
On Density-based Local Community Search
YIZHOU DAI, The University of Auckland, New Zealand

MIAO QIAO, The University of Auckland, New Zealand

RONG-HUA LI, Beijing Institute of Technology, China

Given a graph𝐺 and a set 𝑅 of seed nodes, local community search (LCS) reports a community that is local to 𝑅.

Specifically, for an induced subgraph 𝑆 of𝐺 , the objective function 𝑓 (𝑆) not only considers classic community

measurement of 𝑆 such as conductance and density, but also encodes set inclusion criteria of 𝑅; LCS optimizes

𝑓 (𝑆) over all the induced subgraphs of𝐺 . Ideally, the optimization algorithm for 𝑓 (𝑆) should be strongly local;

that is, its complexity depends on 𝑅 as opposed to the entire graph 𝐺 . This paper formulates a general form

of objective functions for LCS using configurations — one configuration corresponds to one LCS objective
function. For the set C of configurations corresponding to density-based LCS, this paper i) finds C𝐿 ⊆ C
in a constructive classification of C: a configuration in C has a strongly local algorithm for optimizing its

corresponding objective function if and only if it is in C𝐿 , and ii) provides a linear programming based general

solution for density-based LCS — the solution is strongly local and ready to be deployed to practical scenarios.

CCS Concepts: • Information systems→ Clustering; •Mathematics of computing→Graph algorithms; •

Theory of computation→ Linear programming; • Computing methodologies→ Optimization algorithms.

Additional Key Words and Phrases: dense subgraph search, local community detection, weight configuration,

strongly local algorithms, general framework

ACM Reference Format:

Yizhou Dai, Miao Qiao, and Rong-Hua Li. 2024. On Density-based Local Community Search. Proc. ACM Manag.
Data 2, 2 (PODS), Article 88 (May 2024), 25 pages. https://doi.org/10.1145/3651589

1 INTRODUCTION
Graph database is a NoSQL database that models the relations among real-world entities with

nodes and edges. To discover the organizations of graph nodes, graph databases (e.g., Neo4j) usually

provide libraries for detecting communities for graph analytical tasks such as link predictions

and target recommendations. With the growing size of the underlying graphs, such as social

networks, finding scalable search algorithms for quality communities has been studied for two

decades (see [5] as an entrance). A line of community search [2, 6, 7, 9, 13, 14] falls into the scope of

query optimization. Given a graph𝐺 (𝑉 , 𝐸) and a set of nodes 𝑅 ⊆ 𝑉 , find a local community which

is an induced subgraph 𝑆 ⊆ 𝑉 that is close to 𝑅 and optimizes an objective function 𝑓 (𝑆). The edge
set of 𝑆 is 𝐸 (𝑆) = 𝐸 ∩ (𝑆 × 𝑆) and 𝑓 (𝑆) usually evaluates 𝑆 based on a community measurement

such as conductance and density. We refer to the above problem as local community search (LCS)

Authors’ addresses: Yizhou Dai, ydai992@aucklanduni.ac.nz, The University of Auckland, Auckland, New Zealand; Miao

Qiao, miao.qiao@auckland.ac.nz, The University of Auckland, Auckland, New Zealand; Rong-Hua Li, lironghuabit@126.com,

Beijing Institute of Technology, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/5-ART88

https://doi.org/10.1145/3651589

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0002-3662-3520
HTTPS://ORCID.ORG/0000-0001-8374-140X
HTTPS://ORCID.ORG/0000-0001-8658-6599
https://doi.org/10.1145/3651589
https://orcid.org/0000-0002-3662-3520
https://orcid.org/0000-0001-8374-140X
https://orcid.org/0000-0001-8374-140X
https://orcid.org/0000-0001-8658-6599
https://doi.org/10.1145/3651589


88:2 Yizhou Dai, Miao Qiao, & Rong-Hua Li

with seed set 𝑅1
. The local community search in our context is different from that in [3, 8, 10] which

does not involve a seed set: their “locality” requires that the targeted subgraph 𝑆 ⊆ 𝑉 should be no

worse than its subgraphs and better than its supergraphs under a community metric [8, 10].

Local community search requires that the targeted 𝑆 should be close to 𝑅. Such a local constraint

can be hard-coded [11, 12], i.e, to enforce 𝑅 ⊆ 𝑆 , or soft-coded, i.e., to encode the set inclusion criteria

of 𝑅 into the objective function 𝑓 (𝑆). This paper focuses on the latter case: the resulting subgraph

depends solely on the formulation of 𝑓 (𝑆) while the usability of the corresponding LCS also depends
on the availability of an efficient algorithm for optimizing 𝑓 (𝑆). To describe an ideal property of

the search algorithm of LCS, a group of LCS adopts the notion of “strong locality” [2, 9, 13–15]:

A LCS algorithm is strongly local if its complexity depends only on the seed set and

not the input graph.

With a specific 𝑓 (𝑆) determined by the choice of base community measure (e.g., density and

conductance) and the encoding of the set inclusion criteria, a natural question is: is there a strongly
local algorithm for its optimization? Further, is there a strongly local algorithm for a class of 𝑓 (𝑆)?

To this end, we formulate a general LCS objective function 𝑓 (𝑆) by summarizing the set inclusion

criteria to 𝑅 with a configuration Ω of 10 real numbers. Ω describes how 𝑓 (𝑆) favors an edge 𝑒

based on 𝑒’s 10 possible relations to sets 𝑅 and 𝑆 . This general form has existing soft-coded LCS as

special cases. We focus on C, a set of configurations that correspond to density-based LCS whose

objective function 𝑓 (𝑆) has density 𝜌 (𝑆) = |𝐸 (𝑆 ) |
|𝑆 | as its base community measure. We provide a

classification C𝐿 ⊆ C of C based on whether there exists, for their corresponding objective function

𝑓 (𝑆), a strongly local algorithm. Moreover, for a large portion of configurations in C𝐿 , we provide
a linear programming based general solution that is strongly local and practically efficient.

This section is organized as follows. Section 1.1 first explains how existing objective functions

encode set inclusion criteria and then introduces our general form of objective function 𝑓 (𝑆) for
density-based LCS. Section 1.2 shows existing strongly local computation for LCS. Section 1.3

introduces our results on density-based LCS. Section 1.4 demonstrates how to use our results in

real-world applications. Table 1 overviews existing local community search.

1.1 Encode Seed Set Inclusion in Optimization
To ensure that the resulting graph is close to 𝑅, existing encoding of 𝑅 in the objective function

𝑓 (𝑆) [4, 9, 13–15] for a set 𝑆 ⊆ 𝑉 is usually done by penalizing nodes in (or the edges on) 𝑆\𝑅 and𝑅\𝑆 .
In other words, 𝑓 (𝑆) discourages misaligning 𝑅 and 𝑆 . Apart from distance-based penalties [4, 11],

a majority of node penalties are degree-based, i.e., for a node 𝑣 ∈ 𝑆 \ 𝑅, the penalty charged on 𝑣 is

proportional to its degree deg(𝑣). Thus, the encoding of 𝑅 in the objective function, as shown in

Table 1, is usually embodied in a term vol(𝑆 \ 𝑅), the total degree of nodes in 𝑆 \ 𝑅, charged to the

numerator |𝐸 (𝑆) | of density 𝜌 (𝑆) = |𝐸 (𝑆 ) ||𝑆 | or the denominator vol(𝑆) of conductance2 Φ(𝑆) = 𝜕𝑆
vol(𝑆 )

(cut 𝜕𝑆 of 𝑆 is the number of edges between 𝑆 and 𝑆), which we call the key term of a community

metric. With penalties, the key term of density-based LCS [2] becomes 2|𝐸 (𝑆) | − vol(𝑆 \ 𝑅), and
the key term of conductance-based LCS [9, 13–15] becomes vol(𝑆) − (1 + 𝜖) · vol(𝑆 \ 𝑅) where 𝜖 is

a parameter
3
. We make the following observation on these penalized key terms.

1
This problem has various names. It has been called “local graph partitioning” [1], “local community search” [7], “community

search” [11], “anchored subgraph search” [2], “cut improvement” [9, 14], and “seed set expansion” [6]; set 𝑅 has been called

“seed set” [9, 14], “query nodes” [11], and anchored node set [2].

2
Because vol(𝑆 ) + vol(𝑆 ) = vol(𝑉 ) , we assume that 𝑆 has vol(𝑆 ) ≤ vol(𝑉 )

2
.

3
One work [15] takes |𝑅 | user-defined parameters, {𝑝𝑟 , 𝑟 ∈ 𝑅}, to further penalize each node 𝑟 ∈ 𝑅 \ 𝑆 with 𝑝𝑟 deg(𝑟 ) .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:3

Ref. Parameters

Hard

Coded

Community

Metric

Opt.

Method

Objective

Function

Strongly

Local

Flow

Based

Edge

Weighted

[12] 𝛼 Y Quasi-Clique max 𝑓𝛼 (𝑆 ) = |𝐸 (𝑆 ) | − 𝛼
( |𝑆 |
2

)
N N Y

[11] 𝑑 > 0 Y Min-Degree max

min𝑣∈𝑆 deg(𝑣) ,
s.t. ∀𝑣 ∈ 𝑆, ∀𝑟 ∈ 𝑅,𝑑𝑖𝑠𝑡 (𝑣, 𝑟 ) ≤ 𝑑

N N N

[4] 𝛼 N Density max

|𝐸 (𝑆 ) |−𝛼 ∑
𝑣∈𝑆 min𝑟 ∈𝑅 𝑑 (𝑣,𝑟 )
|𝑆 | N N N

[9]

𝜖 =
vol(𝑅)
vol(𝑅)

,

𝐶 ∈ [𝜖/3, 1]
N Conductance min

𝜕𝑆
vol(𝑅∩𝑆 )−𝜖vol(𝑆\𝑅) s.t.

vol(𝑆∩𝑅)
vol(𝑆 ) ≥ 𝐶 Y Y Y

[13, 14] 𝜖 >
vol(𝑅)
vol(𝑅)

N Conductance min
𝜕𝑆

vol(𝑆 )−(1+𝜖 )vol(𝑆\𝑅) Y Y Y

[15]

𝜖 >
vol(𝑅)
vol(𝑅)

,

𝑝𝑟 ≥ 0, ∀𝑟 ∈ 𝑅
N Conductance min

𝜕𝑆
vol(𝑆 )−(1+𝜖 )vol(𝑆\𝑅)−∑𝑟 ∈𝑅\𝑆 𝑝𝑟 deg(𝑟 ) Y Y Y

[2] - N Density max
2|𝐸 (𝑆 ) |−vol(𝑆\𝑅)

|𝑆 | Y Y Y

Ours Ω (See Def. 1) N Density max max𝑆⊆𝑉
𝑔Ω,𝑅 (𝑆 )
|𝑆 | (See Def. 3) See Fig. 5 N Y

Table 1. Overview: Local Community Search with Seed Set 𝑅 on Graph 𝐺

𝑉2

𝑉4

𝑉1 𝑉3

𝑆 𝑅

Fig. 1. Partition 𝑉

𝑉1 𝑉3

𝑉2 𝑉4

2

−2𝜖

1

1 − 𝜖 −𝜖
1

−𝜖

Fig. 2. CD

𝑉1 𝑉3

𝑉2 𝑉4

2

1

-1

-1

Fig. 3. ADS

Observation 1. Given a graph𝐺 (𝑉 , 𝐸), seed set 𝑅, for a set 𝑆 ⊆ 𝑉 , both key terms vol(𝑆) − (1+𝜖) ·
vol(𝑆 \𝑅) [9, 13–15] and 2|𝐸 (𝑆) |−vol(𝑆 \𝑅) [2] are simply weighted aggregations over edges on 𝑆 and 𝑅.
Specifically, partition set𝑉 to 4 sets based on their relations to 𝑆 and 𝑅:𝑉1 = 𝑆∩𝑅,𝑉2 = 𝑆 \𝑅,𝑉3 = 𝑅 \𝑆
and𝑉4 = 𝑅 ∪ 𝑆 (Figure 1). The edges on 𝑆 and 𝑅 can be accordingly partitioned into 4+

(
4

2

)
= 10 groups,

e.g, one group could be 𝐸2,2 = (𝑉2 ×𝑉2) ∩ 𝐸 and another could be 𝐸2,3 = (𝑉2 ×𝑉3) ∩ 𝐸. Assign each
group of edges a weight, a real number in R. The 10 real numbers form a configuration Ω. Figure 2
shows the non-zero weights of such a configuration Ω: for 𝑒 ∈ 𝐸2,2 ⊆ 𝑉2 ×𝑉2, its weight, denoted as
𝑤Ω,𝑅,𝑆 (𝑒), has 𝑤Ω,𝑅,𝑆 (𝑒) = −2𝜖 ; for an edge 𝑒 ∈ 𝐸2,3 ⊆ 𝑉2 ×𝑉3, its weight 𝑤Ω,𝑅,𝑆 (𝑒) = −𝜖 . It can be
verified that vol(𝑆) − (1 + 𝜖) · vol(𝑆 \ 𝑅) = vol(𝑉1) − 𝜖vol(𝑉2) = 2|𝐸1,1 | − 2𝜖 |𝐸2,2 | + (1 − 𝜖) |𝐸1,2 | +
|𝐸1,3 | + |𝐸1,4 | − 𝜖 |𝐸2,3 | − 𝜖 |𝐸2,4 | =

∑
𝑒∈𝐸 𝑤Ω,𝑅,𝑆 (𝑒). Similarly, when the configuration follows Figure 3,

2|𝐸 (𝑆) | − vol(𝑆 \ 𝑅) = ∑
𝑒∈𝐸 𝑤Ω,𝑅,𝑆 (𝑒). The key terms then have a uniform expression

∑
𝑒∈𝐸 𝑤Ω,𝑅,𝑆 (𝑒).

Configurations in Observation 1 encode local community search preferences in 10 real numbers

and a uniform expression. We define the weight configuration below to formalize the encoding.

Definition 1 (Weight Configuration). Let I4 = {1, 2, 3, 4}. Let the pair setI = {(𝑖, 𝑗) |𝑖, 𝑗 ∈ I4}
be a set of 10 unordered pairs on I4. A weight configuration Ω is a mapping from I ↦→ R, i.e., for
any pair 𝑝 (𝑖, 𝑗) ∈ I, Ω(𝑝) ∈ R. When Ω is clear in the context, denote Ω(𝑝 (𝑖, 𝑗)) as 𝜔𝑖 𝑗 for simplicity.

The weight configuration, consisting of 10 real numbers, is independent of the underlying graph

𝐺 . Given a graph𝐺 and seed set 𝑅, to derive the objective function 𝑓 (𝑆) for a set 𝑆 , we conceptually
partition the nodes and edges based on 𝑅 and 𝑆 , then apply the weight configuration for aggregation.

Definition 2 (Node and Edge Partitioning). Given a graph 𝐺 (𝑉 , 𝐸), a seed set 𝑅 and a set
𝑆 ⊆ 𝑉 , partition the nodes in 𝑉 in 4 disjoint sets: 𝑉1 = 𝑆 ∩ 𝑅, 𝑉2 = 𝑆 \ 𝑅, 𝑉3 = 𝑅 \ 𝑆 and 𝑉4 = 𝑅 ∪ 𝑆 .
Note that 𝑆 = 𝑉1 ∪ 𝑉2, 𝑅 = 𝑉1 ∪ 𝑉3. Denote by V(𝑆, 𝑅 |𝐺) = {𝑉1,𝑉2,𝑉3,𝑉4} the above partitioning
of 𝑉 . For each pair 𝑝 (𝑖, 𝑗) ∈ I, define edge set 𝐸𝑝 = (𝑉𝑖 × 𝑉𝑗 ) ∩ 𝐸. Denote the partitioning of 𝐸 as
E(𝑆, 𝑅 |𝐺) = {𝐸𝑝 |𝑝 ∈ I}. When the graph 𝐺 is clear in the context, denoteV(𝑆, 𝑅 |𝐺) asV(𝑆, 𝑅) and
E(𝑆, 𝑅 |𝐺) as E(𝑆, 𝑅). For simplicity, for 𝑝 (𝑖, 𝑗) ∈ I, 𝐸𝑝 (𝑖, 𝑗 ) is denoted as 𝐸𝑝 or 𝐸𝑖 𝑗 equivalently.

