
External Memory Stream Sampling

Xiaocheng Hu Miao Qiao Yufei Tao

CUHK
Hong Kong

ABSTRACT

This paper aims to understand the I/O-complexity of
maintaining a big sample set—whose size exceeds the
internal memory’s capacity—on a data stream. We
study this topic in a new computation model, named
the external memory stream (EMS) model, that naturally
extends the standard external memory model to stream
environments. A suite of EMS-indigenous techniques are
presented to prove matching lower and upper bounds for
with-replacement (WR) and without-replacement (WoR)
sampling on append-only and time-based sliding window
streams, respectively. Our results imply that, compared
to RAM, the EMS model is perhaps a more suitable
computation model for studying stream sampling, because
the new model separates different problems by their
hardness in ways that could not be observed in RAM.

Categories and Subject Descriptors

F.2.2 [Analysis of algorithms and problem

complexity]: Nonnumerical Algorithms and Problems

Keywords

Stream; Sampling; I/O-Efficient Algorithms; Lower Bound

1. INTRODUCTION
Uniform sampling on data streams is a fundamental topic

that has been extensively studied, but under the assumption
that the sample set fits in (internal) memory [3, 4, 8, 19]. In
this work, we do away with the assumption, and aim to
understand the I/O complexity of maintaining big sample
sets.

1.1 Motivation of Big Sampling
Big sampling—acquiring a sample set whose size exceeds

the memory’s capacity—is hardly a new concept. Jermaine
et al. [12] were the first to design algorithms to do so
by taking disk accesses into account; and their work has

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’15,May 31–June 4, 2015, Melbourne, Victoria, Australia.

Copyright c© 2015 ACM 978-1-4503-2757-2/15/05 ...$15.00.

Http://dx.doi.org/10.1145/2745754.2745757.

triggered a line of research [7, 12, 15, 16, 18] on this topic.
The importance of big sampling is reflected in the fact that,
the sample size must grow rapidly with the cardinality of the
“ground” input set to allow high accuracy in many analytic
tasks. Next, we explain this in two areas where sampling has
been widely applied: subset-size estimation, and designing
approximation algorithms.

Estimation with Bounded Relative Errors. Consider
the following basic estimation problem. Let S be a set of n
elements. Given a predicate which can be any function f :
S → {0, 1}, we want to estimate the number k of elements
e ∈ S with f(e) = 1. Clearly, the entire S must be stored if
a precise k is demanded for an arbitrary predicate.

Suppose that it suffices to derive an estimate k̂ such that,
with probability at least 1−δ, the relative error |k−k̂|/k is at
most ǫ. This problem can be solved by taking s samples with
replacement (namely, each sample is uniformly distributed

in S independently), and obtaining k̂ by first counting and
then scaling up the number of samples e with f(e) = 1.
How large should s be? A standard application of Chernoff
bounds shows s = O(n

ǫ2k
log 1

δ
).

To strike a balance between the space usage and the
smallest k supported, a threshold ∆ is set such that the
guarantee holds for all k ≥ ∆. The number of samples
required is thus O(n

ǫ2∆
log 1

δ
). ∆ is typically in relation to

n, e.g., ∆ = n0.99 (as n grows, a predicate needs to retrieve
more elements to be protected by the guarantee), making

O(n
0.01

ǫ2
log 1

δ
) samples necessary, namely, polynomial to n.

Note that here ǫ is not necessarily a constant: in some
applications the number of samples may be fixed, in which
case the value of ǫ (i.e., guarantee-able error bound) needs
to increase with n.

Note that the exemplified ∆ was deliberately chosen to be
very large; in reality, ∆ is often much smaller, but this can
only increase the sample size.

Approximation Algorithms. Uniform sampling is
a common tool in designing algorithms for finding
approximate answers to problems whose exact results are
expensive to compute. For example, in triangle counting,
we are given a graph G = (V,E), and want to count the
number of 3-vertex cliques in G. In the streaming version
of the problem, the edges of G arrive continuously; the goal
is to maintain an estimate of the number of triangles that
has a relative error at most ǫ with a probability at least
1 − δ. Currently the best algorithm [17] requires space

O(1
ǫ2

log 1
δ
· |E|dmax

t
), where dmax is the maximum degree of

a vertex in G, and t is the number of triangles in G. The

algorithm at its core samples O(1
ǫ2

log 1
δ
· |E|·dmax

t
) edges of

E (in a strategic manner that uses uniform sampling as a
black box). The number of samples can be very large, when
either dmax is large or t is small.

1.2 The External Memory Stream Model
Big sampling perhaps makes the best sense on big data,

which are characterized by “3V”: (high) volume, velocity,
and variety. The first two V’s imply that big-data sampling
is an external memory problem, and simultaneously, also a
data stream problem.

We propose an extension of the standard external memory
(EM) model [1] to the stream scenario. A machine is
equipped with internal memory of M words, and a disk of
an unbounded size which has been formatted into blocks of
size B words. It holds that M ≥ 2B. The data stream
is defined to be an unbounded sequence of elements, with
each element fitting in a word. An algorithm is allowed
the following operations. First, it may perform an I/O to
exchange a block of data between the memory and the disk.
Second, it may perform any CPU calculation on the data
inside the memory. Third, it may perform a Pull operation
to fetch the next element from the stream, which will be
placed inside the memory, overwriting a word there. This
element is said to have arrived, and disappears forever from
the stream.

We measure the time of an algorithm as the number of
I/Os it performs, and its space as the number of disk blocks
it occupies. CPU calculation and the Pull operation are
for free. We will refer to the above as the external memory
stream (EMS) model.

Allowing Pull to be I/O-free is consistent with the fact
that, when fetched from a network socket, a stream element
is always saved into memory in the existing operating
systems. In fact, the “directly-into-memory” feature is not
really new, and finds its counterpart in the conventional
EM model as well. Specifically, one may compare Pull

to an “insertion” to an EM structure. Such insertions are
(implicitly) assumed to be given in memory; this assumption
is crucial in, for example, the analysis of online buffer trees
[2, 20].

What differentiates the EMS model from the EM model is,
in our opinion, the amount of space consumption. Suppose
that currently N stream elements constitute the input to
a computation problem. We would typically be interested
in algorithms that consume far less than N/B blocks, but
more than M words (to avoid degenerating into traditional
stream algorithms in RAM).

1.3 Problem Definitions and Previous Results
Let P be a ground set of N elements. There are two

standard definitions of sample set:

• A without-replacement (WoR) sample set with size R
can be any of the

(

N
R

)

size-R subsets of P with the

same probability.1

1Specially, we regard a WoR sample set of size R > N to be
P itself.

• A with-replacement (WR) sample set with size R is
a sequence of R elements, each of which is taken
uniformly at random from P independently.

Note that the element ordering is irrelevant for a WoR
sample set, but matters for a WR sample set.

We revisit, in the EMS model, two problems that have
received considerable attention in RAM. The first one is:

Problem 1: Full Stream Sampling. Maintain a WoR
or WR sample set of size R on all the elements that have
arrived.

