if τhi
> 2M/d, define hi+1 = min{j ∈ [1 + hi, d] | τj < τhi

/2};
– otherwise, hi+1 is undefined.

10

Denote by w the largest integer j such that hj is defined.

Recall that our LW enumeration algorithm starts by calling the Join procedure with
Join(1, r1, ..., rd), which recursively makes subsequent calls to the same procedure. These calls
form a tree T . Equipped with the sequence h1, h2, ..., hw, we can describe T in a more specific
manner. Given a call Join(h, ρ1, ..., ρd), let us refer to the value of h as the call’s axis. The initial
call Join(1, r1, ..., rd) has axis h1 = 1. In general, an axis-hi (i ∈ [1, w− 1]) call generates axis-hi+1

calls, and hence, parents those calls in T . Finally, all axis-hw calls are leaf nodes in T (recall that
an axis-hw call simply invokes the small-join algorithm of Lemma 2). In other words, T has w
levels; and all the calls at level ℓ ∈ [1, w] have an identical axis hℓ.

Given a level ℓ ∈ [1, w], define function cost(ℓ, ρ1, ..., ρd) to be the number of I/Os performed
by Join(hℓ, ρ1, ..., ρd). We will work out a recurrence on cost(ℓ, ρ1, ..., ρd), and then concentrate on
solving it.

The Base Case of the Recurrence. If ℓ = w, Lemma 2 immediately shows

cost(ℓ, ρ1, ..., ρd) = O
(

d+ sort
(

d

d
∑

i=1

|ρi|
))

. (7)

The General Case. For ℓ ∈ [1, w − 1], define:

µℓ =
2τhℓ

τhℓ+1

. (8)

By the way hℓ+1 is selected, it must hold that µℓ ≥ 4. Furthermore, we can prove:

Lemma 5. µℓ−1 = O(Ud
1

d−1 /nhℓ
) for each ℓ ∈ [2, w].

Proof. It suffices to show that τhℓ−1
/τhℓ

= O(Ud
1

d−1 /nhℓ
). From (3), we get

τhℓ−1

τhℓ

=
(Ud

1

d−1)hℓ−hℓ−1

∏hℓ

j=1+hℓ−1
nj

. (9)

If hℓ = 1 + hℓ−1, then

(9) =
Ud

1

d−1

nhℓ

.

Otherwise (hℓ > 1 + hℓ−1), the definition of hℓ indicates τhℓ−1 ≥ τhℓ−1
/2 (otherwise, hℓ would not

be the smallest integer j ∈ [1 + hℓ−1, d] satisfying τj < τhℓ−1
/2), namely:

τhℓ−1

τhℓ−1
=

(Ud
1

d−1)hℓ−1−hℓ−1

∏hℓ−1
j=1+hℓ−1

nj

≤ 2.

Hence,

(9) =
(Ud

1

d−1)hℓ−1−hℓ−1

∏hℓ−1
j=1+hℓ−1

nj

· Ud
1

d−1

nhℓ

≤ 2 · Ud
1

d−1

nhℓ

.

11

Consider the set Φ defined in (6). Recall that for every a ∈ Φ, freq(a) > τhℓ+1
/2. Hence:

|Φ| < |ρ1|
τhℓ+1

/2
≤ 2

τhℓ

τhℓ+1

= µℓ.

where the second inequality is due to (4).

The number of I/Os that Join(hℓ, ρ1, ..., ρd) spends on emitting heavy tuples is dominated by
that of the point joins performed, whose total I/O cost (by Lemma 4) is:

O
(

∑

a∈Φ

(

d+ sort
(

d2 · |ρhℓ+1
|+ d

∑

i∈[1,d]\{hℓ+1}

∣

∣

∣
ρheavyi [a]

∣

∣

∣

)))

= O
(

d · |Φ|+ sort
(

d2 · |Φ| · |ρhℓ+1
|+ d

d
∑

i=1

|ρi|
))