With the conceptual edge partitioning above, define the key term under a weight configuration.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:4 Yizhou Dai, Miao Qiao, & Rong-Hua Li

Definition 3 (Key Term under Weight Configuration). Given graph 𝐺 (𝑉 , 𝐸) and weight
configuration Ω, consider seed set 𝑅 and an arbitrary set 𝑆 ⊆ 𝑉 . For an edge 𝑒 ∈ 𝐸, as E(𝑆, 𝑅 |𝐺) is a
partitioning of 𝐸, there must be exactly one pair 𝑝 ∈ I such that 𝑒 ∈ 𝐸𝑝 where 𝐸𝑝 ∈ E(𝑆, 𝑅 |𝐺), we
then define the weight of 𝑒 as𝑤Ω,𝑅,𝑆 (𝑒 |𝐺) = Ω(𝑝). The key term 𝑔Ω,𝑅 (𝑆 |𝐺) =

∑
𝑒∈𝐸 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺) =∑

𝑝∈I,𝐸𝑝 ∈E (𝑆,𝑅 |𝐺 ) Ω(𝑝) |𝐸𝑝 |.When𝐺 is clear, denote𝑤Ω,𝑅,𝑆 (𝑒 |𝐺) as𝑤Ω,𝑅,𝑆 (𝑒) and𝑔Ω,𝑅 (𝑆 |𝐺) as𝑔Ω,𝑅 (𝑆).

With the key term 𝑔Ω,𝑅 (𝑆) determined by the weight configuration Ω, the objective function
of LCS plugs the key term in a community metric: the local density under Ω in 𝐺 , denoted as

𝜌Ω,𝑅 (𝑆), has 𝜌Ω,𝑅 (𝑆) = 𝑔Ω,𝑅 (𝑆 )
|𝑆 | and the local conductance under Ω is ΦΩ,𝑅 (𝑆) = 𝜕𝑆

𝑔Ω,𝑅 (𝑆 ) . The weight
configuration encodes the alignment between the seed set and a desirable community, thus allowing an
interactive and exploratory LCS if an efficient computation is available.

1.2 Strongly Local Computation
Any configuration can define an objective function of an LCS; however, it is not easy to design an

efficient optimization algorithm. To better describe a “good” algorithm of an LCS, Orecchia and
Zhu [9] used the word “local” and Veldt et al. [14] used the word “strongly local” to indicate a

desirable property: an LCS algorithm is strongly local if its complexity is only dependent on the

seed set and not the entire input graph. Usually, the complexity of existing strongly local algorithms

is a function of the volume vol(𝑅) of 𝑅. Finding a strongly local algorithm is not trivial.

Table 1 shows existing LCSwith strongly local algorithms. Apart from one LCS [2] that is density-
based, all others [9, 13–15] are conductance-based. Moreover, all existing strongly local algorithms

are based on network flow under the same expansion framework (Algorithm 1). Specifically, let

A be a network-flow-based algorithm reporting a local community in time polynomial to the

graph size, called the global algorithm. The expansion framework starts with a core set 𝐶0 � 𝑅,

iteratively expands the core set 𝐶𝑖 and the corresponding augment graph [14] 𝐿𝑖 (𝑉𝑖 , 𝐸𝑖 ) until
𝐶𝑖 can not be further expanded. The node set 𝑉𝑖 contains nodes in 𝐶𝑖 and their neighbors, i.e.,

𝑉𝑖 = N+ (𝐶𝑖 ) � {𝑢 | (𝑢, 𝑣) ∈ 𝐸, 𝑣 ∈ 𝐶𝑖 } ∪𝐶𝑖 ; the edge set 𝐸𝑖 includes all the edges with at least one

node in 𝐶𝑖 , i.e., 𝐸𝑖 = 𝐸+ (𝐶𝑖 ) � {(𝑢, 𝑣) ∈ 𝐸 |𝑣 ∈ 𝐶𝑖 }. Each iteration performs A on the augment

graph 𝐿𝑖 to get the LCS 𝑆𝑖 which expands 𝐶𝑖+1 � 𝐶𝑖 ∪ 𝑆𝑖 . It terminates when 𝐶𝑖 stops expanding.

Algorithm 1: ExpansionFramework
Input: A graph 𝐺 = (𝑉 , 𝐸), seed node set 𝑅 ⊆ 𝑉 ,

weight configuration Ω, an algorithm A that

reports a local community on a given graph.

Output: The local community 𝑆∗ on 𝐺
1 𝑖 ← 0; 𝑆0 ← ∅; 𝐶0 ← 𝑅;

2 while true do

3 𝑉𝑖 ← N+ (𝐶𝑖 ); 𝐸𝑖 ← 𝐸+ (𝐶𝑖 ); 𝐿𝑖 ← graph (𝑉𝑖 , 𝐸𝑖 );
4 𝑆𝑖 ← local community of 𝑅 on 𝐿𝑖 by calling A;

5 if 𝑆𝑖 ⊈ 𝐶𝑖 then 𝐶𝑖+1 ← 𝐶𝑖 ∪ 𝑆𝑖 ; 𝑖 ← 𝑖 + 1 else
break;

6 return 𝑆∗ ← 𝑆𝑖 ;

𝑉1 𝑉3

𝑉2 𝑉4

2 0

0

0

≤ 0

≤ 2

≥ 0

≤ 2

≥ 0

≤ 0

≤ 0

≤ 0

Constraint Graph

C1 𝜔11 = 2,

C2 𝜔𝑖 𝑗 = 0 if min{𝑖, 𝑗} > 2,

C3 𝜔𝑖 𝑗 ≥ 0 if 𝑖, 𝑗 ≤ 2,

C4 𝜔𝑖 𝑗 ≤ 0 if max{𝑖, 𝑗} > 2,

C5 𝜔𝑖 𝑗 ≥ 𝜔𝑖′ 𝑗 ′ if 𝑖 ≤ 𝑖′

and 𝑗 ≤ 𝑗 ′.

Fig. 4. Density-based Weight Con-
figurations C (Definition 4)

To prove that both the size of the eventual augment graph and the total number of iterations

are dependent only on vol(𝑅), properties of the flow network tailored specifically for the objective

function are used, which we feel are hard to extend to other objective functions.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:5

1.3 Density-based LCS and Our Results
Any weight configuration can define an objective function of LCS; however, not all configurations
are aligned with the notion of density. Recall that the key term of the density 𝜌 (𝑆) of a set 𝑆 ⊆ 𝑉
is |𝐸 (𝑆) |; we define density-based configurations C as follows. Note that since 𝑆 = 𝑉1 ∪ 𝑉2 in
Definition 2, an edge in 𝐸 (𝑆) has both end nodes in𝑉1 or𝑉2, its weight𝜔𝑖 𝑗 should havemax{𝑖, 𝑗} ≤ 2;

similarly, an edge in 𝐸 (𝑆) should have its weight 𝜔𝑖 𝑗 with min{𝑖, 𝑗} > 2.

Definition 4 (Density-basedWeight Configurations C). Aweight configuration Ω is density-
based if it satisfies conditions C1-C5. Denote by C the set of all density-based weight configurations.
The constraint graph (Figure 4) reflects C1-C4 and partially C5.
C1 𝜔11 = 2 is set because i) scaling Ω does not change the result of LCS, and ii) the local density of 𝑆
must reward the edges with both ends in 𝑉1 = 𝑅 ∩ 𝑆 . This setup is consistent to [2].
C2 is set because the density |𝐸 (𝑆 ) ||𝑆 | focuses on the edges on 𝑆 = 𝑉1 ∪𝑉2, i.e., if an edges has both end

nodes in 𝑆 , its weight should be 0.
C3 is set because the density should not penalize an edge in 𝐸 (𝑆).
C4 is set because the density should not reward a cut edge in 𝑆 × 𝑆 .
C5 is set because the objective function on the edges 𝑒 on 𝑆 should reward more if 𝑒 is more aligned to
𝑅. Specifically, nodes in 𝑉1 = 𝑆 ∩ 𝑅 are preferred over those in 𝑉2 = 𝑆 \ 𝑅 and 𝑉3 = 𝑅 \ 𝑆 , while the
nodes in 𝑉2,𝑉3 are preferred over those in 𝑉4 = 𝑆 ∪ 𝑅 as 𝑉4 is not related to either 𝑆 or 𝑅. For example,
the weight 𝜔11 of an edge in 𝐸 (𝑉1) should be no less than the weight 𝜔12 of an edge between𝑉1 and𝑉2.

For configurations Ω ∈ C tailored to density-based LCS, recall the key term𝑔Ω,𝑅 (𝑆) (Definition 3).

Problem 1 (Density-based LCS (DenLCS)). Given a graph𝐺 (𝑉 , 𝐸), a seed set 𝑅, a density-based
weight configuration Ω ∈ C, for a set 𝑆 ⊆ 𝑉 , let 𝑔Ω,𝑅 (𝑆 |𝐺) be the key term of 𝑆 under Ω and 𝑅 defined
in Definition 3, denote the local density of 𝑆 under Ω and 𝑅 as 𝜌Ω,𝑅 (𝑆 |𝐺) = 𝑔Ω,𝑅 (𝑆 |𝐺 )

|𝑆 | . The maximum
local density under Ω and 𝑅 is [𝜌∗Ω,𝑅 |𝐺] = max𝑆⊆𝑉 𝜌Ω,𝑅 (𝑆 |𝐺). A subgraph 𝑆∗ ⊆ 𝑉 is a local densest
subgraph (LDS) under Ω and 𝑅 on𝐺 if 𝜌Ω,𝑅 (𝑆∗ |𝐺) = [𝜌∗Ω,𝑅 |𝐺]. When𝐺 is clear in the context, denote
by 𝜌Ω,𝑅 (𝑆) the local density of 𝑆 and by 𝜌∗Ω,𝑅 the maximum local density.

Example 1. The traditional densest subgraph search is a special case of the general density-based
LCS. Consider the configuration Ω with the following non-zero values 𝜔11 = 𝜔12 = 𝜔22 = 2. For any
reference node set 𝑅, 𝜌∗Ω,𝑅 = max𝑆⊆𝑉 𝜌Ω,𝑅 (𝑆). Furthermore, anchored densest subgraph search [2] is a
special density-based LCS under configuration Ω whose non-zero values are set in Figure 3.

Similar to [2], we make an assumption on the input seed set 𝑅 to ensure that 𝜌∗Ω,𝑅 is not zero

under all possible configurations, i.e., we assume that the seed set 𝑅 has at least one edge |𝐸 (𝑅) | ≥ 1.

Definition 5 (Configuration Classification). A configuration Ω ∈ C is global if there is no
possible strongly local solution for the density-based LCS under Ω; otherwise, Ω is strongly local.

C

C𝐿 . Strongly Local. Theorems 4-5

C𝐿𝑃 : LP-based Strongly Local Algorithm, Theorem 7

𝜔23 = 0

𝜔14 = 0

Global, Theorem 3

𝜔14 < 0

𝜔22 = 0

Global, Theorem 2

𝜔22 > 0

Fig. 5. The Classification of Configurations in C (Theorems 1&7)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:6 Yizhou Dai, Miao Qiao, & Rong-Hua Li

The main challenges of density-based LCS are to identify what configurations are strongly local,

and then to find a general strongly local solution for strongly local configurations. A practical

solution for density-based LCS in real-world scenarios is highly desirable.

Our results. This paper classifies the configurations constructively: Figure 5 serves as a catalog

of our main results. Theorem 1 is the general classification of configurations in C. Theorems 2-3

show that when 𝜔22 > 0 or 𝜔14 < 0, the configuration is global. Theorems 4-5 show that for all

other configurations C𝐿 ⊆ C, we have a general solution for density-based LCS that is correct and

strongly local. They jointly prove Theorem 1. Theorem 7 shows that we have a Linear Programming

(LP)-based strongly local solution for C𝐿𝑃 , the configurations in C𝐿 whose 𝜔23 = 0. Theorems 1&7

constitute the main results of our paper. Section 1.4 applies our results to real-world scenarios.

1.4 Application
With our results shown in Figure 5, to get a density-based local community, one only needs to tune 3

out of 10 parameters of the configurations in C𝐿 . In other words, becauseC2 andC5 (𝜔14 ≤ 𝜔13 ≤ 0),

all configurations in C𝐿 have 𝜔11 = 2 and 𝜔14 = 𝜔13 = 𝜔22 = 𝜔33 = 𝜔34 = 𝜔44 = 0. Therefore, to

use our LP-based strongly local algorithm on C𝐿𝑃 , only 2 parameters of the configurations are free

for tuning, 𝜔12 ∈ [0, 2] and 𝜔24 ∈ (−∞, 0]. Denote by Ω𝑥,𝑦 a configuration in C𝐿𝑃 whose weights

𝜔12 = 𝑥 and 𝜔24 = 𝑦. We list below 4 interesting parameter settings that make sense. Denote, for

any sets 𝑋 ⊆ 𝑌 ⊆ 𝑉 , by vol𝑌 (𝑋 ) the volume of 𝑋 on the induced subgraph of 𝑌 .

• Ω1,0 =
vol𝑆 (𝑆∩𝑅)
|𝑆 | . The key term is the volume of 𝑆 ∩ 𝑅 on the induced subgraph of 𝑆 .

• Ω2,0 =
2 | {𝑒∈𝐸 (𝑆 ) |𝑒∩𝑅≠∅} |

|𝑆 | . The key term counts the number of edges in 𝐸 (𝑆) incident on 𝑅.

• Ω1,−1 =
vol𝑆 (𝑆∩𝑅)− |𝐸∩(𝑆∩𝑅)×(𝑆∩𝑅) |

|𝑆 | . The key term is the volume of 𝑆 ∩ 𝑅 on the induced

subgraph of 𝑆 , penalizing the number of cut edges of 𝑆 in the induced subgraph of 𝑅.

• Ω2,−1 =
2 |𝐸 (𝑆 ) |−vol

𝑅
(𝑆\𝑅)

|𝑆 | . The key term is |2𝐸 (𝑆) |, penalizing each node 𝑣 in 𝑆 \ 𝑅 with its

number of edges to 𝑅.

The above 4 parameter settings shape different key terms and reasonably adapt the traditional

density of 𝑆 based on 𝑅. In practice, the rules of thumb in tuning parameters 𝑥 and 𝑦 are:

(1) Increase 𝑥 to expand the search area — more nodes will be explored during the optimization;

(2) Decrease 𝑦 to penalize more on high-degree nodes that are outside of 𝑅 (consistent to ADS).

A case study in Appendix A.1 shows how an interactive search facilitates the above rules of thumb.

2 GLOBAL OR STRONGLY LOCAL?
Definition 6. Let C𝐿 = {Ω ∈ C|Ω(2, 2) = 0 and Ω(1, 4) = 0} be a subset of configurations in C.

Theorem 1. For any configuration Ω ∈ C, Ω is strongly local if and only if Ω ∈ C𝐿 .

The rest of this section serves as the proof of Theorem 1. Specifically, Theorems 2-3 in Section 2.1

prove that when the weight configuration Ω ∈ C has either 𝜔2,2 > 0 or 𝜔1,4 < 0, i.e., Ω is not in C𝐿 ,
a local algorithms does not exist, and thus Ω is global. Theorems 4-5 in Section 2.2 jointly prove

that there is a strongly local algorithm for density-based LCS under any configuration Ω ∈ 𝐶𝐿 .

