
Join Dependency Testing, Loomis-Whitney Join, and
Triangle Enumeration

Xiaocheng Hu Miao Qiao Yufei Tao

CUHK
Hong Kong

ABSTRACT

In this paper, we revisit two fundamental problems in database
theory. The first one is called join dependency (JD) testing, where
we are given a relation r and a JD, and need to determine whether
the JD holds on r. The second problem is called JD existence

testing, where we need to determine if there exists any non-trivial
JD that holds on r.

We prove that JD testing is NP-hard even if the JD is defined only
on binary relations (i.e., each with only two attributes). Unless P
= NP, this result puts a negative answer to the question whether it
is possible to efficiently test JDs defined exclusively on small (in
terms of attribute number) relations. The question has been open
since the classic NP-hard proof of Maier, Sagiv, and Yannakakis
in JACM’81 which requires the JD to involve a relation of Ω(d)
attributes, where d is the number of attributes in r.

For JD existence testing, the challenge is to minimize the
computation cost because the problem is known to be solvable
in polynomial time. We present a new algorithm for solving
the problem I/O-efficiently in the external memory model. Our
algorithm in fact settles the closely related Loomis-Whitney (LW)

enumeration problem, and as a side product, achieves the optimal
I/O complexity for the triangle enumeration problem, improving a
recent result of Pagh and Silvestri in PODS’14.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical Algorithms and Problems; H.2.4 [Database
Management]: Systems—Relational databases

Keywords

Join Dependency; Loomis-Whitney Join; Triangle Enumeration

1. INTRODUCTION
Given a relation r of d attributes, a key question in database

theory is to ask if r is decomposable, namely, whether r can
be projected onto a set S of relations with less than d attributes

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’15,May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright c© 2015 ACM 978-1-4503-2757-2/15/05 ...$15.00.

Http://dx.doi.org/10.1145/2745754.2745768.

such that the natural join of those relations equals precisely r.
Intuitively, a yes answer to the question implies that r contains
a certain form of redundancy. Some of the redundancy may be
removed by decomposing r into the smaller (in terms of attribute
number) relations in S, which can be joined together to restore r
whenever needed. A no answer, on the other hand, implies that
the decomposition of r based on S will lose information, as far as
natural join is concerned.

Join Dependency Testing. The above question (as well as its
variants) has been extensively studied by resorting to the notion of
join dependency (JD). To formalize the notion, let us refer to d as
the arity of r. Denote by R = {A1, A2, ..., Ad} the set of names
of the d attributes in r. R is called the schema of r. Sometimes
we may denote r as r(R) or r(A1, A2, ..., Ad) to emphasize on its
schema. Let |r| represent the number of tuples in r.

A JD defined on R is an expression of the form

J = ⊲⊳[R1, R2, ..., Rm]

where (i) m ≥ 1, (ii) each Ri (1 ≤ i ≤ m) is a subset of R that
contains at least 2 attributes, and (iii)∪m

i=1Ri = R. J is non-trivial
if none of R1, ..., Rm equals R. The arity of J is defined to be
maxm

i=1 |Ri|, i.e., the largest size of R1, ..., Rm. Clearly, the arity
of a non-trivial J is between 2 and d− 1.

Relation r is said to satisfy J if

r = πR1
(r) ⊲⊳ πR2

(r) ⊲⊳ ... ⊲⊳ πRm (r)

where πX(r) denotes the projection of r onto an attribute set X ,
and ⊲⊳ represents natural join. We are ready to formally state the
first two problems studied in this paper:

PROBLEM 1. [λ-JD Testing] Given a relation r and a join

dependency J of arity at most λ that is defined on the schema of

r, we want to determine whether r satisfies J .

PROBLEM 2. [JD Existence Testing] Given a relation r, we
want to determine whether there is any non-trivial join dependency

J such that r satisfies J .

Note the difference in the objectives of the above problems.
Problem 1 aims to decide if r can be decomposed according to
a specific set J of projections. On the other hand, Problem 2 aims
to find out if there is any way to decompose r at all.

Computation Model. Our discussion on Problem 1 will
concentrate on proving its NP-hardness. For this purpose, we will
describe all our reductions in the standard RAM model.

For Problem 2, which is known to be polynomial time solvable
(as we will explain shortly), the main issue is to design fast

algorithms. We will do so in the external memory (EM) model [2],
which has become the de facto model for analyzing I/O-efficient
algorithms. Under this model, a machine is equipped with M
words of memory, and an unbounded disk that has been formatted
into blocks of B words. It holds that M ≥ 2B. An I/O operation

exchanges a block of data between the disk and the memory. The
cost of an algorithm is defined to be the number of I/Os performed.
CPU calculation is for free.

To avoid rounding, we define lgx y = max{1, logx y}, and will
describe all logarithms using lgx y. In all cases, the value of an
attribute is assumed to fit in a single word.

Loomis-Whitney Enumeration. As will be clear later, the
JD existence-testing problem is closely related to the so-called
Loomis-Whitney (LW) join. Let R = {A1, A2, ..., Ad} be a set
of d attributes. For each i ∈ [1, d], define Ri = R \ {Ai}, that
is, removing Ai from R. Let r1, r2, ..., rd be d relations such
that ri (1 ≤ i ≤ d) has schema Ri. Then, the natural join
r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd is called an LW join. Note that the schema of
the join result is R.

We will consider LW joins in the EM model, where traditionally
a join must write out all the tuples in the result to the disk. However,
the result size can be so huge that the number of I/Os for writing the
result may (by far) overwhelm the cost of the join’s rest execution.
Furthermore, in some applications of LW joins (e.g., for solving
Problem 2), it is not necessary to actually write the result tuples to
the disk; instead, it suffices to witness each result tuple once in the
memory.

Because of the above, we follow the approach of [14] by
studying an enumerate version of the problem. Specifically, we
are given a memory-resident routine emit(.) which requires O(1)
words to store. The parameter of the routine is a tuple t of d values
(a1, ..., ad) such that ai is in the domain of Ai for each i ∈ [1, d].
The routine simply sends out t to an outbound socket with no I/O
cost. Then, our problem can be formally stated as:

PROBLEM 3. [LW Enumeration] Given relations r1, ..., rd as

defined earlier where d ≤ M/2, we want to invoke emit(t) once
and exactly once for each tuple t ∈ r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd.

As a noteworthy remark, if an algorithm can solve the above
problem in x I/Os usingM −B words of memory, then it can also
report the entire LW join result ofK tuples (i.e., totallyKd values)
in x+O(Kd/B) I/Os.

Triangle Enumeration. Besides being a stepping stone for
Problem 2, LW enumeration has relevance to several other
problems, among which the most prominent one is perhaps the
triangle enumeration problem [14] due to its large variety of
applications (see [8, 14] and the references therein for an extensive
summary).

Let G = (V,E) be an undirected simple graph, where V (or E)
is the set of vertices (or edges, resp.). A triangle is defined as a
clique of 3 vertices in G. We are again given a memory-resident
routine emit(.) that occupies O(1) words. This time, given a
triangle∆ as its parameter, the routine sends out ∆ to an outbound
socket with no I/O cost (this implies that all the 3 edges of ∆ must
be in the memory at this moment). Then, the triangle enumeration
problem can be formally stated as:

PROBLEM 4. [Triangle Enumeration] Given graph G as

defined earlier, we want to invoke emit(∆) once and exactly once

for each triangle ∆ in G.

Observe that this is merely a special instance of LW enumeration
with d = 3 where r1 = r2 = r3 = E (with some straightforward
care to avoid emitting a triangle twice in no extra I/O cost).