= O
(

d · µℓ + sort
(

d2 · µℓ · |ρhℓ+1
|+ d

d
∑

i=1

|ρi|
))

. (10)

The cost of emitting light tuples comes from recursion. Taking into account the fact that the sorting
cost in Section 3.2.2 has been absorbed in (10), we have

cost(ℓ, ρ1, ..., ρd)

= (10) +

q
∑

j=1

cost
(

ℓ+ 1, ρlight1 [Ij], ..., ρ
light
hℓ+1−1[Ij], ρhℓ+1

, ρlighthℓ+1+1[Ij], ..., ρ
light
d [Ij]

)

(11)

where q is the number of disjoint intervals that Join(hℓ, ρ1, ..., ρd) uses to divide dom(Aℓ) (see
Section 3.2.2). By the balancing condition in Section 3.2.2, it must hold that

q = O(1 + |ρ1|/τhℓ+1
)

(by (4)) = O(1 + τhℓ
/τhℓ+1

)

= O(µℓ). (12)

The rest of the section is devoted to analyzing the above non-conventional recurrence.

3.4 Solving the Recurrence

Our objective is to prove that cost(1, r1, ..., rd)—which gives the number of I/Os of our LW enu-
meration algorithm—is as claimed in Theorem 2. We will do so by resorting to the recursion tree
T (as is defined in Section 3.3). Specifically, for each node Join(ℓ, ρ1, ..., ρd), we associate it with
cost

• O(d+ sort(d
∑d

i=1 |ρi|)), if it is a leaf in T . We account for the two terms in different ways.
First, the term O(d) is charged as the factual cost on the leaf itself. On the other hand, on
every tuple in ρi (of all i ∈ [1, d]), we charge a nominal cost of O(d). In this way, the second
term O(sort(d

∑d
i=1 |ρi|)) equals O(sort(x)), where x is the sum of the nominal costs of all

the tuples in ρ1, ..., ρd.

• O(d ·µℓ+ sort(d2 ·µℓ · |ρhℓ+1
|+ d

∑d
i=1 |ρi|)), if it is an internal node in T . Again, we account

for the terms differently. The term O(d · µℓ) is charged as the factual cost of the node itself.
On every tuple in ρi for i ∈ [1, d], we charge a nominal cost of O(d), whereas on every tuple

12

in ρhℓ+1
, we charge an additional nominal cost of O(d2 · µℓ). The term sort(d2 · µℓ · |ρhℓ+1

|+
d
∑d

i=1 |ρi|)) equals O(sort(x′)), where x′ is the sum of the nominal costs of all the tuples in
ρ1, ..., ρd incurred this way.

The above strategy allows us to bound cost(1, r1, ..., rd) by adding up two costs:

• The sum of the factual costs of all nodes in T ;

• sort(X), where X is the sum of the total nominal costs charged on all the tuples in r1, r2, ..., rd
across all levels of T .1

Next, we will concentrate on each bullet in turn.

Bounding the Factual Costs. Let us now focus on Bullet 1. The key is to bound the number
mℓ of nodes at each level ℓ ∈ [1, w] of T . We say that a level-ℓ call Join(hℓ, ρ1, ..., ρd) underflows
if |ρ1| < τhℓ

/2; otherwise, it is ordinary. Consider all the calls Join(hℓ, ρ1, ..., ρd) at level ℓ. The
sets ρ1 (i.e., the first parameter) of those calls are disjoint. Hence, there can be at most O(n1/τhℓ

)
ordinary calls at level ℓ. Moreover, if ℓ < w, then a level-ℓ call creates at most one underflowing
call at level ℓ+ 1. This discussion indicates that, for each ℓ ∈ [2, w]:

mℓ = O

(

mℓ−1 +
n1

τhℓ

)

= O

(

ℓ
∑

i=1

n1

τhi

)

= O

(

n1

τhℓ

)

, (13)

where the second equality used m1 = 1 = n1/τh1
, and the last equality used the fact that τhi

>
2τhi+1

for every i ∈ [1, w − 1].