For the simplicity of the discussion, we first define notations. Given a graph𝐺 (𝑉 , 𝐸), for a node 𝑣 ,
denote by deg(𝑣) the degree of 𝑣 in𝐺 . For a subset 𝑆 of nodes in𝑉 , denote by vol(𝑆) = ∑

𝑣∈𝑆 deg(𝑣)
the volume of 𝑆 . The set of neighbors of 𝑆 including 𝑆 is N+ (𝑆) = {𝑢 |∀𝑣 ∈ 𝑆,∀(𝑣,𝑢) ∈ 𝐸} ∪ 𝑆 . The
net neighbor of 𝑆 is N− (𝑆) = N+ (𝑆) \ 𝑆 . The set of incident edges of 𝑆 is 𝐸+ (𝑆) = (𝑆 ×𝑉 ) ∩ 𝐸. For
two graphs𝐺1 (𝑉1, 𝐸1) and𝐺2 (𝑉2, 𝐸2), we say𝐺1 is a subgraph of𝐺2, denoted as𝐺1 ⊆ 𝐺2, if𝑉1 ⊆ 𝑉2
and 𝐸1 ⊆ 𝐸2. The following discussions consider graph 𝐺 (𝑉 , 𝐸) and seed set 𝑅.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:7

2.1 Global Configurations
We first introduce two equivalences that shall be frequently used in the following discussions.

Lemma 1. For ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ R+ with 𝑎 ≥ 𝑐 > 0, 𝑏 > 𝑑 > 0, for ∀𝑘 ∈ {1,−1}, Equivalence (1) holds;
For ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ R+ with 𝑎, 𝑏, 𝑐, 𝑑 > 0, ∀𝑘 ∈ {1,−1}, Equivalence (2) holds. Moreover, Equivalences (1)-
(2) hold when substituting < with ≤ and > with ≥ simultaneously. The proofs are in Appendix A.2.

𝑘
𝑎

𝑏
> 𝑘

𝑐

𝑑
⇐⇒ 𝑘

𝑎

𝑏
< 𝑘

𝑎 − 𝑐
𝑏 − 𝑑 . (1) 𝑘

𝑎

𝑏
> 𝑘

𝑐

𝑑
⇐⇒ 𝑘

𝑎

𝑏
> 𝑘

𝑎 + 𝑐
𝑏 + 𝑑 . (2)

Lemma 2. For configuration Ω ∈ C, if it has 𝜔22 = 0, then for any non-empty set 𝑆 ⊆ 𝑉 and for
any edge 𝑒 ∈ 𝐸 \ 𝐸+ (𝑅),𝑤Ω,𝑅,𝑆 (𝑒) ≤ 0. Please find the proofs in Appendix A.3.

Theorem 2. A configuration Ω ∈ C with 𝜔22 > 0 is global, i.e., there does not exist a strongly local
algorithm for density-based LCS. Specifically, for any integer 𝜂 such that 𝜂 > 2

𝜔22

, there is a graph
𝐺 (𝑉 , 𝐸) and a seed set 𝑅 ⊆ 𝑉 with vol(𝑅) = 2 such that any subgraph LDS reports has > 𝜂 nodes.

Proof. Consider the graph 𝐺 in Figure 6 consisting of 𝑅, 2 nodes connected by an edge, and a

𝑘-clique where 𝑘 can be any integer > 𝜂. Then, |𝑉 | = 2 + 𝑘 . Denote by 𝑉 ′ = 𝑉 \ 𝑅 the nodes of the

𝑘-clique and 𝑆∗ the LDS. We show 𝑆∗ = 𝑉 ′ below in two steps: i) 𝑆∗ ∩ 𝑅 = ∅ and ii) 𝑆∗ = 𝑉 ′.
We prove 𝑆∗ ∩ 𝑅 = ∅ by contradiction. Suppose 𝑆∗ ∩ 𝑅 ≠ ∅. The local density of 𝑉 ′ 𝜌Ω,𝑅 (𝑉 ′) =

𝜔22𝑘 (𝑘−1)
2𝑘

= 𝜔22

𝑘−1
2
≥ 𝜔22

𝜂

2
> 𝜔22 × 1

𝜔22

= 1, so 𝜌Ω,𝑅 (𝑆∗) ≥ 𝜌Ω,𝑅 (𝑉 ′) > 1. Further since 𝑅 is a

subgraph with only one edge, 𝜌Ω,𝑅 (𝑆∗ ∩ 𝑅) ≤ 𝜌Ω,𝑅 (𝑅) = 1, which means 𝑆∗ ∩ 𝑉 ′ ≠ ∅ since if

otherwise 𝜌Ω,𝑅 (𝑆∗) = 𝜌Ω,𝑅 (𝑆∗ ∩ 𝑅) = 1 < 𝜌Ω,𝑅 (𝑉 ′). Also, as 𝑅 has no edges to 𝑉 ′ and 𝑅 ⊎𝑉 ′ = 𝑉 ,

𝑔Ω,𝑅 (𝑆∗) = 𝑔Ω,𝑅 (𝑆∗ ∩ 𝑉 ′) + 𝑔Ω,𝑅 (𝑆∗ ∩ 𝑅) and |𝑆∗ | = |𝑆∗ ∩ 𝑉 ′ | + |𝑆∗ ∩ 𝑅 |. Let 𝑎 = 𝑔Ω,𝑅 (𝑆∗), 𝑏 =

|𝑆∗ |, 𝑐 = 𝑔Ω,𝑅 (𝑆∗ ∩ 𝑅), 𝑑 = |𝑆∗ ∩ 𝑅 |, 𝑘 = 1, we can apply Equivalence (1) in Lemma 1 since

𝑎 ≥ 𝑐 > 0, 𝑏 > 𝑑 > 0, 𝑘 𝑎
𝑏
> 1 ≥ 𝑘 𝑐

𝑑
. Thus, 𝑘 𝑎

𝑏
< 𝑘 𝑎−𝑐

𝑏−𝑑 , i.e.,
𝑎
𝑏
< 𝑎−𝑐

𝑏−𝑑 , that is, 𝜌Ω,𝑅 (𝑆
∗) = 𝑔Ω,𝑅 (𝑆∗ )

|𝑆∗ | <

𝑔Ω,𝑅 (𝑆∗ )−𝑔Ω,𝑅 (𝑆∗∩𝑅)
|𝑆∗ |− |𝑆∗∩𝑅 | =

𝑔Ω,𝑅 (𝑆∗∩𝑉 ′ )
|𝑆∗∩𝑉 ′ | = 𝜌Ω,𝑅 (𝑆∗∩𝑉 ′), contradicting that 𝜌Ω,𝑅 (𝑆∗) = 𝜌∗Ω,𝑅 . Thus 𝑆

∗∩𝑅 = ∅.
We then show 𝑆∗ = 𝑉 ′ by contradiction. Suppose 𝑆∗ ≠ 𝑉 ′, since 𝑆∗ ∩ 𝑅 = ∅, we have 𝑆∗ ⊆ 𝑉 ′

and 𝑙 � |𝑆∗ | < 𝑘 . Recall that 𝜔24 ≤ 0 (Definition 4 C4), then 𝜌Ω,𝑅 (𝑆∗) = 𝜔22 (𝑙 (𝑙−1)/2)+𝜔24𝑙 (𝑘−𝑙 )
𝑙

≤ 𝜔22 (𝑙 (𝑙−1)/2)
𝑙

= 𝜔22

𝑙−1
2

< 𝜔22

𝑘−1
2

= 𝜌Ω,𝑅 (𝑉 ′) ≤ 𝜌Ω,𝑅 (𝑆∗), contradiction. Thus 𝑆∗ = 𝑉 ′. □

According to Definition 4, 𝜔22 ≥ 0 and 𝜔14 ≤ 0; we next show that when 𝜔22 = 0, if 𝜔14 < 0, the

configuration is also global.

Theorem 3. Under a configuration Ω ∈ C with 𝜔22 = 0 and 𝜔14 < 0, there does not exist a strongly
local algorithm for density-based LCS, i.e., Ω is global. Specifically, for any integer 𝜂 > 0, there is a
graph 𝐺 (𝑉 , 𝐸) with |𝑉 | ≥ 𝜂 and a seed set 𝑅 ⊆ 𝑉 with vol(𝑅) = 2 such that LDS only can report 𝐺 .

𝑅
𝑉

𝑆∗

Fig. 6. Ω with 𝜔22 > 0 is Global

𝑟1

𝑟2

𝑅

...
...

...
...

...

𝐵1 𝐵2 𝐵3
𝐵𝜂−1 𝐵𝜂

· · ·

· · ·

· · ·

· · ·
𝑉 = 𝑆∗

Fig. 7. Ω with 𝜔22 = 0 and 𝜔14 < 0 is Global

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:8 Yizhou Dai, Miao Qiao, & Rong-Hua Li

Proof. Consider the graph 𝐺 (𝑉 , 𝐸) in Figure 7 consisting of 𝑅 = {𝑟1, 𝑟2} and 𝜂-layers of nodes:
the 𝑖-th layer, 𝑖 ∈ [1, 𝜂], is a set 𝐵𝑖 of𝑚 nodes where𝑚 is an arbitrary integer𝑚 > max{2,− 3

𝜔14

}.
𝑟1, 𝑟2 have an edge; 𝑟1 has an edge to each node in 𝐵1; each node in 𝐵𝑖 has an edge with each node

in 𝐵𝑖+1 for each 𝑖 ∈ [1, 𝜂 − 1]. Note that according to C5, Definition 4, 𝜔24 ≤ 𝜔14, so𝑚 > −3
𝜔14

≥ −3
𝜔24

.

Define S∗ = {𝑆 ⊆ 𝑉 |𝜌Ω,𝑅 (𝑆) = 𝜌∗Ω,𝑅 } as the set of all the LDS s. We prove S∗ = {𝑉 } in Lemmas 3-7.

Lemma 3 shows that any local densest subgraph (𝑆∗) of Figure 7 has a positive density; Lemma 4

shows that 𝑆∗ includes 𝑅; Lemma 5 shows that for any 𝑆∗, there exists another subgraph that (not

strictly) improves its local density by containing either all/none of nodes in a layer, for each layer;

Lemma 6 shows that there is no 𝑆∗ other than 𝑉 with nodes containing all/none nodes in each

layer; Lemma 7 shows that 𝑆∗ is not the local densest subgraph if 𝑆∗ contains part of nodes in one

layer. Combining Lemma 6 and Lemma 7, we have S∗ = {𝑉 }. □

Lemma 3. 𝜌∗Ω,𝑅 > 0.

Proof. 𝜌∗Ω,𝑅 ≥ 𝜌Ω,𝑅 (𝑉 ) = 𝜔11+𝜔12𝑚+𝜔22𝑚
2 (𝜂−1)

2+𝑚𝜂
≥ 2

2+𝑚𝜂
> 0. □

Lemma 4. For ∀𝑆 ∈ S∗, 𝑟1, 𝑟2 ∈ 𝑆 .
Proof. We first show that 𝑟1 ∈ 𝑆 for ∀𝑆 ∈ S∗. If 𝑟1 ∉ 𝑆 , the only possible edges having

non-negative weights are in 𝐸 (𝑆) = 𝐸 (𝑉1 ∪ 𝑉2) where 𝑉1 � 𝑆 ∩ 𝑅 ⊆ {𝑟2} and 𝑉2 � 𝑆 \ 𝑅, so
𝑔Ω,𝑅 (𝑆) ≤ 𝜔22𝑚

2 (𝜂 − 1) = 0 and then 𝜌Ω,𝑅 (𝑆) ≤ 0 contradicting Lemma 3 that 𝜌Ω,𝑅 (𝑆) = 𝜌∗Ω,𝑅 > 0.

We then show that 𝑟2 ∈ 𝑆 for ∀𝑆 ∈ S∗ with 𝑟1 ∈ 𝑆 . Consider any 𝑆 ∈ S∗ with 𝑟1 ∈ 𝑆 and 𝑟2 ∉ 𝑆 .

Denote |𝑆 ∩ 𝐵1 | as 𝑘1 ∈ [0,𝑚]. Thus, |𝑆 | ≥ 1 + 𝑘1. Consider the node partitioning {𝑉1,𝑉2,𝑉3,𝑉4}
and edge partitioning {𝐸𝑝 |𝑝 ∈ I} defined in Definition 2. 𝑅 = 𝑉1 ∪ 𝑉3 where 𝑉1 = 𝑅 ∩ 𝑆 = {𝑟2}
and 𝐸+ (𝑅) = (𝑉1 ∪𝑉3) ×𝑉 . Following Definition 4, Ω has 𝜔13 ≤ 0, 𝜔12 ≤ 2, 𝜔33 ≤ 0, 𝜔34 ≤ 0. From

Lemma 2, all edges in 𝐸 \ 𝐸+ (𝑅) have weights no more than 0. Thus, 𝑔Ω,𝑅 (𝑆) ≤ 𝜔12𝑘1 +𝜔14 (𝑚 −𝑘1)
as 𝐸1,1 = ∅. So as 𝜔14 < 0 (condition of Theorem 3), 𝑔Ω,𝑅 (𝑆) ≤ 2𝑘1 and thus 𝜌∗Ω,𝑅 = 𝜌Ω,𝑅 (𝑆) ≤
𝑔Ω,𝑅 (𝑆 )
|𝑆 | ≤

2𝑘1
𝑘1+1 < 2. Let 𝑆 ′ = 𝑆 ∪ {𝑟2}. As adding 𝑟2 to 𝑆 only moves edge (𝑟1, 𝑟2) from 𝐸1,3 to 𝐸1,1,

𝑔Ω,𝑅 (𝑆 ′) = 𝑔Ω,𝑅 (𝑆) + 𝜔11 − 𝜔13. As 𝜔11 = 2 and 𝜔13 ≤ 0, 𝜔11 − 𝜔13 ≥ 2 > 𝜌Ω,𝑅 (𝑆) = 𝑔 (𝑆 )
|𝑆 | . Let

𝑎 = 𝑔Ω,𝑅 (𝑆), 𝑏 = |𝑆 |, 𝑐 = 𝜔11 − 𝜔13, 𝑑 = 1, 𝑘 = −1. Then 𝑘 𝑎
𝑏
> 𝑘 𝑐

𝑑
. Since 𝑎, 𝑏, 𝑐, 𝑑 > 0, by Lemma 1,

Equivalence (2), we have 𝑘 𝑎
𝑏
> 𝑘 𝑎+𝑐

𝑏+𝑑 , thus
𝑎
𝑏
< 𝑎+𝑐

𝑏+𝑑 , that is, 𝜌Ω,𝑅 (𝑆) =
𝑔Ω,𝑅 (𝑆 )
|𝑆 | <

𝑔Ω,𝑅 (𝑆 )+𝜔11−𝜔13

|𝑆 |+1 =

𝑔Ω,𝑅 (𝑆 ′ )
|𝑆 ′ | = 𝜌Ω,𝑅 (𝑆 ′), contradicting 𝜌Ω,𝑅 (𝑆) = 𝜌∗Ω,𝑅 . Thus, 𝑟2 ∈ 𝑆∗. □

Lemma 5. Consider any set 𝑆 ⊆ 𝑉 of nodes in 𝐺 with 𝑟1, 𝑟2 ∈ 𝑆 . For any layer 𝐵𝑖 ⊆ 𝑉 , 𝑖 ∈ [1, 𝜂],
𝜌Ω,𝑅 (𝑆) can be increased (not strictly) by including 𝐵𝑖 in 𝑆 in an all-or-nothing manner, that is,
𝜌Ω,𝑅 (𝑆) ≤ max{𝜌Ω,𝑅 (𝑆 ∪ 𝐵𝑖 ), 𝜌Ω,𝑅 (𝑆 \ 𝐵𝑖 )}.
Proof. Denote by 𝑘𝑖 = |𝑆 ∩ 𝐵𝑖 | the number nodes 𝑆 has in the 𝑖-th layer, for each int 𝑖 ∈ [1, 𝜂].