In RAM, the WoR version of Problem 1 can be optimally
solved with reservoir sampling [19], which uses O(R) space,
processes each incoming element in O(1) time, and reports a
sample set in O(R) time. As a folklore, a size-R WoR sample
set can be converted to a WR sample set of the same size
in O(R) time. Therefore, all the performance guarantees of
reservoir sampling carry over to the WR version of Problem
1 as well.

In the scenario where the sample set does not fit in
memory, previous work on Problem 1 did not explicitly
consider the EMS model. Nevertheless, some of the solutions
developed can be adapted to work in this model with
good guarantees. The geometric file of Jermaine et al. [12,
18] processes a stream of N elements with total cost of

O(R2

MB
log N

R
) expected I/Os, and consumes O(R/B) space

at all times, such that a sample set of size R can be output
at any moment in O(R/B) I/Os. Gemulla and Lehner
[7] presented an improved algorithm that (when adapted
to EMS) has the same space and sample reporting cost as
the geometric file, but can process N stream elements with
O(R

B
log N

R
) expected I/Os in total.

There have been no explicit studies on maintaining
massive WR sample sets. However, the folklore RAM
algorithm for size-R WoR-to-WR conversion can be
implemented in perm(R) = Θ(min{R, R

B
logM/B

R
B
}) I/Os

in EM.2 Hence, the algorithm of [7] can also output a size-R
WR sample set in perm(R) I/Os.

An interesting question then arises: is it possible to carry
out a size-R WoR-to-WR conversion in o(perm(R)) I/Os?
Recently, a negative answer has been provided in [10] for
the special case where R is as large as the size of the ground
set. The argument of [10], unfortunately, does not extend
to general values of R.

Problem 2: Time-Based Sliding Window

Sampling. Each element e from the stream now carries
a real-valued timestamp te, which is non-descending,
namely, te ≥ te′ where e′ is the element arriving right
before e. Define a sliding window as the set of elements
whose timestamps fall in [tnow − τ, tnow], where τ > 0 is
a fixed real-valued parameter and tnow is the timestamp
of the last arrived element. The objective is to maintain
a WoR or WR sample set with size R of the current
sliding window.

Let n be the length of the current sliding window. Note
that n may vary with time from 1 to any arbitrarily

2perm(R) is the number of I/Os needed to permute R
elements in EM [1].

problem model cost of handling space WoR sample WR sample source remark
N elements reporting reporting

Prob. 1 RAM O(N) O(R) O(R) O(R) [19]

Prob. 1 EMS O(R
B

log N
R
)† O(R/B) O(R/B) O(perm(R)) [7]

Prob. 1 EMS Ω(R
B

log N
R
)† trivially Ω(R/B) trivially Ω(R/B) Ω(perm(R))‡ new optimal

Prob. 2 RAM O(N) O(R logn) O(R) O(R) [4] n = window length
Prob. 2 RAM/EMS Ω(R log n

R
) elements [8]

Prob. 2 RAM O(N) O(R log n
R
) O(R) O(R) new optimal

Prob. 2 EMS Θ(N/B) O(R
B

log n
R
) Θ(R/B) Θ(perm(R))‡ new optimal

†Expected. ‡The lower bound applies to the element-processing cost in the 3rd column.

Table 1: Summary of our and previous results

large integer. In RAM, Braverman et al. [4] described an
algorithm that uses O(R log n) space, processes each element
in O(1) amortized time, and reports a WoR (hence, also WR)
sample set in O(R) time. In [8], Gemulla and Lehner proved
that any algorithm solving Problem 2 must store Ω(R log n

R
)

elements.3 In other words, there is a tiny gap between the
lower bound and the space of [4].

Problem 2 has not been investigated in the scenario where
the sample set is disk resident. Currently the only approach
to solve the problem in the EMS model is to run the RAM
algorithm of [4] by treating the disk as virtual memory, but
the approach obviously suffers from severe I/O penalty.

1.4 Our Results
We resolve the I/O complexities of both problems in the

EMS model. For Problem 1, our contributions are on lower
bounds:

Theorem 1. In the EMS model, when N ≥ R ≥ cM with
c being a sufficiently large constant,

1. any algorithm solving the WoR or WR version of
Problem 1 must perform Ω(R

B
log N

R
) expected I/Os to

process N stream elements.

2. any algorithm that uses o(perm(R) · log N
R
) expected

I/Os to process N stream elements must incur
Ω(perm(R)) I/Os to return a WR sample set.

Therefore, the algorithm of [7], as well as its WR
extension described in Section 1.3, is already optimal. Note
that the theorem officially separates WoR sampling from
WR sampling—conditioned on spending O(R

B
log N

R
) I/Os

processing N stream elements, a WoR sample set can be
reported in O(R/B) I/Os, whereas a WR one requires
Ω(perm(R)) I/Os to report. This, interestingly, implies that
the folklore WoR-to-WR conversion algorithm is already the
best in EM:

Corollary 1. In the EM model, when R ≥ cM with c
being a sufficiently large constant, any algorithm converting
a size-R WoR sample set of a ground set P into a size-R
WR sample set of P must incur Ω(perm(R)) I/Os.

On Problem 2, we attack upper and lower bounds
simultaneously, and conquer both by designing an optimal
EMS algorithm, as shown in next two theorems:

3Gemulla and Lehner claimed Ω(R logN) in [8], but a close
look at their proof reveals that their lower bound is actually
Ω(R log n

R
).

Theorem 2. For Problem 2, there is an EMS algorithm
that performs O(N/B) I/Os to process N stream elements,
uses O(R

B
log n

R
) space (where n is the length of the current

sliding window), and outputs at any moment a WoR sample
set in O(R/B) I/Os, and a WR sample set in O(perm(R))
I/Os.

Theorem 3. When N ≥ cR and R ≥ cM with c being a
sufficiently large constant,

1. any algorithm solving the WoR or WR version of
Problem 2 must perform Ω(N/B) expected I/Os to
process N stream elements.

2. any algorithm that uses o(perm(R) · (N/R)) expected
I/Os to process N stream elements must incur
Ω(perm(R)) expected I/Os to return a WR sample set.

The above statements are true regardless of τ .

Note that the space optimality of Theorem 2 follows from
the space lower bound Ω(R log n

R
) of [8].

Our algorithm for Problem 2 adopts novel ideas beyond
the solution of Braverman et al. [4]. Perhaps the fastest
(and yet convincing) way to illustrate this is to point out
that, setting B = 1 and M to an appropriate constant, our
algorithm also works in RAM, where we improve the result
of Braverman et al. [4]:

Corollary 2. For Problem 2, in the RAM model, there
is an algorithm that uses O(R log n

R
) space (where n is the

length of the current sliding window), processes each stream
element in O(1) amortized time, and outputs at any moment
a WoR sample set in O(R) time.

This is the first RAM algorithm for Problem 2 that is
optimal for all values of n and R. Table 1 gives a quick
summary of our and previous results.