Therefore, the sum of the factual costs of all the nodes in T is bounded by

O

(

d ·mw +
w−1
∑

ℓ=1

d · µℓ ·mℓ

)

= O

(

d · n1

τhw

+
w−1
∑

ℓ=1

d · µℓ ·
n1

τhℓ

)

(by (8)) = O

(

d · n1

τhw

+
w−1
∑

ℓ=1

d ·
ττhℓ
τhℓ+1

· n1

τhℓ

)

= O

(

d · n1

τhw

+
d · n1

τhw

)

(by τhw
= M/d) = O

(

d2n1

M

)

. (14)

Bounding X. Let us consider a single tuple t in an arbitrary input relation ri (for any i ∈ [1, d]).
We aim to bound the sum of all the nominal costs charged on t, across all the nodes of T . Consider
a level-ℓ call (1 ≤ ℓ ≤ w) Join(hℓ, ρ1, ..., ρd) in T . We say that t participates in the call if t ∈ ρi.
Obviously, t has a nominal cost on this node if and only if t participates in it.

For i ∈ [2, d], define a value Li ∈ [0, w] as follows:

• Li = ℓ if i is the axis of the calls at level-ℓ of T for some ℓ ∈ [2, w], i.e., hℓ = i;

• Li = 0, otherwise.

We make the following observation on the participation of t in different levels:

1Notice that sort(x) + sort(x′) ≤ sort(x+ x
′) for any x, x

′
> 0.

13

Lemma 6. If Li = 0, then t participates at most once at level ℓ for all ℓ ∈ [1, w]. Otherwise, t
participates

• at most once at level-ℓ for each ℓ ∈ [1, Li − 1];

• O(µLi−1) times at level ℓ for each ℓ ∈ [Li, w].

Proof. The lemma follows from how t is passed from a call to its descendants in T . Let
Join(hℓ, ρ1, ..., ρd) be a level-ℓ call that t participates in. If hℓ+1 6= i, then t participates in at
most one of the call’s child nodes in T . Otherwise (hℓ+1 = i, and hence, Li = ℓ+ 1 by definition),
t may participate in all of the call’s child nodes in T . From (12), we know that Join(hℓ, ρ1, ..., ρd)
has q = O(µℓ) = O(µLi−1).

Hence, the total nominal cost of t in the entire T equals:

• O(d · w) = O(d2), if Li = 0.

• O(d ·Li+d2 ·µLi−1+d ·µLi−1 · (d−Li+1)) = O(d2 ·µLi−1), otherwise. Specifically, the term
O(d · Li) is due to the at most one participation of t at each level from 1 to Li − 1, whereas
the term O(d · µLi−1 · (d − Li + 1)) is due to the O(µLi−1) participations at each level from
Li to d. The term O(d2 · µLi−1) is due to the additional cost charged on t at level Li − 1.

Therefore, X—the sum of the total nominal cost of all tuples—is bounded by

O
(

∑

i∈[1,d] s.t. Li 6=0

d2µLi
ni +

d
∑

i=1

d2ni

)

= O
(

w
∑

ℓ=2

d2µℓ−1nhℓ
+ d2

d
∑

i=1

ni

)

(by Lemma 5) = O
(

w
∑

ℓ=2

Ud2+
1

d−1 + d2
d
∑

i=1

ni

)

= O
(

d3+
1

d−1U + d2
d
∑

i=1

ni

)

.

Summary. Combining the above equation with (2) and plugging in the definition of U in (14), we
now complete the whole proof of Theorem 2.

3.5 A Lower Bound Remark for Constant d

When the number d of attributes is a constant, our LW enumeration algorithm guarantees I/O cost

O(sort((
∏d

i=1 ni/M)
1

d−1 +
∑d

i=1 ni)). On the other hand, using an argument similar to those in

[8, 14], we can establish an I/O lower bound of Ω(n
d

d−1 /(BM
1

d−1)) in the scenario where n1 = n2 =
... = nd = n, on the class of witnessing algorithms. Our algorithm, which is in this class, is thus
asymptotically optimal up to a logarithmic factor. Next, we present a proof of the lower bound.