Express with 𝑘𝑖 , 𝑖 ∈ [1, 𝜂], key term 𝑔Ω,𝑅 (𝑆) = 𝜔11 + 𝜔12𝑘1 + 𝜔14 (𝑚 − 𝑘1) + 𝜔24

∑𝜂−1
𝑖=1
(𝑘𝑖 (𝑚 −

𝑘𝑖+1) + 𝑘𝑖+1 (𝑚 − 𝑘𝑖 )). Besides, |𝑆 | = 2 +∑𝜂

𝑖=1
𝑘𝑖 . Fix an integer 𝑖 ∈ [1, 𝜂]. 𝑔Ω,𝑅 (𝑆) can be rewritten

as an expression 𝑔Ω,𝑅 (𝑆) = 𝑀𝑖𝑘𝑖 + 𝐶𝑖 of variable 𝑘𝑖 while treating other 𝑘 𝑗 , 𝑗 ≠ 𝑖 , as constants.

Here 𝑀𝑖 is a function of 𝑘 𝑗 , 𝑗 ≠ 𝑖 and 𝐶𝑖 = 𝑔Ω,𝑅 (𝑆) − 𝑀𝑖𝑘𝑖 is also a function of 𝑘 𝑗 , 𝑗 ≠ 𝑖 . Let

𝐶′𝑖 = |𝑆 | − 𝑘𝑖 = 2 +∑𝑗∈[1,𝜂 ], 𝑗≠𝑖 𝑘 𝑗 > 0. 𝜌Ω,𝑅 (𝑆) = 𝑀𝑖𝑘𝑖+𝐶𝑖

𝑘𝑖+𝐶′𝑖
= 𝑀𝑖 +

𝐶𝑖−𝑀𝑖𝐶
′
𝑖

𝑘𝑖+𝐶′𝑖
, monotonic to variable 𝑘𝑖 !

In other words, when 𝑘 𝑗 is fixed for all the 𝑗 ∈ [1, 𝜂], 𝑗 ≠ 𝑖 , the sign of 𝐶𝑖 −𝑀𝑖𝐶
′
𝑖 is then irrelevant

to 𝑘𝑖 and if 𝐶𝑖 −𝑀𝑖𝐶
′
𝑖 > 0 decreasing 𝑘𝑖 to 0 gets a higher 𝜌Ω,𝑅 (𝑆); if 𝐶𝑖 −𝑀𝑖𝐶

′
𝑖 < 0, increasing 𝑘𝑖

to𝑚 gets a higher 𝜌Ω,𝑅 (𝑆). Thus, 𝜌Ω,𝑅 (𝑆) ≤ max{𝜌Ω,𝑅 (𝑆 ∪ 𝐵𝑖 ), 𝜌Ω,𝑅 (𝑆 \ 𝐵𝑖 )}. □

Lemma 6. Denote by S01 the set of subgraphs in S∗ with all-or-nothing intersections with each
layer, i.e., ∀𝑆 ∈ S01, ∀𝑖 ∈ [1, 𝜂], |𝐵𝑖 ∩ 𝑆 | ∈ {0,𝑚}. Then S01 = {𝑉 }.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:9

Proof. We first prove that S01 ≠ ∅. Due to Lemma 3, S∗ ≠ ∅. For any 𝑆0 ∈ S∗. Let 𝑆 = 𝑆0,

then traverse all the layers: for each layer 𝑖 , improve (not strictly) 𝜌Ω,𝑅 (𝑆) by either including

to 𝑆 or excluding from 𝑆 all the nodes in 𝐵𝑖 based on Lemma 5. The resulting 𝑆 has 𝜌Ω,𝑅 (𝑆) ≥
𝜌Ω,𝑅 (𝑆0) = 𝜌∗Ω,𝑅 and thus 𝑆 ∈ S01

. We then prove that for ∀𝑆 ∈ S01
, 𝐵1 ⊆ 𝑆 . Let 𝑆 be a subgraph

in S01
. Thus, either 𝐵1 ⊆ 𝑆 or 𝐵1 ∩ 𝑆 = ∅. Lemma 4 means 𝑟1, 𝑟2 ∈ 𝑆 and |𝑆 | ≥ 2. If 𝐵1 ∩ 𝑆 = ∅,

according to Lemma 2, we have key term 𝑔Ω,𝑅 (𝑆) ≤ 2 − 𝜔14𝑚. Since 𝑚 > − 3

𝜔14

, 𝑔Ω,𝑅 (𝑆) < 0,

so 𝜌Ω,𝑅 (𝑆) < 0. Due to Lemma 3, 𝜌Ω,𝑅 (𝑆) < 𝜌∗Ω,𝑅 , contradiction. Therefore, 𝐵1 ⊆ 𝑆 . Finally, we

prove that S01 = {𝑉 }. Consider 𝑆 ∈ S01
. Based on the above discussion, 𝐵1 ⊆ 𝑆 . If there is an

integer ℎ ∈ [2, 𝜂] such that a) 𝐵𝑖 ⊆ 𝑆 for ∀𝑖 < ℎ and 𝐵ℎ ∩ 𝑆 = ∅. According to Definition 4 C5

and the condition 𝜔14 < 0 in Theorem 3, 𝜔24 ≤ 𝜔14 < 0, 𝜔12 ≤ 2 and 𝑚 > max{2,− 3

𝜔14

}, thus,
𝑔Ω,𝑅 (𝑆) ≤ 2 + 𝜔12𝑚 + 𝜔24𝑚

2 ≤ 2 + 2𝑚 + 𝜔24𝑚
2
. Note that 𝜔24 < 0 is a multiplier of𝑚2

, so turning

𝑚 to − 3

𝜔14

< 𝑚 will lead to 2 + 2𝑚 + 𝜔24𝑚
2 < 2 + 2𝑚 + 𝜔24 (− 3

𝜔14

)𝑚 ≤ 2 + 2𝑚 − 3𝑚 = 2 −𝑚 < 0,

contradicting Lemma 3 that
𝑔Ω,𝑅 (𝑆 )
|𝑆 | = 𝜌∗Ω,𝑅 > 1. □

Lemma 7. S∗ ⊆ S01.

Proof. Prove by contradiction. Assume that there is 𝑆0 ∈ S∗ such that 𝑆0 ∉ S01
. We apply the

same process in the proof of Lemma 6, i.e., traverse each layer 𝑖 ∈ [1, 𝜂], including 𝐵𝑖 to / excluding
𝐵𝑖 from 𝑆𝑖−1 in an all-or-nothing manner to generate 𝑆𝑖 and ensure that the non decreasing 𝜌Ω,𝑅 (𝑆𝑖 ).
Eventually, 𝑆𝜂 ∈ S01

. According to Lemma 6, S01 = {𝑉 }. Therefore, for every layer, we have 𝐵𝑖 ⊆ 𝑆𝑖
as otherwise 𝑆𝜂 ≠ 𝑉 . In other words, for each 𝑖 ∈ [1, 𝜂], {𝑟1, 𝑟2} ∪ 𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵𝑖 ⊆ 𝑆𝑖 . Let ℎ be

the largest integer in [1, 𝜂] such that 𝐵ℎ ⊈ 𝑆0, i.e., not all the nodes in 𝐵ℎ are in 𝑆0. In other words,

𝐵 𝑗 ⊆ 𝑆0 for each 𝑗 > ℎ, and thus 𝐵 𝑗 ⊆ 𝑆ℎ−1 for each 𝑗 > ℎ. We thus have 𝑉 \ 𝐵ℎ ⊆ 𝑆ℎ−1 ⊊ 𝑆ℎ = 𝑉 .

Now we calculate 𝜌Ω,𝑅 (𝑆ℎ−1) which should be 𝜌∗Ω,𝑅 since 𝑆0 ∈ S∗. Let 𝛿 = 𝑚 − |𝐵ℎ ∩ 𝑆0 |. 𝑆ℎ−1
includes all nodes in 𝑉 except 𝛿 nodes in 𝐵ℎ . According to Lemma 6, ℎ > 1. Besides, according to

the condition of Theorem 3, 𝜔22 = 0. Thus,

𝑔Ω,𝑅 (𝑆ℎ−1) ≤ 2 + 𝜔12𝑚 + 𝜔24𝛿𝑚 ≤ 𝑔Ω,𝑅 (𝑉 ) + 𝜔24𝛿𝑚. (3)

We then have 𝜌Ω,𝑅 (𝑆ℎ−1) = 𝑔Ω,𝑅 (𝑆ℎ−1 )
|𝑉 |−𝛿 ≤ 𝑔Ω,𝑅 (𝑉 )+𝜔24𝛿𝑚

|𝑉 |−𝛿 . Note that
−𝜔24𝛿𝑚

𝛿
= −𝜔24𝑚 > 3 > 𝜌Ω,𝑅 (𝑉 ) =

𝜌Ω,𝑅 (𝑆∗). Let 𝑎 = 𝑔Ω,𝑅 (𝑆ℎ−1), 𝑏 = |𝑆ℎ−1 |, 𝑐 = −𝜔24𝛿𝑚,𝑑 = 𝛿, 𝑘 = −1. Then 𝑘 𝑎
𝑏

> 𝑘 𝑐
𝑑
. Since

𝑎, 𝑏, 𝑐, 𝑑 > 0, by Lemma 1, Equivalence (2), we then have 𝑘 𝑎
𝑏

> 𝑘 𝑎+𝑐
𝑏+𝑑 , thus

𝑎
𝑏

< 𝑎+𝑐
𝑏+𝑑 , that is,

𝜌∗Ω,𝑅 = 𝜌Ω,𝑅 (𝑆ℎ−1) = 𝑔Ω,𝑅 (𝑆ℎ−1 )
|𝑆ℎ−1 | <

𝑔Ω,𝑅 (𝑆ℎ−1 )−𝜔24𝛿𝑚

|𝑉 | ≤ 𝑔Ω,𝑅 (𝑉 )
|𝑉 | = 𝜌Ω,𝑅 (𝑉 ) = 𝜌∗Ω,𝑅 (the latter inequality

comes from Equation 3), contradiction. □

2.2 Local Density Configurations
Recall that we have an ExpansionFramework defined in Algorithm 1. When it comes to the context

of density-based LCS, we first define the input tuple (𝐺, 𝑅,Ω) and base algorithmA as the input of

ExpansionFramework, and then show that for all the configurations Ω ∈ C𝐿 , ExpansionFramework
is both correct (Theorem 4) and strongly local (Theorem 5).

Definition 7 (Input for ExpansionFramework). An input tuple (𝐺, 𝑅,Ω) consists of a graph
𝐺 (𝑉 , 𝐸), a seed set 𝑅 ⊆ 𝑉 , a configuration Ω such that i) 𝑅 has |𝐸 (𝑅) | > 0 following the assumption
made in Section 1.3, and ii) Ω ∈ C𝐿 following Definition 6. A base algorithmA is a density-based LCS
algorithm that returns, for an input tuple (𝐺, 𝑅,Ω), an LDS 𝑆∗ that ismaximal, i.e., 𝜌Ω,𝑅 (𝑆∗) = 𝜌∗Ω,𝑅 ,
and there is no subgraph 𝑆 ′ with 𝜌Ω,𝑅 (𝑆 ′) = 𝜌∗Ω,𝑅 and 𝑆∗ ⊊ 𝑆 ′.

Lemma 8. For an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω), a base algorithmA always exists. Specifically, denote
by |𝐺 | � |𝐸 | the size of 𝐺 . There is an algorithm A that reports the maximal LDS in 𝑓 𝑇A ( |𝐺 |) =
𝑂 ( |𝐺 |2 |𝐺 | ) time and 𝑓 𝑆A ( |𝐺 |) = 𝑂 ( |𝐺 |) space.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:10 Yizhou Dai, Miao Qiao, & Rong-Hua Li

Proof. Let 𝑣 be an isolated node in 𝐺 , i.e., 𝑣 does not have an edge in 𝐸. Firstly, let 𝑆∗ be
an LDS, we prove 𝑣 ∉ 𝑆∗ by contradiction. Let 𝑒 (𝑢, 𝑣) ∈ 𝐸 be an edge with 𝑢, 𝑣 ∈ 𝑅, 𝑒 exists

(Definition 7). Thus, 𝜌∗Ω,𝑅 ≥ 𝜌Ω,𝑅 ({𝑢, 𝑣}) = 1. If 𝑣 ∈ 𝑆∗, then 0 < 𝑔Ω,𝑅 (𝑆∗) = 𝑔Ω,𝑅 (𝑆∗ \ {𝑣}) and thus

𝜌Ω,𝑅 (𝑆∗) < 𝑔Ω,𝑅 (𝑆∗ )
|𝑆∗ |−1 = 𝜌Ω,𝑅 (𝑆∗ \ {𝑣}). Thus, 𝑆∗ is not an LDS of 𝑅 on𝐺 , contradiction. Secondly, get

𝑉 ′, the nodes in 𝐸, i.e., the non-isolated nodes in𝑉 in𝑂 ( |𝐸 |) time because |𝑉 ′ | ≤ 2|𝐸 |. Enumerate all

the 2
|𝑉 ′ |

subsets of𝑉 , calculate 𝜌Ω,𝑅 (𝑆) for each 𝑆 ⊆ 𝑉 ′ in𝑂 ( |𝐸 |) time, then report 𝑆∗ that maximizes

𝜌Ω,𝑅 (𝑆) in 𝑂 (2 |𝑉
′ | |𝐸 |) = 𝑂 (22 |𝐸 | |𝐸 |) time. Break ties by reporting the largest subgraph. □

Theorem 4. For an input tuple (𝐺, 𝑅,Ω) and base algorithmA, ExpansionFramework is a correct
algorithm for density-based LCS, i.e., the reported 𝑆∗ of ExpansionFramework has 𝜌Ω,𝑅 (𝑆∗) = 𝜌∗Ω,𝑅 .

The proof of Theorem 4 is provided in Section 2.2.1.

Theorem 5. For an input tuple (𝐺, 𝑅,Ω) and base algorithmA defined in Lemma 8, ExpansionFramework
is strongly local. In particular, the time and space complexities of ExpansionFramework are bounded
by 𝑂 (vol2 (𝑅) 𝑓 𝑇A (vol

4 (𝑅))) and 𝑂 (𝑓 𝑆A (vol
4 (𝑅))) respectively if the weights in Ω are integers, and by

𝑂 (𝑓 𝑇A (vol(𝑅))) and 𝑂 (𝑓
𝑆
A (vol(𝑅))) respectively if Ω has 𝜔24 = 0.

Section 2.2.2 proves Theorem 5. Specifically, Lemma 17 covers the input tuples where Ω has

𝜔24 = 0, and Lemma 23 covers the input tuples where Ω has 𝜔24 < 0.

2.2.1 The proof of Theorem 4. Lemma 9 shows that under the same weight configuration, if one

subgraph of 𝐺 is a subgraph of another subgraph of 𝐺 , then for each edge they share, the weights

of the edge are the same for the two subgraphs. Lemma 10 shows that when ExpansionFramework
terminates, the LDS on the last working graph has the same local density as the LDS of𝐺 . Lemma 11

shows that for any set 𝑆 of nodes, the local density of 𝑆 on the working graph will not increase

along expanding working graphs in the iterations. We then combine Lemma 10 and Lemma 11 to

prove Theorem 4. Note that the lemmas in this section will be used in Section 2.2.2.