1.1 Previous Results

Join Dependency Testing. Beeri and Vardi [5] proved that λ-JD
testing (Problem 1) is NP-hard if λ = d − o(d); recall that d is
the number of attributes in the input relation r. Maier, Sagiv, and
Yannakakis [11] gave a stronger proof showing that λ-JD testing is
still NP-hard for λ = Ω(d) (more specifically, roughly 2d/3). In
other words, (unless P = NP) no polynomial-time algorithm can
exist to verify every JD ⊲⊳ [R1, R2, ..., Rm] on r, when one of
R1, ..., Rm has Ω(d) attributes.

However, the above result does not rule out the possibility of
efficient testing when the JD has a small arity, namely, all of
R1, ..., Rm have just a few attributes (e.g., as few as just 2).
Small-arity JDs are important because many relations in reality
can eventually be losslessly decomposed into relations with small
arities. By definition, for any λ1 < λ2, the λ1-JD testing
problem may only be easier than λ2-JD testing problem because
an algorithm for the latter can be used to solve the former problem,
but not the vice versa. The ultimate question, therefore, is whether
2-JD testing can be solved within polynomial time. Unfortunately,
that the arity of J beingΩ(d) appears to be an inherent requirement
in the reductions of [5, 11].

We note that a large body of beautiful theory has been developed
on dependency inference, where the objective is to determine
whether a target dependency can be inferred from a set Σ of
dependencies (see [1, 10] for excellent guides into the literature).
When the target dependency is a join dependency, the inference
problem has been proven to be NP-hard in a variety of scenarios,
most notably: (i) when Σ contains one join dependency and a set of
functional dependencies [5, 11], (ii) whenΣ is a set of multi-valued
dependencies [6], and (iii) when Σ has one domain dependency
and a set of functional dependencies [9]. The proofs of [5, 11]
are essentially the same ones used to establish the NP-hardness of
Ω(d)-JD testing, while those of [6, 9] do not imply any conclusions
on λ-JD testing.

JD Existence Testing and LW Join. There is an interesting
connection between JD existence testing (Problem 2) and LW
join. Let r(R) be the input relation to Problem 2, where R =
{A1, A2, ..., Ad}. For each i ∈ [1, d], define Ri = R \ {Ai},
and ri = πRi

(r). Nicolas showed [13] that r satisfies at least one
non-trivial JD if and only if r = r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd. In fact, since
it is always true that r ⊆ r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd, Problem 2 has an
answer yes if and only if r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd returns exactly |r|
result tuples.

Therefore, Problem 2 boils down to evaluating the result size of
the LW join r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd. Atserias, Grohe, and Marx

[4] showed that the result size can be as large as (n1n2...nd)
1

d−1 ,
where ni = |ri| for each i ∈ [1, d]. They also gave a RAM

algorithm to compute the join result in O(d2 · (n1n2...nd)
1

d−1 ·
∑n

i=1 ni) time. Since apparently ni ≤ n = |r| (1 ≤ i ≤ d),

it follows that their algorithm has running time O(d2 · nd/(d−1) ·
dn) = O(d3 · n2+o(1)), which in turn means that Problem 2 is
solvable in polynomial time. Ngo et al. [12] designed a faster RAM
algorithm to perform the LW join (hence, solving Problem 2) in

O(d2 · (n1n2...nd)
1

d−1 + d2
∑d

i=1 ni) time.

Problems 2 and 3 become much more challenging in external
memory (EM). The algorithm of [12] (similarly, also the algorithm
of [4]) is unaware of data blocking, relies heavily on hashing,

and can entail up to O(d2 · (n1n2...nd)
1

d−1 + d2
∑d

i=1 ni) I/Os.
When d is small, this may be even worse than a naive generalized
blocked-nested loop, whose I/O complexity for d = O(1) is
O(n1n2...nd/(M

d−1B)) I/Os. Recall that B and M are the sizes
of a disk block and memory, respectively.

Triangle Enumeration. Problem 4 has received a large amount
of attention from the database and theory communities (see [8]
for a survey). Recently, Pagh and Silvestri [14] solved the
problem in EM with a randomized algorithm whose I/O cost
is O(|E|1.5/(

√
MB)) expected, where |E| is the number of

edges in the input graph. They also presented a sophisticated
de-randomization technique to convert their algorithm into a

deterministic one that performs O(|E|1.5√
MB

· logM/B
|E|
B

) I/Os. An

I/O lower bound of Ω(|E|1.5/(
√
MB)) has been independently

developed in [8, 14] on the witnessing class of algorithms.

1.2 Our Results
Section 2 will establish our first main result:

THEOREM 1. 2-JD testing is NP-hard.

The theorem officially puts a negative answer to the question
whether a small-arity JD can be tested efficiently (remember that 2
is already the smallest possible arity). As a consequence, we know
that Problem 2 is NP-hard for every value λ ∈ [2, d − 1]. Our
proof is completely different from those of [5, 11], and is based on
a novel reduction from the Hamiltonian path problem.

Our second main result is an I/O-efficient algorithm for LW
enumeration (Problem 3). Let r1, r2, ..., rd be the input relations;
and set ni = |ri|. In Section 3, we will prove:

THEOREM 2. There is an EM algorithm that solves the LW

enumeration problem with I/O complexity:

O
(

sort
[

d3+o(1)
(Πd

i=1ni

M

) 1
d−1

+ d2
d
∑

i=1

ni

])

.

where function sort(x) equals (x/B) lgM/B(x/B).

The main difficulty in obtaining the above theorem is that we
cannot materialize the join result, because (as mentioned before)
the result may have up to (Πd

i=1ni)
1/(d−1) tuples such that writing

them all to the disk may necessitate Ω(d
B
(Πd

i=1ni)
1/(d−1)) I/Os.

This is why the problem is more challenging in EM (than in RAM
where it is affordable, in fact even compulsory, to list out the entire
join result [4, 12]). We overcome the challenge with a delicate
piece of recursive machinery, and prove its efficiency through a
non-trivial analysis.

As our third main result, we prove in Section 4 an improved
version of Theorem 2 for d = 3:

THEOREM 3. There is an EM algorithm that solves the

LW enumeration problem of d = 3 with I/O complexity

O(1
B

√

n1n2n3

M
+ sort(n1 + n2 + n3)).

By combining the above two theorems with the reduction from
JD existence testing to LW enumeration described in Section 1.1,
we obtain the first non-trivial algorithm for I/O-efficient JD
existence testing (Problem 2):

COROLLARY 1. Let r(R) be the input relation to the JD

existence testing problem, where R = {A1, ..., Ad}. For each

i ∈ [1, d], define Ri = R \ {Ai}, and ni as the number of tuples

in πRi
(r). Then:

• For d > 3, the problem can be solved with the I/O complexity

in Theorem 2.

• For d = 3, the I/O complexity can be improved to the one in

Theorem 3.

Finally, when n1 = n2 = n3 = |E|, Theorem 3 directly gives a
new algorithm for triangle enumeration (Problem 4), noticing that
sort(|E|) = O(|E|1.5/(

√
MB)):

COROLLARY 2. There is an algorithm that solves the triangle

enumeration problem optimally in O(|E|1.5/(
√
MB)) I/Os.

Our triangle enumeration algorithm is deterministic, and
strictly improves that of [14] by a factor of O(lgM/B(|E|/B)).
Furthermore, the algorithm belongs to the witnessing class [8],
and is the first (deterministic algorithm) in this class achieving the
optimal I/O complexity for all values of M and B.

2. NP-HARDNESS OF 2-JD TESTING
This section will establish Theorem 1 with a reduction from the

Hamiltonian path problem. Let G = (V,E) be an undirected
simple graph1 with a vertex set V and an edge set E. Set n = |V |
and m = |E|. Without loss of generality, assume that each vertex
v ∈ V is uniquely identified by an integer id in [1, n], denoted
as id(v). A path of length ℓ in G is a sequence of ℓ vertices
v1, v2, ..., vℓ such that E has an edge between vi and vi+1 for each
i ∈ [1, ℓ − 1]. The path is simple if no two vertices in the path are
the same. A Hamiltonian path is a simple path in G of length n
(such a path must pass each vertex in V exactly once). Deciding
whether G has a Hamiltonian path is known to be NP-hard [7].