We will refer to a tuple in r1, r2, ..., or rd as an input tuple. A witnessing algorithm is modeled
as follows. A disk block has the capacity to store precisely B input tuples. At the beginning, the
memory is empty, while all the input tuples reside in the disk. At any moment, the algorithm
is allowed to keep at most M input tuples in the memory. At each step, it is permitted three
operations:

• Read I/O: fetch B input tuples from a disk block into the memory;

14

• Write I/O: write B input tuples in the memory to a disk block;

• Perform emit(t∗) for a result tuple t∗ = r1 ⊲⊳ ... ⊲⊳ rd, provided that the d input tuples that
produce t∗ are all in the memory currently.

Let us consider a hard input to the LW enumeration problem where the size of r1 ⊲⊳ ... ⊲⊳ rd
equals nd/(d−1) (such an input indeed exists [4]). Suppose that an algorithm solves the problem
on this input using H read I/Os (write I/Os are for free in our analysis). Chop the sequence of
these read I/Os into epochs where each epoch is a subsequence of M/B I/Os, except possibly the
last one. As shown later, during each epoch, emit(.) can only be called O(Md/(d−1)) times. This
implies that

H

M/B
·O(Md/(d−1)) ≥ nd/(d−1)

which suggests H = Ω(n
d

d−1 /(BM
1

d−1)).

It remains to explain why there can be only O(Md/(d−1)) tuple emissions during an epoch.
Define S to be a set of input tuples defined as follows. S includes (i) all the input tuples already
in the memory at the beginning of the epoch, and (ii) all the input tuples in the (at most) M/B
blocks read in the epoch. Clearly |S| ≤ 2M . Every tuple emitted during the epoch must be
produced by the tuples in S. Suppose that S contains xi (i ∈ [1, d]) tuples from ri. According to
[4], these input tuples can produced at most (

∏d
i=1 xi)

1/(d−1) tuples in r1 ⊲⊳ ... ⊲⊳ rd, which is at

most (2M/d)d/(d−1) = O(Md/(d−1)) under the constraint
∑d

i=1 xi ≤ 2M .

4 A Faster Algorithm for Arity 3

The algorithm developed in the previous section solves the LW enumeration problem for any d ≤
M/2. In this section, we focus on d = 3, and leverage intrinsic properties of this special instance
to design a faster algorithm, which will establish Theorem 3 (and hence, also Corollaries 1 and 2).
Specifically, the input consists of three relations: r1(A2, A3), r2(A1, A3), and r3(A1, A2); and the
goal is to emit all the tuples in the result of r1 ⊲⊳ r2 ⊲⊳ r3.

As before, for each i ∈ [1, 3], set ni = |ri|, and denote by dom(Ai) the domain of Ai. Without
loss of generality, we assume that n1 ≥ n2 ≥ n3.

4.1 Basic Algorithms

Let us start with:

Lemma 7. If r1(A2, A3) and r2(A1, A3) have been sorted by A3, the 3-arity LW enumeration

problem can be solved in O(1 + (n1+n2)n3

MB + 1
B

∑3
i=1 ni) I/Os.

Proof. If n3 ≤ M , we can achieve the purpose stated in the lemma using the small-join algorithm
of Lemma 2 with straightforward modifications (e.g., apparently sorting is not required). When
n3 > M , we simply chop r3 into subsets of size M , and then repeat the above small-join algorithm
⌈n3/M⌉ times.

We call r1 ⊲⊳ r2 ⊲⊳ r3 an A1-point join if both conditions below are fulfilled:

• all the A1 values in r2(A1, A3) are the same;

15

• r1(A2, A3) and r2(A1, A3) are sorted by A3.

Lemma 8. Given an A1-point join, we can emit all its result tuples in O(1 + n1n3

MB + 1
B

∑3
i=1 ni)

I/Os.