Lemma 9. Consider two input tuples (𝐺 ′′ (𝑉 ′′, 𝐸′′), 𝑅,Ω) and (𝐺 ′ (𝑉 ′, 𝐸′), 𝑅,Ω) sharing the same
set of seed nodes 𝑅 and configuration Ω such that 𝐺 ′ is a subgraph of 𝐺 ′′. We abuse 𝑅 to denote the
induced subgraph of nodes 𝑅 on𝐺 ′. Thus, we have 𝑅 ⊆ 𝐺 ′ ⊆ 𝐺 ′′. For a non-empty set 𝑆 ⊆ 𝑉 ′ and any
edge 𝑒 ∈ 𝐸′, the weight of edge 𝑒 on 𝐺 ′ for 𝑅 and 𝑆 and the weight of 𝑒 on 𝐺 ′′ under 𝑅 and 𝑆 are the
same, i.e.,𝑤Ω,𝑅,𝑆 (𝑒 |𝐺 ′) = 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺 ′′).

Proof. By Definition 2, denote by {𝑉 ′
1
,𝑉 ′

2
,𝑉 ′

3
,𝑉 ′

4
} the partition of V(𝑆, 𝑅 |𝐺 ′) of nodes in 𝐺 ′

and {𝑉 ′′
1
,𝑉 ′′

2
,𝑉 ′′

3
,𝑉 ′′

4
} the partition ofV(𝑆, 𝑅 |𝐺 ′′) of nodes in 𝐺 ′′. By definition, 𝑉 ′

1
= 𝑅 ∩ 𝑆 = 𝑉 ′′

1
,

𝑉 ′
2
= 𝑆 \ 𝑅 = 𝑉 ′′

2
, 𝑉 ′

3
= 𝑅 \ 𝑆 = 𝑉 ′′

3
, and 𝑉 ′

4
= 𝑉 ′ \ (𝑅 ∪ 𝑆) ⊆ 𝑉 ′′ \ (𝑅 ∪ 𝑆) = 𝑉 ′′

4
. Now denote

the edge partitioning E(𝑆, 𝑅 |𝐺 ′) of 𝐺 ′ as {𝐸′𝑝 |𝑝 ∈ I} and E(𝑆, 𝑅 |𝐺 ′′) of 𝐺 ′′ as {𝐸′′𝑝 |𝑝 ∈ I}. For
each 𝑝 (𝑖, 𝑗) ∈ I and any edge 𝑒 (𝑢, 𝑣) ∈ 𝐸′𝑝 with 𝑢 ∈ 𝑉 ′𝑖 and 𝑢 ∈ 𝑉 ′𝑗 , we thus have 𝑢 ∈ 𝑉 ′′𝑖 , 𝑣 ∈ 𝑉 ′′𝑗
and 𝑒 (𝑢, 𝑣) ∈ 𝐸′′. Thus 𝑒 ∈ 𝐸′′𝑝 and 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺 ′) = 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺 ′′) = Ω(𝑝). Since {𝐸′𝑝 |𝑝 ∈ I} is a
partitioning of 𝐸′, for each 𝑒 ∈ 𝐸′,𝑤Ω,𝑅,𝑆 (𝑒 |𝐺 ′) = 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺 ′′). □

Lemma 10. Consider input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) withA defined in Lemma 8. Apply ExpansionFramework
and denote by 𝑆∗ the output subgraph and 𝐿𝑘 (𝑉𝑘 , 𝐸𝑘 ) the working graph of the last iteration. Then the
local density of 𝑆∗ on 𝐿𝑘 is the same as the local density of 𝑆∗ on 𝐺 , i.e., 𝜌Ω,𝑅 (𝑆∗ |𝐿𝑘 ) = 𝜌Ω,𝑅 (𝑆∗ |𝐺).

Proof. By definition, 𝜌Ω,𝑅 (𝑆∗ |𝐺) = 𝑔Ω,𝑅 (𝑆∗ |𝐺 )
|𝑆∗ | and 𝜌Ω,𝑅 (𝑆∗ |𝐿𝑘 ) = 𝑔Ω,𝑅 (𝑆∗ |𝐿𝑘 )

|𝑆∗ | where 𝑔Ω,𝑅 (𝑆∗ |𝐺) =∑
𝑒∈𝐸 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐺) and 𝑔Ω,𝑅 (𝑆∗ |𝐿𝑘 ) =

∑
𝑒∈𝐸𝑘 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐿𝑘 ). Apply Lemma 9 with 𝐺 ′ being 𝐿𝑘 and

𝐺 ′′ being 𝐺 , 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐺) = 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐿𝑘 ) for each 𝑒 ∈ 𝐸𝑘 . Besides, when ExpansionFramework
terminates, 𝐸+ (𝑆∗) ⊆ 𝐸𝑘 . By Constraint C2, Definition 4, 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐺) = 0 for ∀𝑒 ∈ 𝐸 \ 𝐸+ (𝑆∗) ⊇

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:11

𝐸 \ 𝐸𝑘 . Thus 𝑔Ω,𝑅 (𝑆∗ |𝐺) =
∑

𝑒∈𝐸𝑘 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐺) +
∑

𝑒∈𝐸\𝐸𝑘 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐺) =
∑

𝑒∈𝐸𝑘 𝑤Ω,𝑅,𝑆∗ (𝑒 |𝐿𝑘 ) + 0 =

𝑔Ω,𝑅 (𝑆∗ |𝐿𝑘 ), and therefore, 𝜌Ω,𝑅 (𝑆∗ |𝐺) = 𝜌Ω,𝑅 (𝑆∗ |𝐿𝑘 ). □

Lemma 11. Consider an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) and a set 𝑆 ⊆ 𝑉 . Denote by𝐿0 = (N+ (𝑅), 𝐸+ (𝑅))
a subgraph of 𝐺 . For any graph 𝐺 ′ (𝑉 ′, 𝐸′) such that 𝐿0 ⊆ 𝐺 ′ ⊆ 𝐺 , then the local density of 𝑆 on 𝐺 is
no larger than the local density of 𝑆 ∩𝑉 ′ on𝐺 ′, i.e., 𝜌Ω,𝑅 (𝑆 |𝐺) ≤ 𝜌Ω,𝑅 (𝑆 ∩𝑉 ′ |𝐺 ′). If 𝑆 \𝑉 ′ ≠ ∅, then
𝜌Ω,𝑅 (𝑆 |𝐺) < 𝜌Ω,𝑅 (𝑆 ∩𝑉 ′ |𝐺 ′).

Proof. Let 𝑆 ′ be 𝑆 ∩ 𝑉 ′. By definition, 𝜌Ω,𝑅 (𝑆 |𝐺) =
𝑔Ω,𝑅 (𝑆 |𝐺 )
|𝑆 | and 𝜌Ω,𝑅 (𝑆 ′ |𝐺 ′) =

𝑔Ω,𝑅 (𝑆 ′ |𝐺 ′ )
|𝑆 ′ | .

Because 𝑆 ′ ⊆ 𝑆 , |𝑆 | ≥ |𝑆 ′ |. By Lemma 9, all edges in 𝐸′ have the same weight in both 𝐺 and 𝐺 ′, so
𝑔Ω,𝑅 (𝑆 |𝐺) − 𝑔Ω,𝑅 (𝑆 |𝐺 ′) =

∑
𝑒∈𝐸\𝐸′ 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺). By Lemma 2,𝑤Ω,𝑅,𝑆 (𝑒 |𝐺) ≤ 0 for all 𝑒 ∈ 𝐸 \ 𝐸+ (𝑅).

Note that 𝐿0 ⊆ 𝐺 ′, so 𝐸+ (𝑅) ⊆ 𝐸′, thus 𝑔Ω,𝑅 (𝑆 |𝐺) − 𝑔Ω,𝑅 (𝑆 |𝐺 ′) =
∑

𝑒∈𝐸\𝐸′ 𝑤Ω,𝑅,𝑆 (𝑒 |𝐺) ≤ 0. Thus,

𝜌Ω,𝑅 (𝑆 |𝐺) ≤ 𝜌Ω,𝑅 (𝑆 ′ |𝐺 ′). If 𝑆 \𝑉 ′ ≠ ∅, then 𝑆 ′ ⊊ 𝑆 , |𝑆 | > |𝑆 ′ | and thus 𝜌Ω,𝑅 (𝑆 |𝐺) < 𝜌Ω,𝑅 (𝑆 ′ |𝐺 ′). □

Denote by 𝑆∗ the output of ExpansionFramework. Denote by 𝐿𝑘 (𝑉𝑘 , 𝐸𝑘 ) the working subgraph of

the iteration before termination. We prove Theorem 4 by contradiction, assume there exists 𝑆 ′ ≠ 𝑆∗

s.t. 𝜌Ω,𝑅 (𝑆 ′ |𝐺) = [𝜌∗Ω,𝑅 |𝐺] > 𝜌Ω,𝑅 (𝑆∗ |𝐺). Consider the local density 𝜌Ω,𝑅 (𝑆 ′∩𝑉𝑘 |𝐿𝑘 ) = 𝑔Ω,𝑅 (𝑆 ′∩𝑉𝑘 |𝐿𝑘 )
|𝑆 ′∩𝑉𝑘 | .

Apply Lemma 11 by letting 𝐺 ′ be 𝐿𝑘 , we have 𝜌Ω,𝑅 (𝑆 ′ ∩ 𝑉𝑘 |𝐿𝑘 ) ≥ 𝜌Ω,𝑅 (𝑆 ′ |𝐺). Also by applying

Lemma 10, 𝜌Ω,𝑅 (𝑆∗ |𝐺) = 𝜌Ω,𝑅 (𝑆∗ |𝐿𝑘 ). Combining the assumption 𝜌Ω,𝑅 (𝑆 ′ |𝐺) > 𝜌Ω,𝑅 (𝑆∗ |𝐺), we
have 𝜌Ω,𝑅 (𝑆 ′ ∩𝑉𝑘 |𝐿𝑘 ) > 𝜌Ω,𝑅 (𝑆∗ |𝐿𝑘 ), contradicting the fact that 𝑆∗ is the local denset subgraph on

𝐿𝑘 , i.e., 𝜌Ω,𝑅 (𝑆∗ |𝐿𝑘 ) = [𝜌∗Ω,𝑅 |𝐿𝑘 ]. This proves Theorem 4.

2.2.2 Proof of Theorem 5. In this section, Lemma 13 shows that the maximal density-based LCS is

unique. Lemma 17 proves strong locality of configurations Ω with 𝜔24 = 0. For Ω with 𝜔24 < 0,

Lemma 15, Lemma 18, Lemmas 21 & 22 show that for the maximal density-based LCS 𝑆 of the last

iteration, the size of 𝑆 , the maximum degree of nodes in 𝑆 , the number of iterations, and the size of

the last working graph, are all bounded by polynomials of vol(𝑅). Lemmas 17 and 23 combine the

above bounds to prove the strong locality of ExpansionFramework in both space and time.

Definition 8. Define set I𝐿 = {(1, 1), (1, 2), (2, 3), (2, 4)} of pairs.
Lemma 12. Given input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω), denote by {𝐸𝑝 |𝑝 ∈ I} the edge partitioning of
E(𝑆, 𝑅). For any non-empty set 𝑆 ⊆ 𝑉 , we have the key term 𝑔Ω,𝑅 (𝑆) =

∑
𝑝∈I𝐿 Ω(𝑝) |𝐸𝑝 |.

Proof. Note that based on Definition 7, Ω ∈ C𝐿 . 𝑔Ω,𝑅 (𝑆) =
∑

𝑝∈I Ω(𝑝) |𝐸𝑝 |, so it suffices for us

to show that for any 𝑝 ∈ I \ I𝐿 , Ω(𝑝) = 0. Since Ω ∈ C𝐿 , (1) 𝜔33, 𝜔34, 𝜔44 are 0 by Definition 4 C2;

(2) 𝜔22, 𝜔14 are 0 because of Definition 6; (3) 𝜔13 = 0 because 𝜔13 ≥ 𝜔14 = 0 by Constraint C5 and

𝜔13 ≤ 0 by Constraint C4. Thus 𝑔Ω,𝑅 (𝑆) =
∑

𝑝∈I Ω(𝑝) |𝐸𝑝 | =
∑

𝑝∈I𝐿 Ω(𝑝) |𝐸𝑝 |. □

Lemma 13. Consider an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) and two LDS s 𝑆𝐴, 𝑆𝐵 ⊆ 𝑉 (𝐺) such that
𝜌Ω,𝑅 (𝑆𝐴) = 𝜌Ω,𝑅 (𝑆𝐵) = 𝜌∗Ω,𝑅 . We have 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵) = 𝜌∗Ω,𝑅 .

Proof. As 𝜌∗Ω,𝑅 is optimal, 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵) ≤ 𝜌∗Ω,𝑅 . To show 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵) ≥ 𝜌∗Ω,𝑅 , we disjointly
partition the edges 𝐸 into 8 edge sets (it can be verified by plugging 𝑆 with 𝑆𝐴 and 𝑅 with 𝑆𝐵 in

Figure 1 that the 8 sets below disjointly cover 𝐸):

• 𝐸1 � 𝐸 ∩ (𝑆𝐴 ∪ 𝑆𝐵 × 𝑆𝐴 ∪ 𝑆𝐵),
• 𝐸2 � 𝐸 ∩ ((𝑆𝐴 \ 𝑆𝐵) × (𝑉 \ 𝑆𝐵)),
• 𝐸3 � 𝐸 ∩ ((𝑆𝐵 \ 𝑆𝐴) × (𝑉 \ 𝑆𝐴)),
• 𝐸4 � 𝐸 ∩ ((𝑆𝐴 ∩ 𝑆𝐵) × (𝑆𝐴 ∩ 𝑆𝐵)),

• 𝐸5 � 𝐸 ∩ ((𝑆𝐴 ∩ 𝑆𝐵) × 𝑆𝐴 ∪ 𝑆𝐵)),
• 𝐸6 � 𝐸 ∩ ((𝑆𝐴 ∩ 𝑆𝐵) × (𝑆𝐴 \ 𝑆𝐵))),
• 𝐸7 � 𝐸 ∩ ((𝑆𝐴 ∩ 𝑆𝐵) × (𝑆𝐵 \ 𝑆𝐴))),
• 𝐸8 � 𝐸 ∩ ((𝑆𝐴 \ 𝑆𝐵) × (𝑆𝐵 \ 𝑆𝐴)).

For simplicity, denote 𝑤𝐴 (𝑒) � 𝑤Ω,𝑅,𝑆𝐴 (𝑒 |𝐺), 𝑤𝐵 (𝑒) � 𝑤Ω,𝑅,𝑆𝐵 (𝑒 |𝐺), 𝑤∩ (𝑒) � 𝑤Ω,𝑅,𝑆𝐴∩𝑆𝐵 (𝑒 |𝐺)
and𝑤∪ (𝑒) � 𝑤Ω,𝑅,𝑆𝐴∪𝑆𝐵 (𝑒 |𝐺). We first build up relations among edge weights in each case:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:12 Yizhou Dai, Miao Qiao, & Rong-Hua Li

(1) Consider 𝑒 ∈ 𝐸1. By Constraint C2, Definition 4 (i.e., any edge with both ends outside 𝑆 has

weight 0),𝑤𝐴 (𝑒) = 𝑤𝐵 (𝑒) = 𝑤∪ (𝑒) = 𝑤∩ (𝑒) = 0.