Let R be a set of n attributes: {A1, A2, ..., An}. We will create
(

n
2

)

relations. Specifically, for each pair of i, j such that 1 ≤ i <
j ≤ n, we generate a relation ri,j with attributes Ai, Aj . The
tuples in ri,j are determined as follows:

• Case j = i + 1: Initially, ri,j is empty. For each edge
E between vertices u and v, we add two tuples to ri,j :
(id(u), id(v)) and (id(v), id(u)). In total, ri,j has 2m
tuples.

• Case j ≥ i+ 2: ri,j contains n(n− 1) tuples (x, y), for all
possible integers x, y such that x 6= y, and 1 ≤ x, y ≤ n.

In general, the total number of tuples in the ri,j of all possible i, j
is O(nm+ n4) = O(n4).

Define:

CLIQUE = the output of the natural join of all ri,j
(1 ≤ i < j ≤ n).

For example, for n = 3, CLIQUE = r1,2 ⊲⊳ r1,3 ⊲⊳ r2,3. In
general, CLIQUE is a relation with schema R.

LEMMA 1. G has a Hamiltonian path if and only if CLIQUE is

not empty.

PROOF. Direction If. Assuming that CLIQUE is not empty, next
we show that G has a Hamiltonian path. Let (id(v1), id(v2), ...,
id(vn)) be an arbitrary tuple in CLIQUE. It follows that:

1Recall that a graph is simple if it has at most one edge between
any two vertices.

• For every i ∈ [1, n − 1], (id(vi), id(vi+1)) is a tuple in
ri,i+1, indicating that E has an edge between vi and vi+1.

• For every i, j such that j ≥ i+ 2, (id(vi), id(vj)) is a tuple
in ri,j , indicating that id(vi) 6= id(vj), i.e., vi 6= vj .

We thus have found a Hamiltonian path v1, v2, ..., vn in G.
Direction Only-If.Assuming thatG has a Hamiltonian path, next

we show that CLIQUE is not empty. Let v1, v2, ..., vn be any
Hamiltonian path in G. It is easy to verify that (id(v1), id(v2),
..., id(vn)) must appear in CLIQUE.

For each pair of i, j satisfying 1 ≤ i < j ≤ n, define an attribute
set Ri,j = {Ai, Aj}. Denote by J the JD that “corresponds to”
CLIQUE, namely:

J = ⊲⊳[Ri,j ,∀i, j s.t. 1 ≤ i < j ≤ n].

For instance, for n = 3, J =⊲⊳[R1,2, R1,3, R2,3]. Note that J has
arity 2, and R = ∪i,jRi,j in general.

Next, we will construct from G a relation r∗ of schema R such
that CLIQUE is empty if and only if r∗ satisfies J . The construction
of r∗ takes time polynomial to n (and hence, also to m because
m ≤ n2).

Initially, r∗ is empty. For every tuple t in every relation ri,j
(1 ≤ i < j ≤ n), we will insert a tuple t′ into r∗. Recall that ri,j
has schema {Ai, Aj}. Suppose, without loss of generality, that
t = (ai, aj). Then, t

′ is determined as follows:

• t′[Ai] = ai (t
′[Ai] is the value of t

′ on attribute Ai)

• t′[Aj] = aj

• For any k ∈ [1, n] but k 6= i and k 6= j, t′[Ak] is set to a
dummy value that appears only once in the whole r∗.

Since (as mentioned before) there are O(n4) tuples in the ri,j of
all i, j, we know that r∗ has O(n4) tuples, and hence, can be built
in O(n5) time.

LEMMA 2. CLIQUE is empty if and only if r∗ satisfies J .

PROOF. We first point out three facts:

1. Every tuple in r∗ has n− 2 dummy values.

2. Define r∗i,j = πAi,Aj
(r∗) for i, j satisfying 1 ≤ i < j ≤ n.

Clearly, r∗i,j and ri,j share the same schema Ri,j . It is easy
to verify that ri,j is exactly the set of tuples in r∗i,j that do
not contain dummy values.

3. Define:

CLIQUE
∗ = the output of the natural join of

all r∗i,j (1 ≤ i < j ≤ n).

Then, r∗ satisfies J if and only if r∗ = CLIQUE
∗.

Equipped with these facts, we now proceed to prove the lemma.
Direction If. Assuming that r∗ satisfies J , next we show that

CLIQUE is empty. Suppose, on the contrary, that (a1, a2, ..., an)
is a tuple in CLIQUE. Hence, (ai, aj) is a tuple in ri,j for any
i, j satisfying 1 ≤ i < j ≤ n. As neither ai nor aj is dummy,
by Fact 2, we know that (ai, aj) belongs to r∗i,j . It thus follows
that (a1, a2, ..., an) is a tuple in CLIQUE

∗. However, by Fact 1,
(a1, a2, ..., an) cannot belong to r∗, thus giving a contradiction
against Fact 3.

Direction Only-If. Assuming that CLIQUE is empty, next we
show that r∗ satisfies J . Suppose, on the contrary, that r∗ does
not satisfy J , namely, r∗ 6= CLIQUE

∗ (Fact 3). Let (a∗
1, a

∗
2, ..., a

∗
n)

be a tuple in CLIQUE
∗ but not in r∗. We distinguish two cases:

• Case 1: none of a∗
1, ..., a

∗
n is dummy. This means that, for any

i, j satisfying 1 ≤ i < j ≤ n, (a∗
i , a

∗
j) is a tuple in ri,j (Fact

2). Therefore, (a∗
1, a

∗
2, ..., a

∗
n) must be a tuple in CLIQUE,

contradicting the assumption that CLIQUE is empty.

• Case 2: a∗
k is dummy for at least one k ∈ [1, n]. Since every

dummy value appears exactly once in r∗, we can identify a
unique tuple t∗ in r∗ such that t∗[Ak] = a∗

k. Next, we will
show that t∗ is precisely (a∗

1, a
∗
2, ..., a

∗
n), thus contradicting

the assumption that (a∗
1, a

∗
2, ..., a

∗
n) is not in r∗, which will

then complete the proof.

Consider any i such that 1 ≤ i < k. That (a∗
1, a

∗
2, ..., a

∗
n)

is in CLIQUE
∗ implies that (a∗

i , a
∗
k) is in r∗i,k. However,

because in r∗ the value a∗
k appears only in t∗, it must hold

that t∗[Ai] = a∗
i . By a similar argument, for any j such that

k < j ≤ n, we must have t∗[Aj] = a∗
j . It thus follows that

(a∗
1, a

∗
2, ..., a

∗
n) is precisely t

∗.

From the above discussion, we know that any 2-JD testing
algorithm can be used to check whether CLIQUE is empty
(Lemma 2), and hence, can be used to check whether G has a
Hamiltonian path (Lemma 1). We thus conclude that 2-JD testing
is NP-hard.

3. LW ENUMERATION
The discussion from the previous section has eliminated the hope

of efficient JD testing no matter how small the JD arity is (unless
P = NP). We therefore switch to the less stringent goal of JD
existence testing (Problem 2). Based on the reduction described in
Section 1.1, next we concentrate on LW enumeration as formulated
in Problem 3, and will establish Theorem 2.

Let us recall a few basic definitions. We have a “global” set
of attributes R = {A1, A2, ..., Ad}. For each i ∈ [1, d], let Ri =
R\{Ai}. We are given relations r1, r2, ..., rd where ri (1 ≤ i ≤ d)
has schema Ri. The objective of LW enumeration is that, for every
tuple t in the result of r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd, we should invoke
emit(t) once and exactly once. We want to do so I/O-efficiently in
the EM model, where B and M represent the sizes (in words) of a
disk block and memory, respectively.