Proof. We first obtain r′(A1, A2, A3) = r1 ⊲⊳ r2, and store all the tuples of r′ into the disk. Since
all the tuples in r2 have the same A1-value, their A3-values must be distinct. Hence, each tuple
in r1 can be joined with at most one tuple in r2, implying that |r′| ≤ n1. Utilizing the fact that
r1 and r2 are both sorted on A3, r

′ can be produced by a synchronous scan over r1 and r2 in
O(1 + (n1 + n2)/B) I/Os.

Then, we use the classic blocked nested loop (BNL) algorithm to perform the join r′ ⊲⊳ r3 (which
equals r1 ⊲⊳ r2 ⊲⊳ r3). The only difference is that, whenever BNL wants to write a block of O(B)
result tuples to the disk, we skip the write but simply emit those tuples. The BNL performs

O(1 + |r′|n3

MB + r′+n3

B) I/Os. The lemma thus follows.

Symmetrically, we call r1 ⊲⊳ r2 ⊲⊳ r3 an A2-point join if

• all the A2 values in r1(A2, A3) are the same.

• r1(A2, A3) and r2(A1, A3) are sorted by A3.

Lemma 9. Given an A2-point join, we can emit all its result tuples in O(1 + n2n3

MB + 1
B

∑3
i=1 ni)

I/Os.

Proof. Symmetric to Lemma 8.

4.2 3-Arity LW Enumeration Algorithm

Next, we give our general algorithm for LW enumeration with d = 3. We will focus on n1 ≥ n2 ≥
n3 ≥ M ; if n3 < M , the algorithm in Lemma 7 already solves the problem in linear I/Os after
sorting.

Set:

θ1 =

√

n1n3M

n2
, and θ2 =

√

n2n3M

n1
. (15)

For values a1 ∈ dom(A1) and a2 ∈ dom(A2), define:

freq(a1, r3) = |{t ∈ r3 | t[A1] = a1}|
freq(a2, r3) = |{t ∈ r3 | t[A2] = a2}|.

Now we introduce:

Φ1 = {a1 ∈ dom(A1) | freq(a1, r3) > θ1}
Φ2 = {a2 ∈ dom(A2) | freq(a2, r3) > θ2}.

Let t∗ be a result tuple of r1 ⊲⊳ r2 ⊲⊳ r3. We can classify t∗ into one of the following categories:

• Heavy-heavy: t∗[A1] ∈ Φ1 and t∗[A2] ∈ Φ2

• Heavy-light: t∗[A1] ∈ Φ1 and t∗[A2] /∈ Φ2

• Light-heavy: t∗[A1] /∈ Φ1 and t∗[A2] ∈ Φ2

16

• Light-light: t∗[A1] /∈ Φ1 and t∗[A2] /∈ Φ2.

We will emit each type of tuples separately, after a partitioning phase, as explained in the sequel.

Partitioning r3. Define:

rheavy,heavy3 = {t ∈ r3 | t[A1] ∈ Φ1, t[A2] ∈ Φ2}
rheavy,light3 = {t ∈ r3 | t[A1] ∈ Φ1, t[A2] /∈ Φ2}
rlight ,heavy3 = {t ∈ r3 | t[A1] /∈ Φ1, t[A2] ∈ Φ2}
rlight ,light3 = {t ∈ r3 | t[A1] /∈ Φ1, t[A2] /∈ Φ2}
rlight ,−3 = rlight ,heavy3 ∪ rlight ,light3

r−,light
3 = rheavy,light3 ∪ rlight ,light3 .

Divide dom(A1) into q1 = O(1 + n3/θ1) disjoint intervals I11 , I
1
2 , ..., I

1
q1 with the following

properties: (i) I11 , I
1
2 , ..., I

1
q1 are in ascending order, and (ii) for each j ∈ [1, q1], r

light ,−
3 has at most

2θ1 tuples whose A1-values fall in I1j . Similarly, we divide dom(A2) into q2 = O(1+n3/θ2) disjoint

intervals I21 , I
2
2 , ..., I

2
q2 with the following properties: (i) I21 , I

2
2 , ..., I

2
q2 are in ascending order, and (ii)

for each j ∈ [1, q2], r
−,light
3 has at most 2θ2 tuples whose A2-values fall in I2j .