EMS vs. RAM. By comparing the results of Problems 1
and 2, one can see the differences in their I/O complexities.
In particular, while Problem 2 requires Θ(1/B) amortized
I/Os per element, it is possible to lower the corresponding
cost to O(1

B
R logN

N
) for Problem 1. Such a separation is

absent in RAM, where an algorithm obviously needs to pay
at least constant time just to look at an element. This has
two implications. First, the O(1)-time “optimality” in RAM
(for element processing) hardly touches the essence of the
problems. Second, efficiency is a far more important issue
in the EMS model than in RAM (where attention focuses
primarily on space usage and seldom on efficiency).

Note also that the above separation owes to the I/O-free
Pull operation in the EMS model—if an algorithm
was forced to read the stream from the disk, the
element-processing cost would be vacuously dominated by
Ω(N/B) for both problems.

Remarks. The selection of Problems 1 and 2 is a careful
one. Problem 1 (due to its relative simplicity) is the best
for demonstrating our lower bound techniques. Problem 2,
on the other hand, demands new ideas to design an efficient
EMS algorithm, even given its state-of-the-art solution in
RAM. In fact, the methods developed in this paper can
be applied to settle other sampling problems optimally in
the EMS model as well, e.g., sequence-based sliding window
sampling [4].

2. PRELIMINARIES
Let us start with three basic algorithms that will be

needed frequently throughout the paper:

2.1 Offline WoR Sampling in EM

In this problem, we are given a static ground set P in an
array (hence, |P | is known). The goal is to obtain a size-R
WoR sample set of P .

Here is a simple algorithm [6, 13] performing O(|P |/B)
I/Os. For the j-th (1 ≤ j ≤ |P |) element of P , add it to the
sample set with probability (R − x)/(|P | − j + 1), where x
is the number of samples already taken from the first j − 1
elements of P .

2.2 WoR-to-WR Conversion in EM

In this problem, we are given a size-R WoR sample set S
of a ground set P . The goal is to convert S into a size-R
WR sample set of P .

Next, we show how to do so in O(perm(R)) I/Os,
assuming n = |P | and R ≤ n.4 Our algorithm executes
in three steps:

• Generate an array A of size R. First, set A[1] = 1 and
J = 1. Then, in ascending order of i ∈ [2, R], decide
A[i] by choosing uniformly at random an integer z ∈
[1, n]. If z ≤ J , set A[i] = z; otherwise, set A[i] = J+1
and increase J by 1.

• Take a size-J WoR sample set T of S (using the
algorithm in Section 2.1). Randomly permute the
elements of T in O(perm(R)) I/Os [9].

• Create an array Q of size R where Q[j] (1 ≤ j ≤ R) is
the A[j]-th element of T . It can be done in O(perm(R))
I/Os.

Q is returned as the final WR sample set. See appendix for
a correctness proof.

2.3 Full Stream Sampling in EMS
In this subsection, we review the algorithm of [7]

for solving Problem 1, which can be regarded as an
implementation of reservoir sampling in the EMS model.

4If R > n, then S = P , in which case the problem is
straightforward.

Handling Incoming Elements. The first R stream
elements constitute the initial WoR sample set S. Create
an empty linked list L at this point.

Given the i-th (i ≥ R + 1) stream element e, we add e
to L with probability R/i, and discard e otherwise. When
|L| = R, update the WoR sample set S by performing a
merge of L and S (to be explained shortly). The algorithm
then empties L and continues as described above.

A merge of L and S is carried out as follows:

• Perform a“clean-up”to possibly shrink L by inspecting
its elements in reverse arrival order. At the beginning,
x = 0. For the j-th (1 ≤ j ≤ |L|) most-recently arrived
element e of L, toss a coin with head probability x/R.
If it heads, remove e from L; otherwise, retain e in L,
and increase x by 1.

• Take a WoR sample set S′ of size R − |L| from S in
O(R/B) I/Os with offline sampling.

• Reset S = S′ ∪ L.

The cost of a merge is O(R/B) I/Os.

The algorithm uses O(R/B) space at all times. It
processes N elements with O(N/B) I/Os in the worst case.
The expected cost, on the other hand, is much lower. To
see this, note that after N elements there have been in
expectation

∑N
i=R+1(R/i) = O(R log(N/R)) insertions into

L. Therefore, the algorithm has launched in expectation
O(log(N/R)) merges, which perform in total O(R

B
log N

R
)

expected I/Os.

WoR Sample Set Any Time. To report a WoR sample
set before |L| reaches R, simply perform a merge of S and L
right away, and return the resulting S. The cost is O(R/B).

3. HARDNESS OF PERMUTATION IN

EMS
In this section, we will formulate and study a problem

called (N,R)-permutation. Not only does this problem
explain the hardness of WR sampling in the EMS model
(as shown in the next section), but also it sheds light on
some subtle but crucial differences between the EM and
EMS models from a technical point of view.

The problem is defined as follows. The input is a stream of
N elements. Denote by P the set of those elements. Given
the value of N and an integer R ≤ N , an algorithm should

• either succeed by writing to the disk a random
R-permutation5 of P , namely, any of the N!

(N−R)!

R-permutations is output with the same chance,

• or declare failure.

The algorithm must succeed with at least a constant
probability.

The problem admits a solution that never fails, and
terminates in O(perm(R)) I/Os. We can first take a size-R
WoR sample set S of P . Since N is known, this is in fact
offline sampling, and can be completed in O(R/B) I/Os (see

5An R-permutation is an ordered list of R distinct elements
in P .

Section 2.1). After that, we output a random permutation
of S in O(perm(R)) I/Os.

The rest of the subsection will prove that it is impossible
to do any better, even by failing:

Lemma 1. When R ≥ 2M , any algorithm solving the
(N,R)-permutation problem must incur Ω(perm(R)) I/Os
in expectation.

EMS Subtlety. Permutation is one of the most
fundamental problems in EM, and also one of the best
understood, with lower bounds already established in
various contexts [1, 11, 14]. Unfortunately, all the techniques
behind those lower bounds can be used to prove only bounds
far worse than the one in Lemma 1 in the EMS model. This,
interestingly, is not due to the looseness of those techniques,
but rather, due to an inherent difference between the EM
and EMS models.

In general, a permutation lower bound in EM is proved
by observing that an I/O cannot generate too many new
permutations, which, in turn, relies on the fact that in EM
no new elements can enter memory between two I/Os. This
is no longer true in the EMS model: new elements may be
added to the memory by the Pull operation, even though no
I/O is performed. As a consequence, an I/O may potentially
create a huge number of new permutations, thus significantly
weakening the power of the existing arguments.

In what follows, we will present an EMS-indigenous
technique to derive Lemma 1.

Producing One R-Permutation. Let us first look
at a different problem in the EMS model which we call
one-R-permutation. The input stream is a sequence of R
pairs of the form (ei, pi), where ei is an element drawn from
a certain domain, and pi is an integer in [1, R]. It is required
that p1, p2, ..., pR are distinct. The output is a permutation
π of e1, e2..., eR in the disk where ei is placed at the pi-th
position of π, for each i ∈ [1, R].