For each i ∈ [1, d], set ni = |ri|, and define dom(Ai) as the
domain of attribute Ai. Given a tuple t and an attribute Ai (in the
schema of the relation containing t), we denote by t[Ai] the value
of t on Ai. Furthermore, we assume that each of r1, ..., rd is given
in an array, but the d arrays do not need to be consecutive.

3.1 Basic Algorithms
Let us first deal with two scenarios under which LW enumeration

is easier. The first situation arises when there is an ni (for some
i ∈ [1, d]) satisfying ni = O(M/d). In such a case, we call r1 ⊲⊳
r2 ⊲⊳ ... ⊲⊳ rd a small join.

LEMMA 3. Given a small join, we can emit all its result tuples

in O(d+ sort(d
∑d

i=1 ni)) I/Os.

PROOF. See appendix.

The second scenario takes a bit more efforts to explain. In
addition to r1, ..., rd, we accept two more input parameters:

• an integer H ∈ [1, d]

• a value a ∈ dom(AH).

It is required that a should be the only value that appears in the
AH attributes of r1, ..., rH−1, rH+1, ..., rd (recall that rH does not
have AH). In such a case, we call r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd a point join.

LEMMA 4. Given a point join, we can emit all its result tuples

in O(d+ sort(d2nH + d
∑

i∈[1,d]\{H} ni)) I/Os.

PROOF. See appendix.

We will denote the algorithm in the above lemma as
PTJOIN(H,a, r1, r2, ..., rd).

3.2 The Full Algorithm
This subsection presents an algorithm for solving the general LW

enumeration problem. We will focus on n1 > 2M/d; if n1 ≤
2M/d, simply apply Lemma 3 because this is a small-join scenario.

Define:

U =

(

∏d
i=1 ni

M

) 1
d−1

(1)

τi =
n1n2...ni

(U · d 1
d−1)i−1

for each i ∈ [1, d]. (2)

Notice that τ1 = n1 and τd = M/d.

Our general algorithm is a recursive procedure
JOIN(h, ρ1, ..., ρd), which has three requirements:

• h is an integer in [1, d];

• Each ρi (1 ≤ i ≤ d) is a subset of the tuples in ri.

• The size of ρ1 satisfies:

|ρ1| ≤ τh. (3)

JOIN(h, ρ1, ..., ρd) emits all result tuples in ρ1 ⊲⊳ ... ⊲⊳ ρd.
The original LW enumeration problem can be settled by calling
JOIN(1, r1, ..., rd).

3.2.1 Case τh ≤ 2M/d

In this case, by the requirements of JOIN(h, ρ1, ..., ρd), it holds
that |ρ1| ≤ τh = O(M/d). Hence, we can directly apply the
small-join algorithm in Lemma 3 to carry out the LW enumeration.

3.2.2 Case τh > 2M/d

Denote by H the smallest integer in [h + 1, d] such that τH <
τh/2. H always exists because τd = M/d < τh/2. Given a value
a ∈ dom(AH), we define

freq(a) = number of tuples t in ρ1 with t[AH] = a.

Now we introduce:

Φ = {a ∈ dom(AH) | freq(a) > τH/2}. (4)

Let t∗ be a result tuple of ρ1 ⊲⊳ ... ⊲⊳ ρd. Conceptually, t
∗ is given

a color: (i) red, if t∗[AH] ∈ Φ, or (ii) blue, otherwise.

Our strategy is to emit red and blue tuples separately. Towards
this purpose, for each i ∈ [1, d] \ {H}, we partition ρi into:

ρredi = {tuple t in ρi | t[AH] ∈ Φ}

ρbluei = {tuple t in ρi | t[AH] /∈ Φ}

To emit red tuples, it suffices to consider ρred1 , ..., ρredH−1, ρH ,

ρredH+1, ..., ρ
red

d . Likewise, to emit blue tuples, it suffices to consider

ρblue1 , ..., ρblueH−1, ρH , ρblueH+1, ..., ρ
blue

d . Next, we will elaborate on
how to do so.

Remark. The set Φ, as well as ρredi and ρbluei for each i ∈ [1, d] \
{H}, can be produced by sorting each ρi onAH . More specifically,
each element to be sorted is a tuple of d−1 values where d can be as
large as M/2. Using an EM string sorting algorithm of [3], all the
sorting can be completed with O(d + sort(d

∑

i∈[1,d]\{H} |ρi|))
I/Os in total.

Emitting Red Tuples. For every a ∈ Φ, we aim to emit the red
tuples t∗ with t∗[AH] = a separately. Define for each i ∈ [1, d] \
{H}:

ρredi [a] = set of tuples t in ρredi with t[AH] = a.

The tuples of ρredi [a] are stored consecutively in the disk because
we have sorted ρredi by AH earlier. All the red tuples t∗ with
t∗[AH] = a can be emitted by:

PTJOIN(H,a, ρred1 [a], ..., ρredH−1[a], ρH , ρredH+1[a], ..., ρ
red

d [a]).

Emitting Blue Tuples. First, divide dom(AH) into q =
O(1 + |ρ1|/τH) disjoint intervals I1, I2, ..., Iq with the following
properties:

• I1, I2, ..., Iq are in ascending order2.

• For each j ∈ [1, q], define:

ρblue1 [Ij] = set of tuples in ρblue1 whose AH-values
fall in Ij

If j < q, we require τH/2 ≤ |ρblue1 [Ij]| ≤ τH . Regarding
ρblue1 [Iq], we require 1 ≤ |ρblue1 [Iq]| ≤ τH .

Because ρ1 has been sorted by AH , all the I1, ..., Iq and
ρblue1 [I1], ..., ρ

blue

1 [Iq] can all be obtained with one scan of ρ1.

Next, for each i ∈ [2, d] \ {H}, we produce for each j ∈ [1, q]:

ρbluei [Ij] = set of tuples in ρbluei whose AH-values

fall in Ij .

Because ρbluei has been sorted by AH , all the ρbluei [I1], ρ
blue

i [I2],
..., ρbluei [Iq] can be obtained by scanning synchronously ρbluei and
{I1, ..., Iq} once.

Finally, to emit all the blue tuples, we simply recursively call our
algorithm for each j ∈ [1, q]:

JOIN(H, ρblue1 [Ij], ..., ρ
blue

H−1[Ij], ρH , ρblueH+1[Ij], ..., ρ
blue

d [Ij]).

Note that the requirements for calling JOIN are fulfilled—in
particular, |ρblue1 [Ij]| ≤ τH , due to the way I1, ..., Iq were
determined.

3.3 Analysis
Define a sequence of integers as follows:

• h1 = 1;

• After hi has been defined (i ≥ 1):

– if τhi
> 2M/d, then define hi+1 as the smallest integer

in [1 + hi, d] satisfying τhi+1
< τhi

/2;

– otherwise, hi+1 is undefined.

Denote by w the largest integer with hw defined.

Recall that our LW enumeration algorithm starts by calling the
JOIN procedure with JOIN(1, r1, ..., rd), which recursively makes

2An interval [x, y] precedes another [x′, y′] if y < x′.

f(ℓ, ρ1, ..., ρd) =

{

O(d) if ℓ = w

O(d · µℓ) +
∑q

j=1
f(ℓ+ 1, ρblue1 [Ij], ..., ρ

blue

hℓ+1−1
[Ij], ρhℓ+1

, ρbluehℓ+1+1
[Ij], ..., ρ

blue

d [Ij]) if ℓ < w

g(ℓ, ρ1, ..., ρd)

=

d
∑d

i=1
|ρi| if ℓ = w

d2µℓ|ρhℓ+1
|+ d

∑d

i=1
|ρi|+

∑q

j=1
g(ℓ+ 1, ρblue1 [Ij], ..., ρ

blue

hℓ+1−1
[Ij], ρhℓ+1

, ρbluehℓ+1+1
[Ij], ..., ρ

blue

d [Ij]) if ℓ < w

Figure 1: Definitions of f(h, ρ1, ..., ρd) and g(h, ρ1, ..., ρd)

subsequent calls to the same procedure. These calls form a tree T .
Equipped with the sequence h1, h2, ..., hw, we can describe T in a
more specific manner. Given a call JOIN(h, ρ1, ..., ρd), let us refer
to the value of h as the call’s axis. The initial call JOIN(1, r1, ..., rd)
has axis h1 = 1. In general, an axis-hi (i ∈ [1, w − 1]) call
generates axis-hi+1 calls, and hence, parents those calls in T .
Finally, all axis-hw calls are leaf nodes in T (recall that an axis-hw

call simply invokes the small-join algorithm of Lemma 3). In other
words, T has w levels; and all the calls at level ℓ ∈ [1, w] have an
identical axis hℓ.