(2) Consider 𝑒 (𝑢, 𝑣) ∈ 𝐸2. Thus, both 𝑢 and 𝑣 are not in 𝑆𝐵 and therefore, 𝑢 ∈ 𝑆𝐴 iff 𝑢 ∈ 𝑆𝐴 ∪ 𝑆𝐵
and 𝑣 ∈ 𝑆𝐴 iff 𝑣 ∈ 𝑆𝐴 ∪ 𝑆𝐵 , and𝑤𝐵 (𝑒) = 𝑤∩ (𝑒) = 0. Denote the 2 partitions E(𝐸, 𝑆𝐴, 𝑅,𝐺) =
{𝐸𝐴𝑝 |𝑝 ∈ I} and E(𝐸, 𝑆𝐴 ∪ 𝑆𝐵, 𝑅,𝐺) = {𝐸∪𝑝 |𝑝 ∈ I}. We thus have for each 𝑝 ∈ I, 𝑒 ∈ 𝐸𝐴𝑝 iff

𝑒 ∈ 𝐸∪𝑝 and it follows that𝑤𝐴 (𝑒) = 𝑤∪ (𝑒).
(3) Consider 𝑒 ∈ 𝐸3: symmetric to case 𝐸2. We have 𝑤𝐵 (𝑒) = 𝑤∪ (𝑒) and 𝑤𝐴 (𝑒) = 𝑤∩ (𝑒) = 0

(Constraint C2, Definition 4).

(4) Consider 𝑒 (𝑢, 𝑣) ∈ 𝐸4. Denote the 4 partitions E(𝐸, 𝑆𝐴, 𝑅,𝐺) = {𝐸𝐴𝑝 |𝑝 ∈ I}, E(𝐸, 𝑆𝐵, 𝑅,𝐺) =
{𝐸𝐵𝑝 |𝑝 ∈ I}, E(𝐸, 𝑆𝐴 ∪ 𝑆𝐵, 𝑅,𝐺) = {𝐸∪𝑝 |𝑝 ∈ I} and E(𝐸, 𝑆𝐴 ∩ 𝑆𝐵, 𝑅,𝐺) = {𝐸∩𝑝 |𝑝 ∈ I}. 𝑒 ∈ 𝐸4,
i.e., both 𝑢, 𝑣 ∈ 𝑆𝐴 ∩ 𝑆𝐵 , thus for each 𝑝 ∈ I, 𝑒 ∈ 𝐸𝐴𝑝 iff 𝑒 ∈ 𝐸𝐵𝑝 iff 𝑒 ∈ 𝐸∪𝑝 iff 𝑒 ∈ 𝐸∩𝑝 . and then

𝑤𝐴 (𝑒) = 𝑤𝐵 (𝑒) = 𝑤∪ (𝑒) = 𝑤∩ (𝑒) ≥ 0 (by Constraint C3, Definition 4).

(5) Consider 𝑒 (𝑢, 𝑣) ∈ 𝐸5. Consider 4 partitionings E(𝐸, 𝑆𝐴, 𝑅,𝐺) = {𝐸𝐴𝑝 |𝑝 ∈ I}, E(𝐸, 𝑆𝐵, 𝑅,𝐺) =
{𝐸𝐵𝑝 |𝑝 ∈ I}, E(𝐸, 𝑆𝐴 ∪ 𝑆𝐵, 𝑅,𝐺) = {𝐸∪𝑝 |𝑝 ∈ I} and E(𝐸, 𝑆𝐴 ∩ 𝑆𝐵, 𝑅,𝐺) = {𝐸∩𝑝 |𝑝 ∈ I}. Since
𝑒 (𝑢, 𝑣) ∈ 𝐸5, w.l.o.g., assume that𝑢 ∈ 𝑆𝐴∩𝑆𝐵 and 𝑣 ∈ 𝑆𝐴 ∪ 𝑆𝐵 , then for any 𝑆 ∈ {𝑆𝐴, 𝑆𝐵, 𝑆𝐴∪𝑆𝐵
and 𝑆𝐴 ∩ 𝑆𝐵}, we have 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆 . It follows that, for each 𝑝 ∈ I, 𝑒 ∈ 𝐸𝐴𝑝 iff 𝑒 ∈ 𝐸𝐵𝑝 iff 𝑒 ∈ 𝐸∪𝑝
iff 𝑒 ∈ 𝐸∩𝑝 , therefore𝑤𝐴 (𝑒) = 𝑤𝐵 (𝑒) = 𝑤∪ (𝑒) = 𝑤∩ (𝑒) ≤ 0 (by Constraint C4).

(6) Consider 𝑒 ∈ 𝐸6. Denote the 2 partitions E(𝐸, 𝑆𝐴, 𝑅,𝐺) = {𝐸𝐴𝑝 |𝑝 ∈ I} and E(𝐸, 𝑆𝐴∪𝑆𝐵, 𝑅,𝐺) =
{𝐸∪𝑝 |𝑝 ∈ I}. 𝑒 ∈ 𝐸4, i.e., both 𝑢, 𝑣 ∈ 𝑆𝐴, thus for each 𝑝 ∈ I, 𝑒 ∈ 𝐸𝐴𝑝 iff 𝑒 ∈ 𝐸∪𝑝 and it follows

that𝑤𝐴 (𝑒) = 𝑤∪ (𝑒) ≥ 0 (Constraints C4). Besides, by Constraint C4 (as 𝑒 as one node inside

𝑆 and one node outside 𝑆),𝑤𝐵 (𝑒) ≤ 0 and𝑤∩ (𝑒) ≤ 0.

(7) Consider 𝑒 ∈ 𝐸7. Symmetric to case 𝐸6.𝑤𝐵 (𝑒) = 𝑤∪ (𝑒) ≥ 0,𝑤𝐴 (𝑒) ≤ 0 and𝑤∩ (𝑒) ≤ 0.

(8) Consider 𝑒 ∈ 𝐸8. By Constraint C4, 𝑤𝐴 (𝑒) ≤ 0, 𝑤𝐵 (𝑒) ≤ 0. By C3, 𝑤∪ (𝑒) ≥ 0. By Con-

straint C2,𝑤∩ (𝑒) = 0.

𝑆𝐴 \ 𝑆𝐵 𝑆𝐵 \ 𝑆𝐴

𝑆𝐴 ∩ 𝑆𝐵

𝑆𝐴 ∪ 𝑆𝐵

𝐸4

𝐸6

𝐸8

𝐸7

𝐸5𝐸2

(a) 𝑆 = 𝑆𝐴 (symmetric to
the case of 𝑆 = 𝑆𝐵 )

𝑆𝐴 \ 𝑆𝐵 𝑆𝐵 \ 𝑆𝐴

𝑆𝐴 ∩ 𝑆𝐵

𝑆𝐴 ∪ 𝑆𝐵

𝐸4

𝐸6 𝐸7

𝐸8

𝐸5𝐸2 𝐸3

(b) 𝑆 = 𝑆𝐴 ∪ 𝑆𝐵

𝑆𝐴 \ 𝑆𝐵 𝑆𝐵 \ 𝑆𝐴

𝑆𝐴 ∩ 𝑆𝐵

𝑆𝐴 ∪ 𝑆𝐵

𝐸4
𝐸6 𝐸7

𝐸5

(c) 𝑆 = 𝑆𝐴 ∩ 𝑆𝐵

Fig. 8. Edge type breakdown for 𝑆𝐴 , 𝑆𝐵 , 𝑆𝐴 ∪ 𝑆𝐵 and 𝑆𝐴 ∩ 𝑆𝐵 .

Figure 8 gives an overview of edge weights for each edge type when the seed set 𝑆 is 𝑆𝐴, 𝑆𝐵 , 𝑆𝐴 ∪𝑆𝐵
and 𝑆𝐴 ∩ 𝑆𝐵 . Solid edges have non-negative weights; dashed edges have non-positive weights. Now
we introduce notations based on the aboveweight relations to simplify the density analysis. Let𝑊2 �∑

𝑒∈𝐸2

𝑤𝐴 (𝑒) =
∑

𝑒∈𝐸2

𝑤∪ (𝑒). Denote by𝑊3 �
∑

𝑒∈𝐸3

𝑤𝐵 (𝑒) =
∑

𝑒∈𝐸3

𝑤∪ (𝑒) and
∑

𝑒∈𝐸3

𝑤𝐴 (𝑒) =∑
𝑒∈𝐸3

𝑤∩ (𝑒) = 0. Denote𝑊 +
4
�

∑
𝑒∈𝐸4

𝑤𝐴 (𝑒) =
∑

𝑒∈𝐸4

𝑤𝐵 (𝑒) =
∑

𝑒∈𝐸4

𝑤∪ (𝑒) =
∑

𝑒∈𝐸4

𝑤∩ (𝑒) ≥ 0.

The + is adopted because𝑊 +
4
≥ 0. Denote𝑊 −

5
�

∑
𝑒∈𝐸5

𝑤𝐴 (𝑒) =
∑

𝑒∈𝐸5

𝑤𝐵 (𝑒) =
∑

𝑒∈𝐸5

𝑤∪ (𝑒) =∑
𝑒∈𝐸5

𝑤∩ (𝑒) ≤ 0. The− is adopted because𝑊 −
5
≤ 0. Denote𝑊 +

6
�
∑

𝑒∈𝐸6

𝑤𝐴 (𝑒) =
∑

𝑒∈𝐸6

𝑤∪ (𝑒) ≥ 0.

Denote𝑊 −
6
�

∑
𝑒∈𝐸6

𝑤𝐵 (𝑒) =
∑

𝑒∈𝐸6

𝑤∩ (𝑒) ≤ 0. Denote𝑊 +
7
�

∑
𝑒∈𝐸7

𝑤𝐵 (𝑒) =
∑

𝑒∈𝐸7

𝑤∪ (𝑒) ≥ 0,

𝑊 −
7
�
∑

𝑒∈𝐸6

𝑤𝐴 (𝑒) =
∑

𝑒∈𝐸7

𝑤∩ (𝑒) ≤ 0. Denote𝑊 𝐴
8
�
∑

𝑒∈𝐸8

𝑤𝐴 (𝑒) ≤ 0,𝑊 𝐵
8

=
∑

𝑒∈𝐸8

𝑤𝐵 (𝑒) ≤ 0

and𝑊 +
8
=
∑

𝑒∈𝐸8

𝑤∪ (𝑒) ≥ 0, and

∑
𝑒∈𝐸8

𝑤∩ (𝑒) = 0. Thus, −𝑊 𝐴
8
−𝑊 𝐵

8
+𝑊 +

8
≥ 0.

Now list the 4 key terms based on the weights of the 8 edge sets:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:13

• 𝑔Ω,𝑅 (𝑆𝐴) =𝑊2+𝑊 +4 +𝑊 −
5
+𝑊 +

6
+𝑊 −

7
+𝑊 𝐴

8
,

• 𝑔Ω,𝑅 (𝑆𝐵) =𝑊3+𝑊 +4 +𝑊 −
5
+𝑊 −

6
+𝑊 +

7
+𝑊 𝐵

8
,

• 𝑔Ω,𝑅 (𝑆𝐴∪𝑆𝐵) =𝑊2+𝑊3+𝑊 +4 +𝑊 −
5
+𝑊 +

6
+

𝑊 +
7
+𝑊 +

8
,

• 𝑔Ω,𝑅 (𝑆𝐴 ∩ 𝑆𝐵) =𝑊 +
4
+𝑊 −

5
+𝑊 −

6
+𝑊 −

7
.

Thus, 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵) = 𝑔Ω,𝑅 (𝑆𝐴∪𝑆𝐵 )
|𝑆𝐴∪𝑆𝐵 | =

𝑔Ω,𝑅 (𝑆𝐴∪𝑆𝐵 )
|𝑆𝐴 |+|𝑆𝐵 |− |𝑆𝐴∩𝑆𝐵 | =

𝑔Ω,𝑅 (𝑆𝐴) + 𝑔Ω,𝑅 (𝑆𝐵) −𝑊 +4 −𝑊 −
5
−𝑊 −

6
−𝑊 −

7
−𝑊 𝐴

8
−𝑊 𝐵

8
+𝑊 +

8

|𝑆𝐴 | + |𝑆𝐵 | − |𝑆𝐴 ∩ 𝑆𝐵 |
(4)

≥
𝑔Ω,𝑅 (𝑆𝐴) + 𝑔Ω,𝑅 (𝑆𝐵) −𝑊 +4 −𝑊 −

5
−𝑊 −

6
−𝑊 −

7

|𝑆𝐴 | + |𝑆𝐵 | − |𝑆𝐴 ∩ 𝑆𝐵 |
. (5)

Let 𝑎 = 𝑔Ω,𝑅 (𝑆𝐴) + 𝑔Ω,𝑅 (𝑆𝐵), 𝑏 = |𝑆𝐴 | + |𝑆𝐵 |, 𝑐 = 𝑊 +
4
+𝑊 −

5
+𝑊 −

6
+𝑊 −

7
, 𝑑 = |𝑆𝐴 ∩ 𝑆𝐵 | ≥ 0, 𝑘 = 1,

consider the following cases:

(1) If 𝑆𝐴 ∪ 𝑆𝐵 = 𝑆𝐴 or 𝑆𝐵 , the lemma is correct as 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵) ≥ min{𝜌Ω,𝑅 (𝑆𝐴), 𝜌Ω,𝑅 (𝑆𝐵)} = 𝜌∗Ω,𝑅 ;

(2) Else if 𝑐 ≤ 0, the lemma is correct as 𝜌Ω,𝑅 (𝑆𝐴∪𝑆𝐵) = 𝑔Ω,𝑅 (𝑆𝐴 )+𝑔Ω,𝑅 (𝑆𝐵 )−𝑐
|𝑆𝐴 |+|𝑆𝐵 |−𝑑 ≥ 𝑔Ω,𝑅 (𝑆𝐴 )+𝑔Ω,𝑅 (𝑆𝐵 )

|𝑆𝐴 |+|𝑆𝐵 | = 𝜌∗Ω,𝑅 ;

(3) Else, we have 𝑆𝐴 \ 𝑆𝐵 ≠ ∅, 𝑆𝐵 \ 𝑆𝐴 ≠ ∅, and 𝑐 > 0, then we have

(a) 𝑑 > 0, because otherwise 𝑆𝐴 ∩ 𝑆𝐵 = ∅, so no edge is incident on 𝑆𝐴 ∩ 𝑆𝐵 and by Constraint C2,

Definition 4, 𝑔Ω,𝑅 (𝑆𝐴 ∩ 𝑆𝐵) =𝑊 +
4
+𝑊 −

5
+𝑊 −

6
+𝑊 −

7
= 𝑑 = 0, contradicts 𝑑 > 0;

(b) 𝑏 > 𝑑 , because 𝑏 ≥ |𝑆𝐴 ∪ 𝑆𝐵 | > |𝑆𝐴 | ≥ 𝑑 ;

(c) 𝑎 > 0, because by Lemma 14, 𝜌∗Ω,𝑅 ≥ 1, thus 𝑎 ≥ 𝑏 > 0;

(d)
𝑎
𝑏
≥ 𝑐

𝑑
, because

𝑎
𝑏
= 𝜌∗Ω,𝑅 ≥ 𝜌Ω,𝑅 (𝑆𝐴 ∩ 𝑆𝐵) = 𝑐

𝑑
;

(e) 𝑎 > 𝑐 , because 𝑎
𝑏
≥ 𝑐

𝑑
=⇒ 𝑎 ≥ 𝑏

𝑑
𝑐 =⇒ 𝑎 > 𝑐 by applying the above (b) and (d).