This problem is in fact a disguise of the classic
problem of permuting R elements in EM. Notice that
Ω(R/B) is a clearly a lower bound for one-R-permutation.
Hence, one can reduce the EM permutation problem to
one-R-permutation, by simulating a stream with a scan of
the R elements in the input. The opposite reduction is also
straightforward: in the EMS model, one can first spend
O(R/B) I/Os storing all the incoming R elements, and
then, solve one-R-permutation as a permutation problem
in EM. It thus follows that the worst-case I/O complexity is
Θ(perm(R)) for one-R-permutation.

However, it is not the worst case that will interest us
in the subsequent discussion; instead, we will be concerned
with every instance of the problem. Specifically, for every
possible sequence (p1, ..., pR), we will need the smallest I/O
cost of all the possible strategies for producing the target
permutation π. For example, when p1, ..., pR happen to be
in ascending order, then an optimal strategy would spend
only ⌈R/B⌉ I/Os. Interestingly, we do not need to design
the optimal strategy for each (p1, ..., pR); it suffices to know
that it definitely exists.

Proof of Lemma 1. The crux of our proof is to show
that, given an algorithm A solving the (N,R)-permutation

problem in H expected I/Os, we can design an algorithm
A′ in the EM model to produce a random permutation of
R elements in O(H) expected I/Os. The latter problem has
a lower bound of Ω(perm(R)) expected I/Os6. It will thus
follow that H = Ω(perm(R)).

From now on, we will fix the arrival order of the elements
in P . Denote by c the success probability of A. Let S be an
arbitrary size-R subset of P . We denote by cost(A | S) the
expected I/O cost of A, under the event that the algorithm
succeeds by outputting an R-permutation with elements
only from S. The probability of the event is Pr[S] = c/

(

N
R

)

for any S. We have:

H ≥
∑

∀S

cost(A | S) ·Pr[S].

Let S⋆ be the S with the smallest cost(A | S). Thus:

H ≥
∑

∀S

cost(A | S⋆) ·Pr[S]

= cost(A | S⋆)
∑

∀S

Pr[S]

= c · cost(A | S⋆). (1)

Henceforth, we will view S⋆ as a sequence where its elements
are arranged by arrival order in the stream.

Next we design an algorithm A⋆ which may fail with
probability 1 − c, but when it does not, it always produces
a random permutation of S⋆. Furthermore, the expected
cost of A⋆ is at most H . For this purpose, we take the
view that a randomized algorithm has free access to a
sequence of random bits, such that the algorithm’s execution
is deterministic once all those bits are fixed. For every
such sequence Σ of fixed bits, we design the (deterministic)
behavior of A⋆ conditioned on Σ:

• If A fails on Σ, we instruct A⋆ to fail immediately
without performing any I/O.

• If the output of A (given Σ) is a permutation π⋆ of S⋆,
we instruct A⋆ to take an optimal strategy to solve
the one-R-permutation instance that aims to produce
π⋆ from the stream sequence S⋆ (recall how we view
S⋆ as a sequence). Such a strategy always exists, as
explained before.

• The remaining case is that the output of A (given Σ)
is a permutation π of an element set S 6= S⋆. Let us
regard S as a sequence of its elements sorted by arrival
order. We resort to the following one-one mapping
from the elements of S to those of S⋆: for each i ∈
[1, R], the i-th element of S maps to the i-th element
of S⋆. The mapping converts π into a permutation π⋆

of S⋆. We instruct A⋆ to follow an optimal strategy
to solve the one-R-permutation instance that aims to
produce π⋆ from the stream sequence S⋆.

We claim that the algorithm A⋆ thus designed serves our
purposes. First, it is clear that A⋆ succeeds with probability
c, and when it does, it always outputs a permutation of S⋆.
Second, A⋆ (if succeeds) returns a random permutation of
S⋆ because (i) A outputs a random R-permutation of P and

6Proof: Combine Yao’s Minimax theorem and the
permutation lower bound of Aggarwal and Vitter [1].

(ii) the same number of R-permutations of P are mapped to
each permutation of S⋆ output by A⋆.

It remains to analyze the expected cost H⋆ of A⋆. By
definition:

H⋆ =
∑

∀ permutation π⋆ of S⋆

optcost(π⋆) ·
c

R!
(2)

where optcost(π⋆) is the cost of an optimal strategy solving
the one-R-permutation problem that produces π⋆ from the
stream sequence S⋆. Denote by cost(A | π⋆) the expected
cost of A under the condition that A outputs π⋆. It holds
by definition of optcost (π⋆) that optcost (π⋆) ≤ cost(A | π⋆).
Therefore:

(2) ≤ c
∑

∀ permutation π⋆ of S⋆

cost(A | π⋆)
1

R!

= c · cost(A | S⋆)

(by (1)) ≤ H.

We are now ready to design the promised algorithm A′ in
the EM model which, given a set X of R elements, outputs
a random permutation of X. We simply create a (virtual)
data stream of length N where the elements of X are placed
at the same positions as the elements of S⋆ in the input
stream of A⋆. Since the contents of the elements outside X
are irrelevant, we can generate such a stream by readingX in
O(R/B) I/Os. Then, A′ repetitively runsA⋆ on that stream
until it succeeds (when it does, the output is guaranteed to
be a random permutation of X). The total expected cost of
A′ is O(R/B + H⋆) = O(H), where the equality used the
fact that H = Ω(R/B) when R ≥ 2M . We thus complete
the proof of Lemma 1.

4. HARDNESS OF FULL STREAM

SAMPLING
In this section, we will explain why it is impossible to

do any better than the algorithm of [7] (see Section 2.3),
by presenting a proof of Theorem 1. As required by the
theorem, we assume that N ≥ R ≥ cM with c being a
sufficiently large constant.

We say that the i-th element of the stream has sequence
number i. Divide the stream into epochs such that epoch 1
includes the first R elements of the stream, and epoch j ≥ 2
covers elements with sequence numbers in

[1 + 2j−2R, 2j−1R].

Note that, at the end of each epoch j ≥ 2, epoch j accounts
for exactly half of the elements that have arrived.

Element Processing. We will first prove Statement 1 of
the theorem. We will argue that any algorithm A must
perform Ω(R/B) expected I/Os in each of the Θ(log N

R
)

epochs, which brings the total cost to Ω(R
B
log N

R
).

Consider first WoR sampling, for which we choose c = 3.
For the first epoch, since A must remember all the first
R elements, it needs Ω((R − M)/B) = Ω(R/B) I/Os to
write at least R − M elements to the disk. For each epoch
j ≥ 2, if a sample request arises at the end of the epoch, with
half probability, A must return at least R/2 samples from
epoch j (recall that epoch j covers half of the already-arrived
elements). Therefore, with half probability, A must have

written at least R/2 − M = Ω(R) of samples from epoch j
to the disk, necessitating Ω(R/B) I/Os.

The above argument can be extended to WR sampling, for
which we choose c = 9. For each epoch j ≥ 3, imagine that
we, at the end of the epoch, request A to return a size-R
sample set stored in an array Q. We observe:

Lemma 2. For each z ∈ [1, R], Q[z] has at least 1/4
probability to satisfy two conditions simultaneously: (i) it
comes from epoch j, and (ii) Q[z] is unique in Q (i.e., there
does not exist z′ 6= z with Q[z′] = Q[z]).