We now define several partitions of r3:

• For each a1 ∈ Φ1 and a2 ∈ Φ2, let r
heavy,heavy
3 [a1, a2] be the (only) tuple t in rheavy,heavy3 with

t[A1] = a1 and t[A2] = a2.

• For each a1 ∈ Φ1 and j ∈ [1, q2], let r
heavy,light
3 [a1, I

2
j] be the set of tuples t in rheavy,light3 with

t[A1] = a1 and t[A2] in I2j .

• For each j ∈ [1, q1] and a2 ∈ Φ2, let r
light ,heavy
3 [I1j , a2] be the set of tuples t in rlight ,heavy3 with

t[A1] in I1j and t[A2] = a2.

• For each j1 ∈ [1, q1] and j2 ∈ [1, q2], let rlight ,light3 [I1j1 , I
2
j2
] be the set of tuples t in rlight ,light3

with t[A1] in I1j and t[A2] in I2j .

It is rudimentary to produce all the above partitions with O(sort(n3)) I/Os in total.

Partitioning r1 and r2. Let:

rheavy1 = set of tuples t in r1 s.t. t[A2] ∈ Φ2

rlight1 = set of tuples t in r1 s.t. t[A2] /∈ Φ2

rheavy2 = set of tuples t in r2 s.t. t[A1] ∈ Φ1

rlight2 = set of tuples t in r2 s.t. t[A1] /∈ Φ1

We now define several partitions of r1:

• For each a2 ∈ Φ2, let r
heavy
1 [a2] be the set of tuples t in rheavy1 with t[A2] = a2.

• For each j ∈ [1, q2], let r
light
1 [I2j] be the set of tuples t in rlight1 with t[A2] in I2j .

Similarly, we define several partitions of r2:

17

• For each a1 ∈ Φ1, let r
heavy
2 [a1] be the set of tuples t in rheavy2 with t[A1] = a1.

• For each j ∈ [1, q1], let r
light
2 [I1j] be the set of tuples t in rlight2 with t[A1] in I1j .

It is rudimentary to produce the above partitions using O(sort(n1 + n2 + n3)) I/Os in total. With
the same cost, we make sure that all these partitions are sorted by A3.

Enumerating Result Tuples. We emit each type of tuples as follows:

• Heavy-heavy: For each a1 ∈ Φ1 and each a2 ∈ Φ2, apply Lemma 7 to emit the result of
rheavy1 [a2] ⊲⊳ rheavy2 [a1] ⊲⊳ rheavy,heavy3 [a1, a2].

• Heavy-light: For each a1 ∈ Φ1 and each j ∈ [1, q2], apply Lemma 8 to emit the result of the

A1-point join rlight1 [I2j] ⊲⊳ rheavy2 [a1] ⊲⊳ rheavy,light3 [a1, I
2
j].

• Light-heavy: For each j ∈ [1, q1] and each a2 ∈ Φ2, apply Lemma 9 to emit the result of the

A2-point join rheavy1 [a2] ⊲⊳ rlight2 [I1j] ⊲⊳ rlight ,heavy3 [I1j , a2].

• Light-light: For each j1 ∈ [1, q1] and each j2 ∈ [1, q2], apply Lemma 7 to emit the result of

rlight1 [I2j2] ⊲⊳ rlight2 [I1j1] ⊲⊳ rlight ,light3 [I1j1 , I
2
j2
].

4.3 Analysis

We now analyze the algorithm of Section 4.2, assuming n1 ≥ n2 ≥ n3 ≥ M . First, it should be
clear that

|Φ1| ≤ n3

θ1
=

√

n2n3

n1M

|Φ2| ≤ n3

θ2
=

√

n1n3

n2M

q1 = O
(

1 +
n3

θ1

)

= O
(

1 +

√

n2n3

n1M

)

q2 = O
(

1 +
n3

θ2

)

= O
(

√

n1n3

n2M

)

.