Given a level ℓ ∈ [1, w], define function cost(ℓ, ρ1, ..., ρd) to be
the number of I/Os performed by JOIN(hℓ, ρ1, ..., ρd). Our goal is
to prove that cost(1, r1, ..., rd) is as claimed in Theorem 2.

Case ℓ = w. Lemma 3 immediately shows:

cost(w, ρ1, ..., ρd) = O
(

d+ sort
(

d
d
∑

i=1

|ρi|
))

. (5)

Case ℓ < w. Define for ℓ ∈ [1, w − 1]:

µℓ = 2τhℓ
/τhℓ+1

.

Consider the set Φ defined in (4). Recall that for every a ∈ Φ,
freq(a) > τhℓ+1

/2. Hence:

|Φ| < 2|ρ1|/τhℓ+1
≤ 2τhℓ

/τhℓ+1
= µℓ.

where the second inequality is due to (3).

For emitting red tuples, the cost is dominated by that of the
point-join algorithm whose total I/O cost, by Lemma 4, is bounded
by:

O
(

∑

a∈Φ

(

d+ sort
(

d2|ρhℓ+1
|+ d

∑

i∈[1,d]\{hℓ+1}

∣

∣

∣
ρredi [a]

∣

∣

∣

)))

= O
(

d|Φ|+ sort
(

d2|Φ||ρhℓ+1
|+ d

d
∑

i=1

|ρi|
))

= O
(

d · µℓ + sort
(

d2µℓ|ρhℓ+1
|+ d

d
∑

i=1

|ρi|
))

. (6)

The cost of emitting blue tuples comes from recursion.
Therefore, we can establish a recurrence:

cost(ℓ, ρ1, ..., ρd)

= (6) +

q
∑

j=1

cost
(

ℓ+ 1, ρblue1 [Ij], ..., ρ
blue

hℓ+1−1[Ij],

ρhℓ+1
, ρbluehℓ+1+1[Ij], ..., ρ

blue

d [Ij]
)

. (7)

Recall that q is the number of disjoint intervals that
JOIN(hℓ, ρ1, ..., ρd) uses to divide dom(Aℓ) for blue tuple
emission (see Section 3.2).

The rest of the subsection is devoted to solving this
non-conventional recurrence. Let functions f(ℓ, ρ1, ..., ρd) and
g(ℓ, ρ1, ..., ρd) be as defined in Figure 1. The following proposition
is fundamental:

PROPOSITION 1. cost(ℓ, ρ1, ..., ρd) = f(ℓ, ρ1, ..., ρd) +
O(sort(g(ℓ, ρ1, ..., ρd))).

PROOF. By the convexity of function sort(x).

To prove Theorem 2, our target is to give an upper bound on
cost(1, r1, ..., rd) = f(1, r1, ..., rd) + O(sort(g(1, r1, ..., rd))).

3.3.1 Bounding f(1, r1, ..., rd)

Definemℓ as the total number of level-ℓ calls in T . Each level-ℓ
call contributes O(d · µℓ) I/Os to f(1, r1, ..., rd) (see Figure 1).3

Hence:

f(1, r1, ..., rd) =
w
∑

ℓ=1

O (mℓ · d · µℓ) . (8)

We say that a level-ℓ call JOIN(hℓ, ρ1, ..., ρd) underflows if
|ρ1| < τhℓ

/2; otherwise, we say that it is ordinary. Consider all
the calls JOIN(hℓ, ρ1, ..., ρd) at level ℓ. The sets ρ1 in the first
parameters of those calls are disjoint. Hence, there can be at most
O(n1/τhℓ

) ordinary calls at level ℓ. Moreover, if ℓ < w, then
a level-ℓ call creates at most one underflowing call at level ℓ + 1.
These facts indicate that, for each ℓ ∈ [2, w]:

mℓ = O

(

mℓ−1 +
n1

τhℓ

)

= O

(

ℓ
∑

i=1

n1

τhi

)

= O

(

n1

τhℓ

)

, (9)

where the second equality used m1 = 1 = n1/τh1
, and the last

equality used the fact that τhi
> 2τhi+1

for every i ∈ [1, w − 1].

Applying τhw = M/d, we get from (9):

mw = O(dn1/M).

Moreover, for each ℓ ∈ [1, w − 1]:

mℓµℓ = O

(

n1

τhℓ

)

2τhℓ

τhℓ+1

= O

(

n1

τhℓ+1

)

.

3Here define a boundary dummy µw = 1.

We can now derive from (8):

f(1, r1, ..., rd) = O

(

d2n1

M
+

w−1
∑

ℓ=1

d · n1

τhℓ+1

)

= O

(

d2n1

M
+

dn1

τhw

)

= O

(

d2n1

M

)

. (10)

3.3.2 Bounding g(1, r1, ..., rd)

Figure 1 shows that, in T , each level-ℓ (ℓ < w) call
JOIN(hℓ, ρ1, ..., ρd) contributes d2µℓ|ρhℓ+1

| + d
∑d

i=1 |ρi| to
g(1, r1, ..., rd). We can amortize the contribution onto the tuples
in ρ1, ..., ρd, such that:

• Each tuple in ρhℓ+1
contributes d2µℓ to g(1, r1, ..., rd);

• Each tuple in any other relation ρi (i 6= hℓ+1) contributes d
to g(1, r1, ..., rd).

Similarly, for every level-w call JOIN(hw, ρ1, ..., ρd), each tuple in
ρ1, ..., ρd contributes d to g(1, r1, ..., rd).

Our strategy for bounding g(1, r1, ..., rd) is to sum up the largest
possible contribution made by each individual tuple in the input
relations r1, ..., rd. For this purpose, given a value i ∈ [1, d], we
define Li as follows:

• L1 = 0;

• If i ≥ 2 but no call in the entire T has axis i, then Li = 0;

• Otherwise, suppose that the level-ℓ calls of T have axis hℓ =
i; then we define Li = ℓ− 1.

Now, let us concentrate on a single tuple t in an arbitrary input
relation ri (for any i ∈ [1, d]). Consider a level-ℓ call (1 ≤ ℓ ≤ w)
JOIN(hℓ, ρ1, ..., ρd) in T . We say that t participates in the call
if t ∈ ρi. If t does not participate in the call, then t contributes
nothing to g(1, r1, ..., rd). Otherwise, the contribution of t depends
on whether hℓ+1 happens to be i. As explained earlier, if hℓ+1 = i,
t contributes d2µℓ, or else t contributes d.

Denote by γℓ(t) the number of level-ℓ calls that t participates
in; specially, define γ0(t) = 0. Then, the sequence
L1, L2, ..., Ld defined earlier allows us to represent concisely the
total contribution of t as

γLi
(t) · d2µLi

+
∑

ℓ∈[1,w]\Li

γℓ(t) · d (11)

defining a boundary dummy value µ0 = 1.

LEMMA 5. If Li = 0, then γℓ(t) ≤ 1 for all ℓ ∈ [1, w]. If

Li 6= 0, then

γℓ(t) =

{

O(1) if ℓ ∈ [1, Li]
O(µLi

) if ℓ ∈ [Li + 1, w]
(12)

PROOF. See appendix.