Proof. First, Q[z] clearly has half probability to come
from epoch j. Conditioned on Q[z] originating from epoch
j, next we show that it is unique in Q with at least half
probability. This will prove the correctness of the lemma.

Epoch j ≥ 3 has at least 2R elements by definition. As
the elements of Q are independent, Q[z] equals one of the
other R−1 elements with probability at most (R−1)/2R <
1/2.

Corollary 3. With at least 1/7 probability, Q contains
at least R/8 unique elements coming from epoch j.

Proof. Otherwise, the expected number of unique
elements from the epoch is strictly smaller than 1

7
·R+ 6

7
·R
8
=

R/4, contradicting Lemma 2.

Therefore, with probability at least 1/7, A must spend at
least (R/8 − M)/B = Ω(R/B) I/Os writing R/8 elements
from epoch j to the disk.

WR Reporting. Next we will prove Statement 2
of Theorem 1, namely, if A spends o(perm(R) · log N

R
)

expected I/Os processing N stream elements, it must incur
Ω(perm(R)) I/Os returning a WR sample set.

Our hard workload includes the stream constructed at the
beginning of the section, and a WR sample request at the
end of each epoch j ≥ 3. We claim that the total I/O
cost of processing the entire workload is Ω(perm(R) · log N

R
)

in expectation, which suffices for establishing Statement 2
(because there are O(log N

R
) sample requests).

Our proof of the claim is a corollary of Lemma 1. Fix an
arbitrary epoch j ≥ 3. Let H be the total expected I/O
cost of A in processing the elements of the epoch and the
sample request at the end of the epoch. By Corollary 3,
with probability at least 1/7, the WR sample set Q fetched
at the end of epoch j contains at least R/8 distinct elements
from epoch j. The sequence of those R/8 elements in Q is
a random (R/8)-permutation of the elements in the epoch.
Choosing c = 16, we ensure R/8 ≥ 2M ; and hence, H =
Ω(perm(R/8)) = Ω(perm(R)) by Lemma 1. It thus follows
that Ω(perm(R)·log N

R
) expected I/Os are needed to process

the entire workload.

5. TIME-BASED SLIDING WINDOW

SAMPLING
We now set off to tackle Problem 2 defined in Section 1.3.

An element is said to be alive if it falls in the current sliding
window, and expired otherwise.

As a major obstacle in overcoming Problem 2, an
algorithm often does not know the number n of alive
elements, but nonetheless would need to make decisions

based on n. This is especially true in the so-called two-bucket
sampling problem which, as identified by Braverman et al.
[4], is a subproblem vital to settling Problem 2. We present
a new algorithm to solve the subproblem I/O-efficiently in
Section 5.1. In Section 5.2, we combine this algorithm with
ideas from the exponential histogram [5] to solve Problem 2.
Finally, we analyze the hardness of Problem 2 in Section 5.3.

5.1 Two-Bucket Sampling

Problem. Let U1 and U2 be two subsequences of the data
stream satisfying the following 5 conditions:

1. They are disjoint and consecutive (i.e., the first
element in U2 arrived directly after the last element
in U1)

2. They together cover all the alive elements; and U1

covers at least one alive element (but perhaps also
some expired elements). In other words, if we denote
by α and β the lengths of U1 and U2, respectively, then
n can be anywhere from β + 1 to α+ β.

3. α ≥ R and β ≥ 2α.

4. We have taken two size-R WoR sample sets T1 and S1

of U1, and a size-R WoR sample set S2 of U2, such
that T1, S1, S2 are independent from each other.

5. Each sample e ∈ T1 also carries an index: if e is the
i-th element of U1, then its index equals i.

Our goal is to compute a size-R WoR sample set S of the
current sliding window in O(R/B) I/Os.

Algorithm. We denote by γ the number of alive elements
in U1; in other words, n = β + γ. Remember that the value
of γ is unknown (which renders n unknown). The following
is a crucial lemma, whose proof is non-trivial, and hence,
deferred to the end of the subsection:

Lemma 3. Given values c1, c2 satisfying 0 ≤ c1 ≤ c2 ≤
R, a Bernoulli trial returns a binary random variable that
equals 1 with probability α−c1

β+γ−c2
, and 0 with the remaining

probability. Given T1, we can support R independent
Bernoulli trials, each with its own c1, c2. The total number
of I/Os required is O(R/B).

Next we describe our algorithm for two-bucket sampling.
First, generate a random number Y defined as follows.
Imagine taking a size-R WoR sample set from the set of
integers in [1, β+γ]; Y equals the number of sampled integers
falling in [1, α]. Y can be easily obtained by repeating the
following step R times (Y = 0 initially): cast a coin with
head probability α−Y

β+γ−j
, where j is the number of times the

step is already performed (j = 0 for the first time); increase
Y by 1 if the coin heads. By Lemma 3, the generation of Y
requires O(R/B) I/Os.

Second, take a size-Y WoR sample set Ŝ1 of S1. Then, our
final S is the union of (i) the alive elements of Ŝ1 (we can
tell if an element is alive from its timestamp)—denote by h
the number of them—and (ii) a size-(R−h) WoR sample set
of S2. Since only offline WoR sampling is performed, both
Ŝ1 and S can be produced in O(R/B) I/Os.

Correctness. Let X be a random variable equal to the
output of our algorithm. Fix an arbitrary size-R subset S
of the current sliding window. We will prove that

Pr[X = S] = 1/

(

β + γ

R

)

.

Define X ′ = X ∩U1, X
′′ = X ∩U2, S

′ = S ∩U1, and S′′ =
S ∩U2. Thus:

Pr[X = S] = Pr[X ′′ = S′′ | X ′ = S′] ·Pr[X ′ = S′]

=
1

(

β
R−|S′|

) ·Pr[X ′ = S′]

We analyze Pr[X ′ = S′] by expanding it:

Pr[X ′ = S′]

=
R
∑

y=|S′|

Pr[X ′ = S′ | Y = y] ·Pr[Y = y]

=

R
∑

y=|S′|

(

α−γ
y−|S′|

)

(

α
y

) ·

(

α
y

)(

β+γ−α
R−y

)

(

β+γ
R

)

=
1

(

β+γ
R

)

R
∑

y=|S′|

(

α− γ

y − |S′|

)(

β − (α− γ)

R− y

)

=

(

β
R−|S′|

)

(

β+γ
R

) .

It thus follows that Pr[X = S] = 1/
(

β+γ
R

)

, as desired.

Proof of Lemma 3. We will first tackle another
subproblem—which we call random seeding—whose goal is
to compute from T1 an array rand of size R defined as
follows:

• Each cell rand [j] (1 ≤ j ≤ R) stores a pair (b, i), where
i is a random variable drawn uniformly from [1, α], and
b is a bit that equals 1 if the i-th element of U1 is alive,
or 0 otherwise (hence, Pr[b = 1] = γ/α).

• The R cells of rand are independent from each other.