Now that we have 𝑎 ≥ 𝑐 > 0, 𝑏 > 𝑑 > 0, 𝑘 𝑎
𝑏
≥ 𝑘 𝑐

𝑑
, according to Lemma 1 equivalence (1), we

have 𝑘 𝑎
𝑏
≥ 𝑘 𝑐

𝑑
⇐⇒ 𝑘 𝑎

𝑏
≤ 𝑘 𝑎−𝑐

𝑏−𝑑 . As 𝑘
𝑎
𝑏
≥ 𝑘 𝑐

𝑑
, and by Eqn (5), we have 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵)

≥
𝑔Ω,𝑅 (𝑆𝐴) + 𝑔Ω,𝑅 (𝑆𝐵) −𝑊 +4 −𝑊 −

5
−𝑊 −

6
−𝑊 −

7

|𝑆𝐴 | + |𝑆𝐵 | − |𝑆𝐴 ∩ 𝑆𝐵 |
= 𝑘

𝑎 − 𝑐
𝑏 − 𝑑 ≥ 𝑘

𝑎

𝑏
=
𝑔Ω,𝑅 (𝑆𝐴) + 𝑔Ω,𝑅 (𝑆𝐵)
|𝑆𝐴 | + |𝑆𝐵 |

= 𝜌∗Ω,𝑅,

thus concludes the proof that 𝜌Ω,𝑅 (𝑆𝐴 ∪ 𝑆𝐵) = 𝜌∗Ω,𝑅 . □

Lemma 13 shows that for ∀Ω ∈ C𝐿 , the maximal LDS is unique, which is also the maximum LDS.

Lemma 14. Given an input tuple (𝐺, 𝑅,Ω) and a base algorithm A, apply ExpansionFramework;
denote by 𝑘 the max value of 𝑖 before terminating the while-loop (Line 2-Line 5) and denote, for
each 𝑖 ∈ [0, 𝑘], by 𝐿𝑖 the working graph and by 𝑆𝑖 the LDS of 𝐿𝑖 (returned by A). We then have
𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) ≥ 1, for each 𝑖 ∈ [0, 𝑘].

Proof. By Definition 7, 𝑅 is required to have an edge, i.e., |𝐸 (𝑅) | > 0. Let 𝑒 (𝑢, 𝑣) be an arbitrary

edge in 𝑅. We show below that the set 𝑆 = {𝑢, 𝑣} has local density 1 on every 𝐿𝑖 . Consider 𝐿𝑖 ,

𝑖 ∈ [0, 𝑘]. Denote by {𝐸𝑖𝑝 |𝑝 ∈ I} the edge partitioning of E(𝑆, 𝑅 |𝐿𝑖 ) defined in Definition 2.

The local density 𝜌Ω,𝑅 (𝑆 |𝐿𝑖 ) = 𝑔Ω,𝑅 (𝑆 |𝐿𝑖 )
|𝑆 | where 𝑔Ω,𝑅 (𝑆 |𝐿𝑖 ) =

∑
𝑝∈I 𝜔𝑝 |𝐸𝑖𝑝 | =

∑
𝑝∈I𝐿 Ω(𝑝) |𝐸𝑖𝑝 | by

Lemma 12. Furthermore, as 𝑆 is a subset of 𝑅, in the node partitioning of 𝐿𝑖 , 𝑉
𝑖
2
� 𝑆 \ 𝑅 = ∅. Thus,

for ∀𝑝 ∈ {(1, 2), (2, 3), (2, 4)} = I𝐿 \ {(1, 1)}, |𝐸𝑝 | ≤ |𝑉 𝑖
2
×𝑉 | = 0. Thus, 𝑔Ω,𝑅 (𝑆 |𝐿𝑖 ) = 𝜔11 |𝐸𝑖11 | = 2

as 𝜔11 = 2 for Ω ∈ C𝐿 and 𝐸11 = {𝑒 (𝑢, 𝑣)}. Thus 𝜌Ω,𝑅 (𝑆 |𝐿𝑖 ) = 1. Since 𝑆𝑖 is the LDS on 𝐿𝑖 ,

𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) ≥ 𝜌Ω,𝑅 (𝑆 |𝐿𝑖 ) = 1. □

Lemma 15. Consider an input tuple (𝐺, 𝑅,Ω). Denote by 𝑆∗ the LDS of the input tuple, then
|𝑆∗ | ≤ 𝑔Ω,𝑅 (𝑆∗) ≤ 2vol(𝑅), i.e., |𝑆∗ | = 𝑂 (vol(𝑅)). For the ease of the following discussions, let 𝑈𝑠 be
an alias of 2vol(𝑅), we then have |𝑆∗ | = 𝑂 (𝑈𝑠 ).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:14 Yizhou Dai, Miao Qiao, & Rong-Hua Li

Proof. By Lemma 2, only edges 𝑒 ∈ 𝐸+ (𝑅) can have positive weights and by Constraint C1

and C3, Definition 4, 𝑤Ω,𝑅,𝑆 (𝑒) ≤ 2. By Lemma 14, let 𝑆𝑘 be the local densest graph on 𝐿𝑘 ,

the last working graph of ExpansionFramework, 𝜌Ω,𝑅 (𝑆𝑘 |𝐿𝑘 ) ≥ 1; further based on Lemma 10,

𝜌Ω,𝑅 (𝑆𝑘 |𝐿𝑘 ) = 𝜌Ω,𝑅 (𝑆𝑘 |𝐺), thus 𝜌Ω,𝑅 (𝑆𝑘 |𝐺) > 1. Then, 𝜌Ω,𝑅 (𝑆∗) = 𝑔Ω,𝑅 (𝑆∗ )
|𝑆∗ | ≥ 𝜌Ω,𝑅 (𝑆𝑘 |𝐺) ≥ 1 and

thus |𝑆∗ | ≤ 𝑔Ω,𝑅 (𝑆∗) ≤
∑

𝑒∈𝐸+ (𝑅) 𝑤Ω,𝑅,𝑆 (𝑒) ≤ 2|𝐸+ (𝑅) | ≤ 2vol(𝑅). □

Lemma 16. Consider input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with base algorithm A defined in Lemma 8. If Ω
has 𝜔24 = 0, then for any subgraph 𝐿′ (𝑉 ′, 𝐸′) of 𝐺 that satisfies 𝐿0 (N+ (𝑅), 𝐸+ (𝑅)) ⊆ 𝐿′, then any
𝑆 ⊆ N+ (𝑅) has 𝜌Ω,𝑅 (𝑆 |𝐿′) = 𝜌Ω,𝑅 (𝑆 |𝐿0) = 𝜌Ω,𝑅 (𝑆 |𝐺).

Proof. Let {𝐸′𝑝 |𝑝 ∈ I} be the edge partitioning E(𝑆, 𝑅 |𝐿′), and {𝐸0𝑝 |𝑝 ∈ I} be E(𝑆, 𝑅 |𝐿0). Note
that in the node partitioningV(𝑆, 𝑅 |𝐿′) andV(𝑆, 𝑅 |𝐿0), they share the same𝑉0 = 𝑆 ∩ 𝑅,𝑉1 = 𝑆 \ 𝑅.
Furthermore,𝑉2 = 𝑅 \𝑆 and (𝑉1 ×𝑉1) ∩𝐸, (𝑉1 ×𝑉2) ∩𝐸, (𝑉2 ×𝑉3) ∩𝐸 ⊆ 𝐸+ (𝑅) ⊆ 𝐸′. Thus 𝐸′

11
= 𝐸0

11
,

𝐸′
12

= 𝐸0
12
, and 𝐸′

12
= 𝐸0

13
. By Lemma 12, 𝑔Ω,𝑅 (𝑆 |𝐿′) =

∑
𝑝∈I𝐿 |𝐸′𝑝 | and 𝑔Ω,𝑅 (𝑆 |𝐿0) =

∑
𝑝∈I𝐿 |𝐸0𝑝 |. So if

𝜔24 = 0, 𝑔Ω,𝑅 (𝑆 |𝐿′) = 𝜔11 |𝐸′11 | + 𝜔12 |𝐸′12 | + 𝜔23 |𝐸′23 | + 0 × |𝐸′24 | = 𝑔Ω,𝑅 (𝑆 |𝐿0). Since 𝐺 is a subgraph

of 𝐺 , 𝑔Ω,𝑅 (𝑆 |𝐿0) = 𝑔Ω,𝑅 (𝑆 |𝐺). □

Lemma 17. Consider input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with base algorithm A defined in Lemma 8:
𝑓 𝑇A ( |𝐺 |) and 𝑓 𝑆A ( |𝐺 |) denote the time and space of algorithm A on 𝐺 respectively where |𝐺 | � |𝐸 |.
Denote by 𝑉0 = N+ (𝑅), 𝐸0 = 𝐸+ (𝑅), graph 𝐿0 (𝑉0, 𝐸0) ⊆ 𝐺 let 𝑆0 ⊆ 𝑉0 be the LDS on 𝐿0. If Ω has
𝜔24 = 0 then (1) 𝑆0 is the LDS on 𝐺 , and (2) ExpansionFramework with (𝐺 (𝑉 , 𝐸), 𝑅,Ω) and A finds
the LDS of 𝐺 in 𝑓 𝑇A (vol(𝑅)) time and 𝑓 𝑆A (vol(𝑅)) space.

Proof. We prove (1) by contradiction. Suppose that there is a subgraph 𝑆 ′ ≠ 𝑆0 such that

𝜌Ω,𝑅 (𝑆 ′ |𝐺) = [𝜌∗Ω,𝑅 |𝐺] > 𝜌Ω,𝑅 (𝑆0 |𝐺). By Lemma 11, 𝜌Ω,𝑅 (𝑆 ′ |𝐺) ≤ 𝜌Ω,𝑅 (𝑆 ′ ∩ 𝑉0 |𝐿0), and since 𝑆0

is the LDS on 𝐿0, 𝜌Ω,𝑅 (𝑆 ′ ∩ 𝑉0 |𝐿0) ≤ [𝜌∗Ω,𝑅 |𝐿0] = 𝜌Ω,𝑅 (𝑆0 |𝐿0). By Lemma 16, 𝜌Ω,𝑅 (𝑆 ′ ∩ 𝑉0 |𝐿0) =
𝜌Ω,𝑅 (𝑆 ′ ∩𝑉0 |𝐺) and 𝜌Ω,𝑅 (𝑆0 |𝐿0) = 𝜌Ω,𝑅 (𝑆0 |𝐺), so by Lemma 11, 𝜌Ω,𝑅 (𝑆 ′ |𝐺) ≤ 𝜌Ω,𝑅 (𝑆 ′ ∩𝑉0 |𝐿0) ≤
𝜌Ω,𝑅 (𝑆0 |𝐿0) = 𝜌Ω,𝑅 (𝑆0 |𝐺), contradicting to the assumption 𝜌Ω,𝑅 (𝑆 ′ |𝐺) > 𝜌Ω,𝑅 (𝑆0 |𝐺). To see (2),

A(𝐿0, 𝑅,Ω) outputs the LDS 𝑆0 of 𝐿0 with |𝐿0 | = 𝑂 (vol(𝑅)) (Lemma 8), thus proves the lemma. □

Lemma 18. Consider input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) where Ω has 𝜔24 < 0. Let 𝑆∗ be the LDS, then for
each 𝑣 ∈ 𝑆∗, deg(𝑣) is bounded by (3 − 2

𝜔24

)vol(𝑅). Let 𝑈𝑑 be an alias of (3 − 2

𝜔24

)vol(𝑅), deg(𝑣) =
𝑂 (vol(𝑅)) = 𝑂 (𝑈𝑑 ).

Proof. For a node 𝑣 ∈ 𝑆∗, if 𝑣 ∈ 𝑅, then deg(𝑣) ≤ vol(𝑅) ≤ (3 − 2

𝜔24

)vol(𝑅) as 𝜔24 < 0. Below,

we consider a node 𝑣 ∈ 𝑆∗ \ 𝑅. Denote by {𝐸𝑝 |𝑝 ∈ I} the edge partitioning of E(𝑆∗, 𝑅 |𝐺). By
Lemma 12, 𝜌Ω,𝑅 (𝑆∗) =

∑
𝑝∈I𝐿 𝜔𝑝 |𝐸𝑝 |
|𝑆∗ | where I𝐿 = {(1, 1), (1, 2), (2, 3), (2, 4)}. Thus, (−𝜔24) |𝐸24 | =

𝜔11 |𝐸11 | + 𝜔12 |𝐸12 | + 𝜔23 |𝐸23 | − 𝜌Ω,𝑅 (𝑆∗) |𝑆∗ | ≤ 2|𝐸11 | + 2|𝐸12 | because according to Definition 4,

𝜔11 = 2, 𝜔12 ≤ 2 and 𝜔23 ≤ 0. Since 𝐸11 are edges among nodes in 𝑉1 � 𝑆∗ ∩ 𝑅, and 𝐸12 are edges

between𝑉1 and𝑉2 � 𝑆∗\𝑅, 𝐸11 and 𝐸12 are two disjoint set of edges on𝑉1, so |𝐸12 |+ |𝐸12 | ≤ vol(𝑉1) ≤
vol(𝑅). Thus, (−𝜔24) |𝐸24 | ≤ 2vol(𝑅). Because 𝜔24 < 0, |𝐸24 | ≤ − 2vol(𝑅)

𝜔24

. Because 𝑣 ∈ 𝑆∗ \ 𝑅 = 𝑉2,

note that 𝑅 = 𝑉1 ∪ 𝑉3 where 𝑉3 � 𝑅 \ 𝑆∗, any edge incident on 𝑣 must be in one of the three

sets ({𝑣} × 𝑅) ∩ 𝐸 ⊆ (𝑉2 × (𝑉1 ∪ 𝑉3)) ∩ 𝐸 = 𝐸12 ∪ 𝐸23, ({𝑣} × 𝑉2) ∩ 𝐸 ⊆ 𝐸22 and 𝐸24. Moreover,

|𝐸 ∩ ({𝑣} ×𝑅) | ≤ vol(𝑅) and | ({𝑣} ×𝑉2) ∩ 𝐸 | ≤ |𝑉2 | ≤ |𝑆∗ | ≤ 2vol(𝑅) according to Lemma 15. Thus,

deg(𝑣) ≤ vol(𝑅) + 2vol(𝑅) + |𝐸24 | ≤ 3vol(𝑅) − 2vol(𝑅)
𝜔24

. Therefore, deg(𝑣) ≤ (3 − 2

𝜔24

)vol(𝑅). □

Recall that Lemma 15 defines𝑈𝑠 � 2vol(𝑅) and Lemma 18 defines𝑈𝑑 � (3 − 2

𝜔24

)vol(𝑅).

Lemma 19. Apply ExpansionFramework on input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) and base algorithm A
defined in Lemma 8. Consider two consecutive iterations, 𝑖 and 𝑖 + 1, with working graphs 𝐿𝑖 (𝑉𝑖 , 𝐸𝑖 )

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:15

and 𝐿𝑖+1 (𝑉𝑖+1, 𝐸𝑖+1). If Ω has 𝜔24 < 0, then the number of nodes and edges added to 𝐿𝑖 to form 𝐿𝑖+1
are bounded, i.e., max{|𝑉𝑖+1 | − |𝑉𝑖 |, |𝐸𝑖+1 | − |𝐸𝑖 |} ≤ 𝑈𝑠𝑈𝑑 = 2(3 − 2

𝜔24

)vol2 (𝑅) = 𝑂 (vol2 (𝑅)). Let 𝑈𝑔

be an alias for𝑈𝑠𝑈𝑑 , both |𝑉𝑖+1 | − |𝑉𝑖 | and |𝐸𝑖+1 | − |𝐸𝑖 | are bounded by𝑈𝑔.

Proof. Since 𝐶𝑖+1 = 𝐶𝑖 ∪ 𝑆𝑖 , 𝑉𝑖 = N+ (𝐶𝑖 ) and 𝑉𝑖+1 = N+ (𝐶𝑖+1), the added nodes 𝑉𝑖+1 \𝑉𝑖 are the
neighbors of 𝑆𝑖 . As 𝑉𝑖 ⊆ 𝑉𝑖+1, |𝑉𝑖+1 | − |𝑉𝑖 | = |𝑉𝑖+1 \𝑉𝑖 | ≤ |𝑆𝑖 | ×𝑈𝑑 where 𝑈𝑑 is the upper bound of

degree of nodes in 𝑆𝑖 (Lemma 18). Note that |𝑆𝑖 | ≤ 2vol(𝑅) = 𝑈𝑠 by Lemma 15. |𝑉𝑖+1 | − |𝑉𝑖 | ≤ 𝑈𝑠𝑈𝑑 .