By Lemma 7, the cost of red-red emission is bounded by (remember that rheavy,heavy3 [a1, a2] has
only 1 tuple):

∑

a1,a2

O
(

1 +

∣

∣rheavy1 [a2]
∣

∣+
∣

∣rheavy2 [a1]
∣

∣

B

)

.

= O
(

|Φ1||Φ2|+
∑

a2

∣

∣rheavy1 [a2]
∣

∣

∣

∣Φ1

∣

∣

B
+
∑

a1

∣

∣rheavy2 [a1]
∣

∣

∣

∣Φ2||
B

)

= O
(n3

M
+

n1|Φ1|
B

+
n2

∣

∣Φ2|
B

)

= O
(

√
n1n2n3

B
√
M

)

.

18

By Lemma 8, the cost of red-blue emission is bounded by:

∑

a1,j

O
(

1 +

∣

∣rlight1 [I2j]
∣

∣

∣

∣rheavy,light3 [a1, I
2
j]
∣

∣

MB
+

∣

∣rlight1 [I2j]
∣

∣+
∣

∣rheavy2 [a1]
∣

∣+
∣

∣rheavy,light3 [a1, I
2
j]
∣

∣

B

)

.

= O
(

|Φ1|q2 +
∑

j

∣

∣rlight1 [I2j]
∣

∣

∑

a1

∣

∣rheavy,light3 [a1, I
2
j]
∣

∣

MB

+
|Φ1|

∑

j

∣

∣rlight1 [I2j]
∣

∣

B
+

q2
∑

a1

∣

∣rheavy2 [a1]
∣

∣

B
+

n3

B

)

. (16)

Observe that
∑

a1

∣

∣rheavy,light3 [a1, I
2
j]
∣

∣ is the total number of tuples in rheavy,light3 whose A2-values fall

in I2j . By the way I21 , ..., I
2
q2 are constructed, we know:

∑

a1

∣

∣rheavy,light3 [a1, I
2
j]
∣

∣ ≤ 2θ2.

(16) is thus bounded by:

O
(n3

M
+
∑

j

∣

∣rlight1 [I2j]
∣

∣θ2

MB
+

|Φ1|n1

B
+

q2n2

B
+

n3

B

)

= O
(n1θ2
MB

+
|Φ1|n1

B
+

q2n2

B
+

n3

B

)

= O
(

√
n1n2n3

B
√
M

)

.

A similar argument shows that the cost of blue-red emission is bounded by O(
√
n1n2n3

B
√
M

+ n1

B).

Finally, by Lemma 7, the cost of blue-blue emission is bounded by:

∑

j1,j2

O
(

1 +

(
∣

∣rlight1 [I2j2]
∣

∣+
∣

∣rlight2 [I1j1]
∣

∣

)
∣

∣rlight ,light3 [I1j1 , I
2
j2
]
∣

∣

MB

+

∣

∣rlight1 [I2j2]
∣

∣+
∣

∣rlight2 [I1j1]
∣

∣+
∣

∣rlight ,light3 [I1j1 , I
2
j2
]
∣

∣

B

)

. (17)

Let us analyze each term of (17) in turn. First:
∑

j1,j2

∣

∣rlight1 [I2j2]
∣

∣

∣

∣rlight ,light3 [I1j1 , I
2
j2]
∣

∣ =
∑

j2

∣

∣rlight1 [I2j2]
∣

∣

∑

j1

∣

∣rlight ,light3 [I1j1 , I
2
j2]
∣

∣ (18)

∑

j1

∣

∣rlight ,light3 [I1j1 , I
2
j2
]
∣

∣ gives the number of tuples in rlight ,light3 whose A2-values fall in I2j . By the

way I21 , ..., I
2
q2 are constructed, we know:

∑

j1

∣

∣rlight ,light3 [I1j1 , I
2
j2]
∣

∣ ≤ 2θ2.