This subproblem can be trivially solved in O(R) time in
RAM. Specifically, we can obtain from T1 a size-R WR
sample set of U1 in O(R) time. Given a j ∈ [1, R], let e
be the j-th element in the WR sample set. We then set
rand [j] = (b, i) with i being the index of e, and b indicating
whether e is alive (which we can tell from its timestamp). In
EM, however, this strategy takes Θ(perm(R)) I/Os which is
the cost to produce the WR sample set. Next, we present
an alternative solution with I/O cost O(R/B).

Our algorithm is designed based on the WoR-to-WR
conversion algorithm in Section 2.2. First, generate the
array A as described in Section 2.2, and accordingly, the
value of J (i.e., the number of distinct values in A). Then,
take a size-J WoR sample set of T from T1. Recall that
the algorithm of Section 2.2 would now produce a random
permutation of T—denote that permutation as Π. We
can no longer afford to do the same (because it requires
O(perm(R)) I/Os). The key change here is to determine
only the positions of two special elements of T in Π, as
explained next.

Define el as the element with the largest index of all the
expired elements in T . Denote by il the index of el ; if el does
not exist, then il = 0. Similarly, define er as the element
with the smallest index of all the alive elements in T . Denote
by ir the index of er ; if er does not exist, then ir = α + 1.
It is clear that el , er , il , and ir can be obtained by scanning
T once in O(J/B) = O(R/B) I/Os.

Recall that we cannot afford to generate Π; instead, we
only generate the position pl of el in Π, and the position
of pr of er in Π. Specifically, the integer pl is chosen from
[1, J] uniformly at random, after which pr is chosen from
[1, J] \ {pl} uniformly at random.

Next, generate the rand array as follows. First, for each j
where A[j] = pl (or pr), place il (or ir , resp.) in the second
field of rand [j]. Second, for every remaining j ∈ [1, R], place
an integer drawn uniformly at random from [1, α] \ [il , ir]
in the second field of rand [j]. At this moment, every cell
of rand contains in its second field an integer i that is in
[1, il] ∪ [ir , α]. We finalize the cell as (1, i) if i ≥ ir , or (0, i)
otherwise. The above steps can be accomplished in O(R/B)
I/Os.

Lemma 4. The rand array produced by our algorithm
fulfills the requirements of random seeding.

Proof. We denote by I the sequence of indexes in the
rand array produced by our algorithm (namely, for each j ∈
[1, R], if rand [j] = (b, i), then I [j] = i). Fix an arbitrary
sequence V ∈ [1, α]R. We will prove that Pr[I = V] = 1/αR,
which is sufficient to establish the lemma.

Recall that U1 contains γ alive elements. Precisely, the
elements of U1 with indexes in [1, α− γ] have expired, while
those with indexes [α− γ+1, α] are alive. Given a sequence
Σ ∈ [1, α]R, let us define four values: (i) il(Σ) is the largest
integer in Σ that is at most α− γ (if no such integer exists,
il (Σ) = 0), (ii) ir (Σ) is the smallest integer in Σ that is at
least α− γ+1 (if no such integer exists, ir (Σ) = α+1), (iii)
cl (Σ) is the number of times that il(Σ) appears in Σ, and
(iv) cr (Σ) is the number of times that ir (Σ) appears in Σ.
Given integers i1, i2, z1, z2, we denote by X(i1, i2, z1, z2) the
set of all sequences Σ ∈ [1, α]R such that il(Σ) = i1, ir (Σ) =
i2, cl (Σ) = z1, and cr (Σ) = z2.

Our algorithm conceptually decides a random
permutation Π of T as follows: (i) the positions of el
and er are determined as described earlier, and then
(ii) randomly permute the other elements of T over the
remaining positions. Π, in turn, determines a WR sample
set Q together with the array A, as described by our
WoR-to-WR algorithm in Section 2.2. From Q, we can
define a sequence Q′ ∈ [1, α]R where Q′[j] (1 ≤ j ≤ R) is the
index of element Q[j]. Notice that Q′ distributes uniformly
at random from [1, α]R. We can now write Pr[I = V] into
the following:

Pr[I = V]

=
∑

i1,i2,z1,z2

(

Pr[I = V | Q′ ∈ X(i1, i2, z1, z2)] ·

Pr[Q′ ∈ X(i1, i2, z1, z2)]
)

There are two crucial observations. First, if Q′ belongs
to X(i1, i2, z1, z2), then so does I . In other words, Pr[I =
V | Q′ ∈ X(i1, i2, z1, z2)] is positive only if i1 = il(V), i2 =

ir (V), z1 = cl (V), and z2 = cr (V). Second, conditioned
on that Q′ belongs to X(il (V), ir (V), cl (V), cr (V)), the I
returned by our algorithm is drawn uniformly at random
from X(il (V), ir (V), cl (V), cr (V)). It thus follows that

Pr[I = V]

= Pr[I = V | Q′ ∈ X(il(V), ir (V), cl(V), cr (V))] ·

Pr[Q′ ∈ X(il (V), ir (V), cl(V), cr (V))]

=
1

|X(il (V), ir (V), cl (V), cr (V))|
·

|X(il (V), ir (V), cl (V), cr (V))|

αR

= 1/αR.

Next, we show how to perform a Bernoulli trial using only
a single pair (b, i) in the rand array, which will then complete
the proof of Lemma 3 because the array allows us to perform
R such independent trials. In fact, we will explain how to
generate from (b, i) a binary random variable Y that equals
1 with probability β−c2

β+γ−c2
. With Y , a Bernoulli trial can

be supported by casting another coin with head probability
α−c1
β−c2

(note that α−c1
β−c2

≤ 1 under the condition 0 ≤ c1 ≤

c2 ≤ R ≤ α ≤ β/2).

Motivated by [4], we generate Y from (b, i) by the
following procedure. If b = 0, then immediately we set
Y = 1. Otherwise, we toss a coin with head probability

αβ′

(β′+α−i)(β′+α−i+1)
, where β′ = β − c2. We set Y = 0 if the

coin heads, or Y = 1 otherwise.

Lemma 5. Pr[Y = 1] = β−c2
β+γ−c2

.

Proof. We will instead prove Pr[Y = 0] = γ/(β′ + γ).
This is true because

Pr[Y = 0] =
α
∑

j=α−γ+1

Pr[Y = 0 | i = j] ·Pr[i = j]

=
α
∑

j=α−γ+1

αβ′

(β′ + α− j)(β′ + α− j + 1)
·
1

α

=

γ−1
∑

j=0

β′

(β′ + j)(β′ + j + 1)

= β′ ·

γ−1
∑

j=0

(

1

β′ + j
−

1

β′ + j + 1

)

= β′ ·

(

1

β′
−

1

β′ + γ

)

=
γ

β′ + γ
.

5.2 Algorithm for Problem 2
This subsection explains our solution to Problem 2.

Merging WoR Sample sets. We will often need to solve a
subproblem defined as follows. Let P1 and P2 be two disjoint
sets of elements, whose cardinalities are known. Let S1 and
S2 be size-R WoR sample sets of P1 and P2, respectively.
The goal is to obtain a size-R sample set S of P1 ∪ P2.
Assuming that S1 and S2 are stored in arrays, next we
describe an algorithm that achieves this goal with O(R/B)
I/Os.