By applying the lemma to (11), we know that, in total, t
contributes to g(1, r1, ..., rd)

O(d2µLi
+ w · µLi

· d) = O(d2µLi
).

By summing up the contribution of all the tuples, we get:

g(1, r1, ..., rd)

= O
(

∑

i∈[1,d] s.t. Li 6=0

∑

t∈ri

d2µLi
+

∑

t∈[1,d] s.t. Li=0

∑

t∈ri

d2
)

= O
(

∑

i∈[1,d] s.t. Li 6=0

d2µLi
ni +

d
∑

i=1

d2ni

)

= O
(

w
∑

ℓ=2

d2µℓ−1nhℓ
+ d2

d
∑

i=1

ni

)

where the last equality is due to the definition of Li.

It remains to bound µℓ−1nhℓ
for each ℓ ∈ [2, w]. For this

purpose, we prove:

LEMMA 6. µℓ−1 = O(Ud
1

d−1 /nhℓ
) for each ℓ ∈ [2, w].

PROOF. See appendix.

The lemma indicates that

g(1, r1, ..., rd) = O
(

w
∑

ℓ=2

Ud2+
1

d−1 + d2
d
∑

i=1

ni

)

= O
(

d3+
1

d−1U + d2
d
∑

i=1

ni

)

.

Combining the above equation with (1), (10), and Proposition 1,
we now complete the whole proof of Theorem 2.

4. A FASTER ALGORITHM FOR ARITY 3
The algorithm developed in the previous section solves the LW

enumeration problem for any d ≤ M/2. In this section, we focus
on d = 3, and leverage intrinsic properties of this special instance
to design a faster algorithm, which will establish Theorem 3 (and
hence, also Corollaries 1 and 2). Specifically, the input consists of
three relations: r1(A2, A3), r2(A1, A3), and r3(A1, A2); and the
goal is to emit all the tuples in the result of r1 ⊲⊳ r2 ⊲⊳ r3.

As before, for each i ∈ [1, 3], set ni = |ri|, and denote by
dom(Ai) the domain of Ai. Without loss of generality, we assume
that n1 ≥ n2 ≥ n3.

4.1 Basic Algorithms
Let us start with:

LEMMA 7. If r1(A2, A3) and r2(A1, A3) have been sorted by

A3, the 3-arity LW enumeration problem can be solved in O(1 +
(n1+n2)n3

MB
+ 1

B

∑3
i=1 ni) I/Os.

PROOF. If n3 ≤ M , we can achieve the purpose stated
in the lemma using the small-join algorithm of Lemma 3 with
straightforward modifications (e.g., apparently sorting is not
required). When n3 > M , we simply chop r3 into subsets of
size M , and then repeat the above small-join algorithm ⌈n3/M⌉
times.

We call r1 ⊲⊳ r2 ⊲⊳ r3 an A1-point join if both conditions below
are fulfilled:

• all the A1 values in r2(A1, A3) are the same;

• r1(A2, A3) and r2(A1, A3) are sorted by A3.

LEMMA 8. Given an A1-point join, we can emit all its result

tuples in O(1 + n1n3

MB
+ 1

B

∑3
i=1 ni) I/Os.

PROOF. We first obtain r′(A1, A2, A3) = r1 ⊲⊳ r2, and store
all the tuples of r′ into the disk. Since all the tuples in r2 have
the same A1-value, their A3-values must be distinct. Hence, each
tuple in r1 can be joined with at most one tuple in r2, implying
that |r′| ≤ n1. Utilizing the fact that r1 and r2 are both sorted on
A3, r

′ can be produced by a synchronous scan over r1 and r2 in
O(1 + (n1 + n2)/B) I/Os.

Then, we use the classic blocked nested loop (BNL) algorithm
to perform the join r′ ⊲⊳ r3 (which equals r1 ⊲⊳ r2 ⊲⊳ r3). The
only difference is that, whenever BNL wants to write a block of
O(B) result tuples to the disk, we skip the write but simply emit

those tuples. The BNL performs O(1+ |r′|n3

MB
+ r′+n3

B
) I/Os. The

lemma thus follows.

Symmetrically, we call r1 ⊲⊳ r2 ⊲⊳ r3 an A2-point join if

• all the A2 values in r1(A2, A3) are the same.

• r1(A2, A3) and r2(A1, A3) are sorted by A3.

LEMMA 9. Given an A2-point join, we can emit all its result

tuples in O(1 + n2n3

MB
+ 1

B

∑3
i=1 ni) I/Os.

PROOF. Symmetric to Lemma 8.

4.2 3-Arity LW Enumeration Algorithm
Next, we give our general algorithm for LW enumeration with

d = 3. We will focus on n1 ≥ n2 ≥ n3 ≥ M ; otherwise, the
algorithm in Lemma 7 already solves the problem in linear I/Os
after sorting.

Set:

θ1 =

√

n1n3M

n2
, and θ2 =

√

n2n3M

n1
. (13)

For values a1 ∈ dom(A1) and a2 ∈ dom(A2), define:

freq(a1, r3) = number of tuples t in r3 with t[A1] = a1

freq(a2, r3) = number of tuples t in r3 with t[A2] = a2.

Now we introduce:

Φ1 = {a1 ∈ dom(A1) | freq(a1, r3) > θ1}
Φ2 = {a2 ∈ dom(A2) | freq(a2, r3) > θ2}.

Let t∗ be a result tuple of r1 ⊲⊳ r2 ⊲⊳ r3. We can classify t∗ into
one of the following categories:

1. Red-red: t∗[A1] ∈ Φ1 and t∗[A2] ∈ Φ2

2. Red-blue: t∗[A1] ∈ Φ1 and t∗[A2] /∈ Φ2

3. Blue-red: t∗[A1] /∈ Φ1 and t∗[A2] ∈ Φ2

4. Blue-blue: t∗[A1] /∈ Φ1 and t∗[A2] /∈ Φ2.

We will emit each type of tuples separately, after a partitioning
phase, as explained in the sequel.

Partitioning r3. Define:

rred,red3 = set of tuples t in r3 s.t. t[A1] ∈ Φ1, t[A2] ∈ Φ2

rred,blue3 = set of tuples t in r3 s.t. t[A1] ∈ Φ1, t[A2] /∈ Φ2

rblue,red3 = set of tuples t in r3 s.t. t[A1] /∈ Φ1, t[A2] ∈ Φ2

rblue,blue3 = set of tuples t in r3 s.t. t[A1] /∈ Φ1, t[A2] /∈ Φ2

rblue,−3 = rblue,red3 ∪ rblue,blue3

r−,blue
3 = rred,blue3 ∪ rblue,blue3 .

Divide dom(A1) into q1 = O(1 + n3/θ1) disjoint intervals I
1
1 ,

I12 , ..., I
1
q1 with the following properties:

• I11 , I
1
2 , ..., I

1
q1 are in ascending order.

• For each j ∈ [1, q1], r
blue,−
3 has at most 2θ1 tuples whose

A1-values fall in I
1
j .

Similarly, we divide dom(A2) into q2 = O(1 + n3/θ2) disjoint
intervals I21 , I

2
2 , ..., I

2
q2 with the following properties:

• I21 , I
2
2 , ..., I

2
q2 are in ascending order.

• For each j ∈ [1, q2], r
−,blue
3 has at most 2θ2 tuples whose

A2-values fall in I
2
j .

We now define several partitions of r3:

1. For each a1 ∈ Φ1 and a2 ∈ Φ2:

rred,red3 [a1, a2] = the (only) tuple t in rred,red3 with
t[A1] = a1 and t[A2] = a2.

2. For each a1 ∈ Φ1 and j ∈ [1, q2]:

rred,blue3 [a1, I
2
j] = set of tuples t in rred,blue3 with

t[A1] = a1 and t[A2] in I
2
j .