Therefore:

(18) = O
(

θ2
∑

j2

∣

∣rlight1 [I2j2]
∣

∣

)

= O(n1θ2).

Symmetrically, we have:
∑

j1,j2

∣

∣rlight2 [I1j1]
∣

∣

∣

∣rlight ,light3 [I1j1 , I
2
j2]
∣

∣ = O(n2θ1).

19

Thus, (17) is bounded by:

O
(

q1q2 +
n1θ2 + n2θ1

MB
+

q1
∑

j2

∣

∣rlight1 [I2j2]
∣

∣

B
+

q2
∑

j1

∣

∣rlight2 [I1j1]
∣

∣

B
+

n3

B

)

= O
(

q1q2 +
n1θ2 + n2θ1

MB
+

q1n1

B
+

q2n2

B
+

n3

B

)

= O
(

√
n1n2n3

B
√
M

+
n1

B

)

.

As already mentioned in Section 4.2, the partitioning phase requires O(sort(
∑3

i=1 ni)) I/Os.
We now complete the proof of Theorem 3.

5 Conclusions

Checking whether a relation r can be decomposed—as far as natural join is concerned—is extremely
important in database systems, and is the key to normalization. This paper presents the first
systematic study on I/O-efficient algorithms on this topic. Our results are three-fold. First, we
proved that it is NP-hard to check whether r satisfies a specific join dependency J , even if all
the relation schemas in J have only 2 attributes. Second, we presented an I/O-efficient algorithm
for determining whether r has redundancy at all—namely, if there is any non-trivial J satisfied
by r. Our algorithm in fact solves a type of joins known as Loomis-Whitney (LW) Joins. Third,
by observing that the classic triangle enumeration problem is a special instance of LW-joins, we
further enhanced our LW-join algorithm for this instance, and solved triangle enumeration with
the optimal I/O cost under all problem parameters.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley
Publishing Company, 1995.

[2] Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM (CACM), 31(9):1116–1127, 1988.

[3] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. On Sorting Strings
in External Memory (Extended Abstract). In Proceedings of ACM Symposium on Theory of
Computing (STOC), pages 540–548, 1997.

[4] Albert Atserias, Martin Grohe, and Dániel Marx. Size Bounds and Query Plans for Relational
Joins. SIAM Journal of Computing, 42(4):1737–1767, 2013.

[5] C Beeri and M Vardi. On the Complexity of Testing Implications of Data Dependencies.
Computer Science Report, Hebrew Univ, 1980.

[6] Patrick C. Fischer and Don-Min Tsou. Whether a Set of Multivalued Dependencies Implies a
Join Dependency is NP-Hard. SIAM Journal of Computing, 12(2):259–266, 1983.

[7] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

20

[8] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. I/O-Efficient Algorithms on Triangle Listing
and Counting. ACM Transactions on Database Systems (TODS), 39(4):27:1–27:30, 2014.

[9] Paris C. Kanellakis. On the Computational Complexity of Cardinality Constraints in Rela-
tional Databases. Information Processing Letters (IPL), 11(2):98–101, 1980.

[10] David Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[11] David Maier, Yehoshua Sagiv, and Mihalis Yannakakis. On the Complexity of Testing Impli-
cations of Functional and Join Dependencies. Journal of the ACM (JACM), 28(4):680–695,
1981.

[12] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-Case Optimal Join Algo-
rithms: [Extended Abstract]. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 37–48, 2012.

[13] Jean-Marie Nicolas. Mutual Dependencies and Some Results on Undecomposable Relations.
In Proceedings of Very Large Data Bases (VLDB), pages 360–367, 1978.

[14] Rasmus Pagh and Francesco Silvestri. The Input/Output Complexity of Triangle Enumeration.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 224–233,
2014.

[15] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proceedings of
International Conference on Database Theory (ICDT), pages 96–106, 2014.

21