First, we obtain the number s1 (or s2) of samples to
take from S1 (or S2, resp.). For this purpose, we first
set s1 = s2 = 0, n1 = |P1| and n2 = |P2|. Then,
repeat the following two step R times: Cast a coin with
head probability n1

n1+n2
—if the coin heads, increase s1 and

decrease n1 each by 1; otherwise, increase s2 and decrease
n2 each by 1. After s1 and s2 are ready, we simply take
a size-s1 sample set S′

1 from S1, and a size-s2 sample set
S′
2 from S2 using offline sampling (Section 2.1). Then, we

return S in an array that concatenates S′
1 and S′

2.

Structure. We tackle Problem 2 by dividing a suffix of the
stream into a list of subsequences U1, U2, ..., Um, buf that
satisfy all the following conditions:

P1 : These subsequences are disjoint and consecutive: The
first element of Ui+1 succeeds the last element of Ui

(1 ≤ i ≤ m− 1), and the first element of buf succeeds
the last element of Um. We refer to each of U1, ..., Um

as a bucket.

P2 : The length |buf | of buf can be anywhere between 0 and
2R. The length of a bucket, however, must be 2jR for
some integer j ≥ 0. Moreover, |Ui| ≥ |Ui′ | if i < i′.

P3 : If |buf | < R, then m = 0 (i.e., no bucket exists).

P4 : If |U1| = 2jR for some j ≥ 1, then for each j′ ∈ [0, j],
there is at least one but at most two buckets with
length 2j

′

R.

P5 : U1 must contain at least one alive element.

The above conditions imply m = O(log(n/R)) where n is
the number of alive elements currently.

A bucket U of length 2jR with j ≥ 1 defines a left and
a right sub-bucket whose lengths are both 2j−1R. These
buckets form a partition of U with the left sub-bucket
covering the older elements in U . A bucket of length R
does not define any sub-buckets.

We maintain a structure that stores the following
information.

• For each bucket U , store its length, and the oldest
and newest elements covered. They are the boundary
elements of U . Store the same for each sub-bucket of
U .

• For each bucket U , store 3 independent size-R WoR
sample sets of the elements covered by U . If U
has sub-buckets, for each sub-bucket U ′, store 3
independent size-R WoR sample sets of the elements
covered by U ′. In other words, there are up to 9 WoR
sample sets associated with U and its sub-buckets. All
these sample sets are independent from buf , and from
the WoR sample sets of all other buckets and their
sub-buckets.

• Define a super-bucket U⋆ as the subsequence that
concatenates U2, U3, ..., Um and buf (i.e., excluding
U1). Store 3 independent size-R WoR sample sets of
the elements covered by U⋆. These sample sets are
independent from those of U1 and its sub-buckets.

It is clear from the above description that the space of our
structure is O(R

B
log n

R
).

Producing a Sample Set. We first explain how to obtain
a size-R WoR sample set S from our structure. If m = 0
or |U1| = R, then the current sliding window has O(R)
elements, in which case we can simply run offline WoR
sampling to compute S in O(R/B) I/Os.

Now consider that U1 has length 2jR for some j ≥
1. By Properties P3 and P4, the super-bucket U⋆ must
have length at least R +

∑j−1
k=0 2

kR = 2jR. Denote

by U left
1 and U right

1 the left and right sub-buckets of U1,
respectively. Next, we identify two subsequences V1 and
V2 by distinguishing two cases:

• Case 1: the oldest alive element is in U left
1 . Set

V1 = U left
1 , and V2 to the subsequence formed by

concatenating U right
1 and U⋆. Obtain a WoR sample

set of V2 by merging a WoR sample set of U right
1 with

that of U⋆ in O(R/B) I/Os.

• Case 2: the oldest alive element is in U right
1 . Set V1 =

U right
1 and V2 = U⋆.

In both cases, it is ensured that 2|V1| ≤ |V2|. We then
produce the target S by performing two-bucket sampling on
V1 and V2 in O(R/B) I/Os.

We compute a size-R WR sample set from S by running
our algorithm in Section 2.2 for converting a WoR sample
set to a WR one. There is one subtle issue that deserves
clarification. Recall that our conversion algorithm requires
generating R binary random variables X of the form: X
takes 1 with probability c/n, and 0 otherwise, where c is an
integer in [0, R − 1], and n is the number of alive elements
currently. The subtlety is that we do not know the value
of n. This issue can be resolved by resorting to Lemma 3,
where the values of α, β, and γ satisfy α = |V1| and β = |V2|.
To generate an X, we first perform a Bernoulli trial with
c1 = c2 = 0 to obtain a binary random variable Y . If Y = 0,
we immediately set X = 0. Consider now Y = 1; we toss a
coin with head probability c/α, and set X to 1 if the coin
heads, or to 0 otherwise. It is easy to verify that Y = 1 with
probability c/(β + γ) = c/n.

The above discussion also explains why we chose to
maintain 3 independent WoR sample sets for each bucket:
the two-bucket sampling requires 2 sample sets of V1 (see
Section 5.1), one from V2, while the WoR-to-WR conversion
demands another one from V1.

Maintenance. It remains to explain how to update our
structure upon the arrival of a new element e at time tnow .
If U1 does not exist, we discard the elements in buf that
have expired. Otherwise we first discard all the buckets in
which all the elements have expired, and then, recompute
the WoR sample sets of U⋆ by merging those of the current
U2, U3, ..., Um and buf . If the new U1 has size 2jR, the
cost of merging is O(2jR/B). We amortize this cost on the
elements in the old (just discarded) U1, each of which bears
only O(1/B) I/Os.

Now we update the WoR sample sets of U⋆ with e using
the algorithm of [7] in Section 2.3, which requires O(1/B)
I/Os per element. Next, add e into buf . If |buf | < 2R, our
update algorithm finishes. Otherwise, we remove the first R
elements of buf , and make them into a new bucket of length
R. If at this moment the number of buckets with length R
is at most 2, our update algorithm finishes.

In general, when there are 3 buckets with the same length
2jR for some j ≥ 0, we fix it by combining the oldest
two—denoted as U ′

1 and U ′
2—of those buckets into a new

bucket U with length 2j+1R. Specifically, the WoR sample
set of U is obtained by merging those of U ′

1 and U ′
2, while U

′
1

and U ′
2 now serve as the sub-buckets of U . The sub-buckets

of U ′
1 and U ′

2 can now be discarded. The merging may result
in 3 buckets with length 2j+1R, which is fixed in the same
manner. Standard analysis of the exponential histogram [5]
shows that all the merging increases the amortized cost of
each element by O(1/B).

Finally, if the above merging results in a new U1, we
discard the WoR sample sets of U⋆, and recompute them
from the WoR sample sets of U2, U3, ..., Um, and buf in
O(2jR/B) I/Os, assuming |U1| = 2jR. We charge the cost
on the Ω(2jR/B) elements that were newly added to U1, so
that each of them bears O(1/B) I/Os.