3. For each j ∈ [1, q1] and a2 ∈ Φ2:

rblue,red3 [I1j , a2] = set of tuples t in rblue,red3 with

t[A1] in I
1
j and t[A2] = a2.

4. For each j1 ∈ [1, q1] and j2 ∈ [1, q2]:

rblue,blue3 [I1j1 , I
2
j2] = set of tuples t in rblue,blue3 with

t[A1] in I
1
j and t[A2] in I

2
j .

It is fundamental to produce all the above partitions with
O(sort(n3)) I/Os in total.

Partitioning r1 and r2. Let:

rred1 = set of tuples t in r1 s.t. t[A2] ∈ Φ2

rblue1 = set of tuples t in r1 s.t. t[A2] /∈ Φ2

rred2 = set of tuples t in r2 s.t. t[A1] ∈ Φ1

rblue2 = set of tuples t in r2 s.t. t[A1] /∈ Φ1

We now define several partitions of r1:

1. For each a2 ∈ Φ2:

rred1 [a2] = set of tuples t in rred1 with t[A2] = a2.

2. For each j ∈ [1, q2]:

rblue1 [I2j] = set of tuples t in rblue1 with t[A2] in I
2
j .

Similarly, we define several partitions of r2:

1. For each a1 ∈ Φ1:

rred2 [a1] = set of tuples t in rred2 with t[A1] = a1.

2. For each j ∈ [1, q1]:

rblue2 [I1j] = set of tuples t in rblue2 with t[A1] in I
1
j .

It is also fundamental to produce the above partitions using
O(sort(n1 + n2 + n3)) I/Os in total. With the same cost, we
make sure that all these partitions are sorted by A3.

Emitting Red-Red Tuples. For each a1 ∈ Φ1 and each a2 ∈
Φ2, apply Lemma 7 to emit the result of rred1 [a2] ⊲⊳ rred2 [a1] ⊲⊳

rred,red3 [a1, a2].

Emitting Red-Blue Tuples. For each a1 ∈ Φ1 and each j ∈
[1, q2], apply Lemma 8 to emit the result of the A1-point join

rblue1 [I2j] ⊲⊳ rred2 [a1] ⊲⊳ rred,blue3 [a1, I
2
j].

Emitting Blue-Red Tuples. For each j ∈ [1, q1] and each a2 ∈
Φ2, apply Lemma 9 to emit the result of the A2-point join r

red

1 [a2]

⊲⊳ rblue2 [I1j] ⊲⊳ rblue,red3 [I1j , a2].

Emitting Blue-Blue Tuples. For each j1 ∈ [1, q1] and each j2 ∈
[1, q2], apply Lemma 7 to emit the result of rblue1 [I2j2] ⊲⊳ rblue2 [I1j1]

⊲⊳ rblue,blue3 [I1j1 , I
2
j2].

4.3 Analysis
We now analyze the algorithm of Section 4.2, assuming n1 ≥

n2 ≥ n3 ≥ M . First, it should be clear that

|Φ1| ≤ n3

θ1
=

√

n2n3

n1M

|Φ2| ≤ n3

θ2
=

√

n1n3

n2M

q1 = O
(

1 +
n3

θ1

)

= O
(

1 +

√

n2n3

n1M

)

q2 = O
(

1 +
n3

θ2

)

= O
(

√

n1n3

n2M

)

.

By Lemma 7, the cost of red-red emission is bounded by
(remember that rred,red3 [a1, a2] has only 1 tuple):

∑

a1,a2

O
(

1 +

∣

∣rred1 [a2]
∣

∣+
∣

∣rred2 [a1]
∣

∣

B

)

.

= O
(

|Φ1||Φ2|+
∑

a2

∣

∣rred1 [a2]
∣

∣

∣

∣Φ1

∣

∣

B
+
∑

a1

∣

∣rred2 [a1]
∣

∣

∣

∣Φ2||
B

)

= O
(n3

M
+

n1|Φ1|
B

+
n2

∣

∣Φ2|
B

)

= O
(

√
n1n2n3

B
√
M

)

.

By Lemma 8, the cost of red-blue emission is bounded by:

∑

a1,j

O
(

1 +

∣

∣rblue1 [I2j]
∣

∣

∣

∣rred,blue3 [a1, I
2
j]
∣

∣

MB

+

∣

∣rblue1 [I2j]
∣

∣+
∣

∣rred2 [a1]
∣

∣+
∣

∣rred,blue3 [a1, I
2
j]
∣

∣

B

)

.

= O
(

|Φ1|q2 +
∑

j

∣

∣rblue1 [I2j]
∣

∣

∑

a1

∣

∣rred,blue3 [a1, I
2
j]
∣

∣

MB

+
|Φ1|

∑

j

∣

∣rblue1 [I2j]
∣

∣

B
+

q2
∑

a1

∣

∣rred2 [a1]
∣

∣

B
+

n3

B

)

. (14)

Observe that
∑

a1

∣

∣rred,blue3 [a1, I
2
j]
∣

∣ is the total number of tuples

in rred,blue3 whose A2-values fall in I2j . By the way I21 , ..., I
2
q2 are

constructed, we know:
∑

a1

∣

∣rred,blue3 [a1, I
2
j]
∣

∣ ≤ 2θ2.

(14) is thus bounded by:

O
(n3

M
+
∑

j

∣

∣rblue1 [I2j]
∣

∣θ2

MB
+

|Φ1|n1

B
+

q2n2

B
+

n3

B

)

= O
(n1θ2
MB

+
|Φ1|n1

B
+

q2n2

B
+

n3

B

)

= O
(

√
n1n2n3

B
√
M

)

.

A similar argument shows that the cost of blue-red emission is

bounded by O(
√

n1n2n3

B
√

M
+ n1

B
). Finally, by Lemma 7, the cost of

blue-blue emission is bounded by:

∑

j1,j2

O
(

1 +

(∣

∣rblue1 [I2j2]
∣

∣+
∣

∣rblue2 [I1j1]
∣

∣

)∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣

MB

+

∣

∣rblue1 [I2j2]
∣

∣+
∣

∣rblue2 [I1j1]
∣

∣+
∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣

B

)

. (15)

Let us analyze each term of (15) in turn. First:
∑

j1,j2

∣

∣rblue1 [I2j2]
∣

∣

∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣

=
∑

j2

∣

∣rblue1 [I2j2]
∣

∣

∑

j1

∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣ (16)

∑

j1

∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣ gives the number of tuples in rblue,blue3

whose A2-values fall in I
2
j . By the way I21 , ..., I

2
q2 are constructed,

we know:
∑

j1

∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣ ≤ 2θ2.

Therefore:

(16) = O
(

θ2
∑

j2

∣

∣rblue1 [I2j2]
∣

∣

)

= O(n1θ2).

Symmetrically, we have:
∑

j1,j2

∣

∣rblue2 [I1j1]
∣

∣

∣

∣rblue,blue3 [I1j1 , I
2
j2]
∣

∣ = O(n2θ1).

Thus, (15) is bounded by:

O
(

q1q2 +
n1θ2 + n2θ1

MB

+
q1
∑

j2

∣

∣rblue1 [I2j2]
∣

∣

B
+

q2
∑

j1

∣

∣rblue2 [I1j1]
∣

∣

B
+

n3

B

)

= O
(

q1q2 +
n1θ2 + n2θ1

MB
+

q1n1

B
+

q2n2

B
+

n3

B

)

= O
(

√
n1n2n3

B
√
M

+
n1

B

)

.

As already mentioned in Section 4.2, the partitioning phase
requires O(sort(

∑3
i=1 ni)) I/Os. We now complete the proof of

Theorem 3.

ACKNOWLEDGEMENTS

This work was supported in part by Grants GRF 4168/13 and GRF
142072/14 from HKRGC.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley Publishing Company, 1995.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problems. CACM, 31(9):1116–1127,
1988.