In summary, our maintenance algorithm performs O(1/B)
amortized I/Os per element. We thus have completed the
whole proof of Theorem 2.

5.3 Lower Bounds
Next, we will show that our algorithm in Section 5.2 is

optimal by establishing Theorem 3. As required by the
theorem, we assume that N ≥ cR and R ≥ cM with c
being a sufficiently large constant. Our proof is similar to
the one in Section 4.

Our discussion will focus on a data stream where the
timestamp of the i-th (i ≥ 1) element is ⌊i/R⌋(τ + 1). That
is, the first R elements are associated with timestamp 0, the
nextR with timestamp τ+1, still the nextR with timestamp
2(τ + 1), and so on.

Define an epoch j ≥ 1 to be the sequence of elements with
timestamp (j − 1)(τ + 1) (j = 0, 1, 2, ...). In other words,
each epoch has size R; and the total number of epochs is
O(N/R). Note that a WoR or WR sample set issued at the
end of epoch j must contain elements only in this epoch.

Element Processing Cost. We now prove Statement 1
of Theorem 3. We will argue that any algorithm A must
perform Ω(R/B) expected I/Os in each epoch, and hence,
Ω(N/B) expected I/Os for all epochs.

Consider first WoR sampling. At the end of epoch j
(= 1, 2, ...), A must be keeping all the R elements in this
epoch (because it must return all these elements for a sample
request issued at this moment). Therefore, for R ≥ 3M , A
must have written Ω(R/B) I/Os during the epoch.

For WR sampling, imagine issuing a sample request at
the end of epoch j. By Lemma 3 of [10], when R is large
enough, with at least half probability this request fetches
Ω(R) distinct elements in epoch j. This means that, with
at least half probability, A must have written Ω(R/B) I/Os
during the epoch when c is sufficiently large.

WR Reporting. Next we prove Statement 2 of Theorem 3,
namely, ifA spends o(perm(R)·N

R
) expected I/Os processing

N stream elements, it must incur Ω(perm(R)) I/Os
returning a WR sample set.

Our hard workload includes the aforementioned stream
and a WR sample request at the end of each epoch. We
claim that A must incur Ω(perm(R) · N

R
) expected I/Os to

process the entire workload, which is sufficient to establish
Statement 2 (because there are O(N/R) sample requests).

Let H be the expected number of I/Os needed to process
epoch j (= 1, 2, ...) and the sample request at the end
of epoch j. As mentioned earlier, with at least half
probability, the WR sample set Q returned by A has at
least Ω(R) distinct elements, all of which must be in epoch
j. The sequence of those elements in Q is a random
Ω(R)-permutation of the elements in epoch j. When c is
sufficiently large, by Lemma 1 we know H = Ω(perm(R)).
It thus follows that Ω(perm(R)·N

R
) expected I/Os are needed

to process the entire workload.

ACKNOWLEDGEMENTS

This work was supported in part by Grants GRF 4168/13
and GRF 142072/14 from HKRGC.

6. REFERENCES

[1] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems. CACM,
31(9):1116–1127, 1988.

[2] L. Arge. The buffer tree: A technique for designing
batched external data structures. Algorithmica,
37(1):1–24, 2003.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling
from a moving window over streaming data. In SODA,
pages 633–634, 2002.

[4] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal
sampling from sliding windows. JCSS, 78(1):260–272,
2012.

[5] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows.
SIAM J. of Comp., 31(6):1794–1813, 2002.

[6] C. Fan, M. Muller, and I. Rezucha. Development of
sampling plans by using sequential (item-by-item)
selection techniques and digital computers. Am. Stat.
Assn. J., 57:387–402, 1962.

[7] R. Gemulla and W. Lehner. Deferred maintenance of
disk-based random samples. In EDBT, pages 423–441,
2006.

[8] R. Gemulla and W. Lehner. Sampling time-based
sliding windows in bounded space. In SIGMOD, pages
379–392, 2008.

[9] J. Gustedt. Efficient sampling of random permutations.
Journal of Discrete Algorithms, 6(1):125–139, 2008.

[10] X. Hu, M. Qiao, and Y. Tao. Independent range
sampling. In PODS, pages 246–255, 2014.

[11] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality
between prefetching and queued writing with parallel
disks. SIAM J. of Comp., 34(6):1443–1463, 2005.

[12] C. Jermaine, A. Pol, and S. Arumugam. Online
maintenance of very large random samples. In
SIGMOD, pages 299–310, 2004.

[13] T. Jones. A note on sampling a tape-file. CACM,
5(6):343, 1962.

[14] Y. Matias, E. Segal, and J. S. Vitter. Efficient bundle
sorting. SIAM J. of Comp., 36(2):394–410, 2006.

[15] S. Nath and P. B. Gibbons. Online maintenance of
very large random samples on flash storage. PVLDB,
1(1):970–983, 2008.

[16] S. Nath and P. B. Gibbons. Online maintenance of
very large random samples on flash storage. VLDB J.,
19(1):67–90, 2010.

[17] A. Pavan, K. Tangwongsan, S. Tirthapura, and K. Wu.
Counting and sampling triangles from a graph stream.
PVLDB, 6(14):1870–1881, 2013.

[18] A. Pol, C. M. Jermaine, and S. Arumugam.
Maintaining very large random samples using the
geometric file. VLDB J., 17(5):997–1018, 2008.

[19] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985.

[20] K. Yi. Dynamic indexability and the optimality of
B-trees. JACM, 59(4), 2012.

Correctness of the Algorithm in Section 2.1

We will prove the algorithm’s correctness by induction on
R. The case of R = 1 is obvious. Next, assuming that
the algorithm is correct for R = k, we will prove the same
for R = k + 1. Specifically, given an arbitrary sequence
V ∈ P k+1, we want to prove that Pr[Q = V] = 1/nk+1 (Q
is the output of our algorithm).

Denote by Q≤k (or A≤k) the prefix of Q (or A) including
its first k elements. From our inductive assumption, we know
that Pr[Q≤k = V≤k] = 1/nk (observe that Q≤k is produced
in the same way as running our algorithm for R = k). Next,
we will show thatPr[Q[k+1] = V [k+1] | Q≤k = V≤k] = 1/n,
which will then complete the proof.

Let J⋆ be the value of J right before the generation of
A[k+1]. Define T≤J⋆ as the length-J⋆ prefix of T (recall that
T is an array storing a random permutation of its elements).
We now distinguishes two cases:

Case 1: V [k + 1] appears in V≤k. In this case, Q[k + 1] =
V [k+1] if and only if A[k+1] equals the position of V [k+1]
in T≤J⋆ , which happens with probability 1/n.

Case 2: V [k+1] does not appear in V≤k. In this case, Q[k+
1] = V [k + 1] if and only if (i) A[k + 1] = J⋆ + 1, which

happens with probability n−J⋆

n
, and (ii) V [k+1] = T [J⋆+1],

which happens with probability 1
n−J⋆

. The two independent

conditions happen simultaneously with probability 1/n.