[3] L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter. On sorting
strings in external memory (extended abstract). In STOC,
pages 540–548, 1997.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query
plans for relational joins. SIAM J. of Comp.,
42(4):1737–1767, 2013.

[5] C. Beeri and M. Vardi. On the complexity of testing
implications of data dependencies. Computer Science Report,
Hebrew Univ, 1980.

[6] P. C. Fischer and D. Tsou. Whether a set of multivalued
dependencies implies a join dependency is NP-hard. SIAM J.

of Comp., 12(2):259–266, 1983.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[8] X. Hu, Y. Tao, and C.-W. Chung. I/O-efficient algorithms on
triangle listing and counting. To appear in ACM TODS, 2014.

[9] P. C. Kanellakis. On the computational complexity of
cardinality constraints in relational databases. IPL,
11(2):98–101, 1980.

[10] D. Maier. The Theory of Relational Databases. Available
Online at http://web.cecs.pdx.edu/
∼maier/TheoryBook/TRD.html, 1983.

[11] D. Maier, Y. Sagiv, and M. Yannakakis. On the complexity of
testing implications of functional and join dependencies.
JACM, 28(4):680–695, 1981.

[12] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms: [extended abstract]. In PODS, pages
37–48, 2012.

[13] J. Nicolas. Mutual dependencies and some results on
undecomposable relations. In VLDB, pages 360–367, 1978.

[14] R. Pagh and F. Silvestri. The input/output complexity of
triangle enumeration. In PODS, pages 224–233, 2014.

APPENDIX

Proof of Lemma 3

Without loss of generality, suppose that r1 has the smallest
cardinality among all the input relations. Let us first assume that
n1 ≤ cM/d where c is a sufficiently small constant so that r1 can
be kept in memory throughout the entire algorithm. With r1 already
in memory, we merge all the tuples of r2, ..., rd into a set L, sorted
by attribute A1. For each a ∈ dom(A1), let L[a] be the set of
tuples in L whose A1-values equal a.

Next, for each a ∈ dom(A1), we use the procedure below to
emit all the tuples t∗ in the result of r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd such
that t∗[A1] = a. First, initialize empty sets S2, ..., Sd in memory.
Then, we process each tuple t ∈ L[a] as follows. Suppose that t
originates from ri for some i ∈ [2, d]. Check whether r1 has a
tuple t′ satisfying

t′[Aj] = t[Aj], ∀j ∈ [2, d] \ {i}. (17)

If the answer is no, t is discarded; otherwise, we add it to Si. Note
that the checking happens in memory, and thus, entails no I/O.
Having processed all the tuples of L[a] this way, we emit all the
tuples in the result of r1 ⊲⊳ S2 ⊲⊳ S3 ⊲⊳ ... ⊲⊳ Sd (these are exactly
the tuples in r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd whose A1-values equal a). The
above tuple emission incurs no I/Os due to the following lemma.

LEMMA 10. r1, S2, ..., Sd fit in memory.

PROOF. It is easy to show that |Si| ≤ n1 ≤ cM/d for each
i ∈ [2, d]. A naive way to store Si takes d|Si| words, in which case

we would need Ω(dM) words to store r1, S2, ..., Sd, exceeding the
memory capacityM .

To remedy this issue, we store Si using only |Si| words as
follows. Given a tuple t ∈ Si, we store a single integer that is
the memory address4 of the tuple t′ in (17). This does not lose any
information because we can recover t by resorting to (17) and the
fact that t[A1] = a.

Therefore, r1, S2, ..., Sd can be represented in O(d · n1) words,
which is smaller than M when the constant c is sufficiently
small.

The overall cost of the algorithm is dominated by the cost of (i)
merging r2, ..., rd intoL, which takesO(d+(d/B)

∑d
i=2 ni) I/Os,

and (ii) sorting L, which takes O(sort(d
∑d

i=2 ni)) I/Os, using a
algorithm of [3] for string sorting in EM. Hence, the overall I/O
complexity is as claimed in Theorem 2.

It remains to consider the case where n1 > cM/d. We simply
divide r1 arbitrarily into O(1) subsets each with cM/d tuples, and
then apply the above algorithm to emit all the result tuples produced
from each of the subsets.

Proof of Lemma 4

For each i ∈ [1, d] \ {H}, defineXi = Ri ∩RH (i.e.,Xi includes
all the attributes in R except Ai and AH).

In ascending order of i ∈ [1, d] \ {H}, we invoke the procedure
below to process ri and rH , which continuously removes some
tuples from rH . First, sort ri and rH by Xi, respectively. Then,
synchronously scan ri and rH according to the sorted order. For
each tuple t in rH , we check during the scan whether ri has a
tuple t′ that has the same values as t on all the attributes in Xi.
The sorted order ensures that if t′ exists, then t and t′ must appear
consecutively during the synchronous scan5. If t′ exists, t is kept in
rH ; otherwise, we discard t from rH (t cannot produce any tuple
in r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd).

After the above procedure has finished through all i ∈ [1, d] \
{H}, we know that every tuple t remaining in rH must produce
exactly one result tuple t′ in r1 ⊲⊳ r2 ⊲⊳ ... ⊲⊳ rd. Clearly, t

′[Ai] =
t[Ai] for all i ∈ [1, d] \ {H}, and (by definition of point join)
t′[AH] = a. Therefore, we can emit all such t′ with one more scan
of the (current) rH .

The claimed I/O cost follows from the fact that rH is sorted d−1
times in total, while ri is sorted once for each i ∈ [1, d] \ {H}.

Proof of Lemma 5

Let us first understand how t is passed from a call to its descendants
in T . Let JOIN(hℓ, ρ1, ..., ρd) be a level-ℓ call that t participates in.
If hℓ+1 6= i, then t participates in at most one of the call’s child
nodes in T . Otherwise, t may participate in all of the call’s child
nodes in T .

We first consider the case Li = 0, under which there are two
possible scenarios: (i) i = 1, or (ii) i is not the axis of any call
in T . In neither case will we have a call JOIN(hℓ, ρ1, ..., ρd) with
hℓ+1 = i. This implies that γℓ(t) ≤ 1 for all ℓ ∈ [1, w].

Now consider that Li ∈ [1, w − 1]. Let JOIN(hℓ, ρ1, ..., ρd) be
a level-ℓ call that t participates in. If ℓ 6= Li, then the call passes
t to at most one of its child nodes. If ℓ = Li, then by definition of

4This address requires only lg2 n1 bits by storing an offset.
5Note that ri can have at most one tuple t′ that has the same values
as t on all attributes in Xi (recall that t′[AH] is fixed to a by
definition of point join).

Li, we have i = h1+Li
. In this scenario, the call may pass t to all

its q child nodes where

q = O(1 + |ρ1|/τi)
(by (3)) = O(1 + τhLi

/τi)

= O(1 + τhLi
/τh1+Li

)

= O(µLi
).

This implies the equation of γℓ(t) given in (12).

Proof of Lemma 6

By the definition of µℓ−1, it suffices to show that τhℓ−1
/τhℓ

=

O(Ud
1

d−1 /nhℓ
). (2) implies that

τhℓ−1

τhℓ

=
(Ud

1
d−1)hℓ−hℓ−1

∏hℓ
j=1+hℓ−1

nj

. (18)

If hℓ = 1 + hℓ−1, then

(18) =
Ud

1
d−1

nhℓ

.

For the case where hℓ > 1 + hℓ−1, the definition of hℓ indicates
that

τhℓ−1

τhℓ−1
=

(Ud
1

d−1)hℓ−1−hℓ−1

∏hℓ−1
j=1+hℓ−1

nj

≤ 2;

otherwise, hℓ would not be the smallest integer in [1 + hℓ−1, d]
satisfying τhℓ

< τhℓ−1
/2. Hence,

(18) ≤ 2 · Ud
1

d−1

nhℓ

,

which completes the proof.