Since 𝐸𝑖 = 𝐸+ (𝐶𝑖 ) = (𝐶𝑖 ×𝑉 ) ∩𝐸 and𝐶𝑖 ⊆ 𝐶𝑖+1, 𝐸𝑖+1 = 𝐸+ (𝐶𝑖+1) = (𝐶𝑖+1 ×𝑉 ) ∩𝐸 = ((𝐶𝑖 ∪ (𝐶𝑖+1 \
𝐶𝑖 )) ×𝑉 ) ∩ 𝐸 = ((𝐶𝑖 ×𝑉 ) ∩ 𝐸) ∪ (((𝐶𝑖+1 \𝐶𝑖 ) ×𝑉 ) ∩ 𝐸) = 𝐸𝑖 ∪ 𝐸+ (𝐶𝑖+1 \𝐶𝑖 ). Thus, |𝐸𝑖+1 | − |𝐸𝑖 | ≤
|𝐸+ (𝐶𝑖+1 \𝐶𝑖 ) | ≤ vol(𝐶𝑖+1 \𝐶𝑖 ). Because𝐶𝑖+1 \𝐶𝑖 ⊆ 𝑆𝑖 , |𝐸𝑖+1 | − |𝐸𝑖 | ≤ vol(𝑆𝑖 ) ≤ |𝑆𝑖 |𝑈𝑑 ≤ 𝑈𝑠𝑈𝑑 . □

Lemma 20. Apply ExpansionFramework on input tuple (𝐺, 𝑅,Ω) and a base algorithm A defined
in Lemma 8. Consider two consecutive iterations 𝑖 and 𝑖 + 1. Denote by 𝐿𝑖 (𝑉𝑖 , 𝐸𝑖 ) and 𝐿𝑖+1 (𝑉𝑖+1, 𝐸𝑖+1)
the working graphs and 𝑆𝑖 and 𝑆𝑖+1 the LDS s found by A, resp.. If Ω has 𝜔24 < 0, then{

𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) > 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1), 𝑆𝑖+1 \𝑉𝑖 ≠ ∅;
𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) ≥ 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1), otherwise.

Furthermore, when 𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) = 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1), N+ (𝑆𝑖+1) ⊆ 𝑉𝑖+1. In other words, the local density
𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) strictly decreases across iterations; once the decreasing stops, ExpansionFramework halts.
(Proof in Appendix A.5)

Recall𝑈𝑠 � 2vol(𝑅) defined in Lemma 15,𝑈𝑑 � vol(𝑅) (3 − 2

𝜔24

) in Lemma 18, and𝑈𝑔 � 𝑈𝑠𝑈𝑑 in

Lemma 19. We discuss the complexity based on whether the weights in Ω are integers.

Lemma 21. Apply ExpansionFramework to input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with base algorithm A
defined in Lemma 8. Let 𝑘 be the maximum value of 𝑖 in ExpansionFramework before termination,
i.e., the number of iterations is 𝑘 + 1. If Ω has 𝜔24 < 0, then if all the weights in Ω are integers, then
𝑘 ≤ 𝑈 2

𝑠 ; otherwise, 𝑘 ≤ (𝑈𝑠𝑈𝑑 + 1)4𝑈𝑠 . Define alias 𝑈Z � 𝑈 2

𝑠 and alias 𝑈R � (𝑈𝑠𝑈𝑑 + 1)4𝑈𝑠 , so
𝑘 ≤ 𝑈Z = 𝑂 (vol2 (𝑅)) when the weights Ω are integers and 𝑘 ≤ 𝑈R = 𝑂 (vol9 (𝑅)) otherwise. (Proof in
Appendix A.6)

Lemma 22. Consider input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with base algorithmA defined in Lemma 8. Denote
by 𝑘 the largest value of 𝑖 in the iteration of ExpansionFramework. If Ω has 𝜔24 < 0 then
(1) If the weights in Ω are all integers, |𝐸𝑘 | ≤ 𝑈𝑔𝑈Z = 𝑂 (vol4 (𝑅));
(2) Otherwise, |𝐸𝑘 | ≤ 𝑈𝑔𝑈R = 𝑂 (vol11 (𝑅)).

Proof. As the working graph can have, per iteration 𝑙 before the termination (i.e., 0 ≤ 𝑙 < 𝑘),

𝑈𝑔 more edges by Lemma 19 and 𝑘 is bounded by 𝑈Z if the weights in Ω are all integers or 𝑈R
otherwise by Lemma 21, the number of edges of the last working graph is thus |𝐸𝑘 | ≤ 𝑘 ×𝑈𝑔 which

is bounded by𝑈𝑔𝑈Z = 𝑂 (vol4 (𝑅)) when Ω are integers and by𝑈𝑔𝑈R = 𝑂 (vol11 (𝑅)) otherwise. □

Lemma 23. Consider input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with A defined in Lemma 8. If Ω has 𝜔24 < 0,
then the LDS 𝑆∗ of 𝐺 can be computed with a strongly local algorithm. Specifically,
(1) If the weights in Ω are all integers, 𝑆∗ can be computed in time 𝑂 (vol2 (𝑅) 𝑓 𝑇A (vol

4 (𝑅))) and
space of 𝑂 (𝑓 𝑆A (vol

4 (𝑅)));
(2) Otherwise, 𝑆∗ can be computed in 𝑂 (vol9 (𝑅) 𝑓 𝑇A (vol

11 (𝑅))) time and 𝑂 (𝑓 𝑆A (vol
11 (𝑅)) space.

Proof. The size, i.e., the number of edges of the last (the largest) working subgraph shown

in Lemma 15, bounds the space consumption, which is 𝑂 (vol4 (𝑅)) when Ω consists of integer

weights and 𝑂 (vol11 (𝑅)) in other cases. Each call of A on a working graph 𝐿𝑙 (𝑉𝑙 , 𝐸𝑙 ) in iteration

0 ≤ 𝑙 ≤ 𝑘 takes 𝑓 𝑇A ( |𝐿𝑙 |) = 𝑓 𝑇A ( |𝐸𝑙 |) time where |𝐸𝑙 | ≤ |𝐸𝑘 |. The time consumption is thus bounded

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:16 Yizhou Dai, Miao Qiao, & Rong-Hua Li

by the multiplication of the number of iterations provided by Lemma 21, i.e., 𝑂 (vol2 (𝑅)) when
Ω have integer weights and 𝑂 (vol9 (𝑅)) in other cases, and 𝑓 𝑇A ( |𝐸𝑘 |) where |𝐸𝑘 | is bounded by

Lemma 22. □

3 GENERALIZED LP-BASED SOLUTION
Table 1 shows that all the existing strongly local algorithms for local community search are flow-

based. This paper provides a generic linear-programming-based strongly local approach for C𝐿𝑃 ,
configurations of C𝐿 whose 𝜔23 are 0.

Definition 9. C𝐿𝑃 � {Ω ∈ C𝐿 |𝜔23 = 0}.

This section considers an input tuple (𝐺, 𝑅,Ω) with Ω ∈ C𝐿𝑃 , proposes the LP formulation

LP-DenLCS in Definition 12. Theorem 6 proves that LP-DenLCS can correctly find density-based

LCS. Theorem 7 proves that by adding a constraint to LP-DenLCS, LP-DenLCS+ correctly finds the
maximal solution via binary search and thus can fit in ExpansionFramework with the analysis in

Section 2 applied naturally.

Lemma 24. Define I𝐿𝑃 � {(1, 1), (1, 2), (2, 4)}. For any Ω ∈ 𝐶𝐿𝑃 , 𝜔11 = 2, 𝜔12 ≥ 0, 𝜔24 ≤ 0, and
for ∀𝑝 ∈ I \ I𝐿𝑃 , 𝜔𝑝 = 0.

Proof. 𝜔11 = 2, 𝜔12 ≥ 0, 𝜔24 ≤ 0 by Constraint C1, C3 and C4 respectively. For 𝑝 ∈ I \ I𝐿 ,
𝜔𝑝 = 0 by Lemma 12, besides, 𝜔23 = 0, thus 𝜔𝑝 = 0 for 𝑝 ∈ I \ I𝐿𝑃 . □

3.1 Generic LP Formulation
In order to introduce our LP formulation, we first define a partition of the edges in 𝐸 based on the

number of nodes an edge has in 𝑅 or 𝑆 . This partitioning is coarser than E(𝑆, 𝑅 |𝐺) in Definition 2.

Definition 10. Given an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω), define the following edge partitioning.
(1) For 𝑘 in {0, 1, 2}, 𝐸𝑘 (𝑅) is the set of edges in 𝐸 where each edge 𝑒 has exactly 𝑘 nodes in 𝑅, i.e.,

𝑒 ∈ 𝐸 |𝑒∩𝑅 | (𝑅). Formally, 𝐸0 (𝑅) = (𝑅 × 𝑅) ∩ 𝐸, 𝐸1 (𝑅) = (𝑅 × 𝑅) ∩ 𝐸, and 𝐸2 (𝑅) = (𝑅 × 𝑅) ∩ 𝐸.
Denote by E(𝑅 |𝐺) � {𝐸𝑘 (𝑅) |𝑘 = 0, 1, 2} the above edge partitioning based on 𝑅.

(2) For 𝑘 in {0, 1, 2} and any 𝑆 ⊆ 𝑉 , 𝐸𝑘 (𝑆) is the set of edges in 𝐸 where each edge 𝑒 has 𝑘 nodes in 𝑆 ,
i.e., 𝑒 ∈ 𝐸 |𝑒∩𝑆 | (𝑆). Formally, 𝐸0 (𝑆) = (𝑆 × 𝑆) ∩ 𝐸, 𝐸1 (𝑅) = (𝑆 × 𝑆) ∩ 𝐸, and 𝐸2 (𝑆) = (𝑆 × 𝑆) ∩ 𝐸.
Denote by E(𝑆 |𝐺) � {𝐸𝑘 (𝑆) |𝑘 = 0, 1, 2} the above edge partitioning based on 𝑆 .

We now show that the edge partitionings of Definition 10 are coarsening the one in Definition 2.

Lemma 25. Consider an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) and a node set 𝑆 ⊆ 𝑉 . Denote by {𝐸𝑝 |𝑝 ∈
I} = E(𝑆, 𝑅) the edge partitioning of Definition 2 and by {𝐸𝑘 (𝑅) |𝑘 = 0, 1, 2} = E(𝑅) and {𝐸𝑘 (𝑆) |𝑘 =

0, 1, 2} = E(𝑆) that in Definition 10. Let (1) I0 (𝑅) � {2, 4} × {2, 4}, I1 (𝑅) � {1, 3} × {2, 4}, I2 (𝑅) �
{1, 3} × {1, 3}, and (2) I0 (𝑆) � {3, 4} × {3, 4}, I1 (𝑆) � {1, 2} × {3, 4}, I2 (𝑆) � {1, 2} × {1, 2}, then
(1) 𝐸0 (𝑅) = ∪𝑝∈I0 (𝑅)𝐸𝑝 , 𝐸1 (𝑅) = ∪𝑝∈I1 (𝑅)𝐸𝑝 , 𝐸2 (𝑅) = ∪𝑝∈I2 (𝑅)𝐸𝑝 ;
(2) 𝐸0 (𝑆) = ∪𝑝∈I0 (𝑆 )𝐸𝑝 , 𝐸1 (𝑆) = ∪𝑝∈I1 (𝑆 )𝐸𝑝 , 𝐸2 (𝑆) = ∪𝑝∈I2 (𝑆 )𝐸𝑝 .

Proof. Recall that the node partitioningV(𝑆, 𝑅) on𝐺 , as defined in Definition 2, is (𝑉1,𝑉2,𝑉3,𝑉4)
where 𝑉1 � 𝑆 ∩ 𝑅, 𝑉2 � 𝑆 \ 𝑅, 𝑉3 � 𝑅 \ 𝑆 and 𝑉4 � 𝑅 ∪ 𝑆 . Thus 𝑅 = 𝑉1 ∪𝑉3 while 𝑅 = 𝑉2 ∪𝑉4, and
𝑆 = 𝑉1 ∪ 𝑉2 while 𝑆 = 𝑉3 ∪ 𝑉4. Therefore, 𝐸0 (𝑅) = (𝑅 × 𝑅) ∩ 𝐸 = ((𝑉2 ∪ 𝑉4) × (𝑉2 ∪ 𝑉4)) ∩ 𝐸 =

((𝑉2 × 𝑉2) ∩ 𝐸) ∪ ((𝑉2 × 𝑉4) ∩ 𝐸) ∪ ((𝑉4 × 𝑉4) ∩ 𝐸) = 𝐸22 ∪ 𝐸24 ∪ 𝐸44 = ∪𝑝∈I0 (𝑅)={2,4}×{2,4}𝐸𝑝 .
Similarly, 𝐸1 (𝑅) = (𝑅 × 𝑅) ∩ 𝐸 = ((𝑉1 ∪𝑉3) × (𝑉2 ∪𝑉4)) ∩ 𝐸, Therefore, 𝐸1 (𝑅) = ∪𝑝∈{1,3}×{2,4}𝐸𝑝 .
Similarly, 𝐸2 (𝑅) = (𝑅 × 𝑅) ∩ 𝐸, since 𝑅 = (𝑉1 ∪𝑉3), 𝐸2 (𝑅) = ∪𝑝∈{1,3}×{1,3}𝐸𝑝 . The above proof to
E(𝑅) symmetrically applies to E(𝑆). □

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:17

Now we define effective pair sets and a function for the LP formulation.

Definition 11. Given input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) and a node set 𝑆 ⊆ 𝑉 , denote by {𝐸𝑝 |𝑝 ∈ I} =
E(𝑆, 𝑅) the edge partitioning of Definition 2. For 𝑘 in {0, 1, 2}, consider I𝑘 (𝑅) in Lemma 25, define
D1 Effective pair set 𝐶𝑘 � {𝑝 ∈ I𝐿𝑃 ∩ I𝑘 (𝑅) |Ω(𝑝) ≠ 0, 𝐸𝑝 ≠ ∅},
D2 Effective weight 𝜆𝑘 , the weight of Ω(𝑝) for 𝑝 ∈ 𝐶𝑘 with the highest absolute value (break ties

arbitrarily), formally defined in Eqn 6,
D3 Trident function for each edge 𝑒 ∈ 𝐸 and ∀𝑎, 𝑏, 𝑐 ∈ {−1, 0, 1} as Eqn 7, which takes a value in
{𝑎, 𝑏, 𝑐} based on the number of nodes 𝑒 has in 𝑅 and the weights in Ω.

𝜆𝑘 =

{
Ω(argmax𝑝∈𝐶𝑘

|Ω(𝑝) |), 𝐶𝑘 ≠ ∅;
0 otherwise.

(6)

Γ𝑎,𝑏,𝑐 (𝑒) =


𝑎 if 𝜆 |𝑒∩𝑅 | > 0,

𝑏 if 𝜆 |𝑒∩𝑅 | = 0,

𝑐 if 𝜆 |𝑒∩𝑅 | < 0.

(7)

With the above definitions, we are ready to introduce our LP formulation of density-based LCS.

Definition 12 (LP-DenLCS). Given an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with Ω ∈ C𝐿𝑃 , formulate the
linear programming problem with variables x = {𝑥𝑣 |𝑣 ∈ 𝑉 } and y = {𝑦𝑒 |𝑒 ∈ 𝐸} below.

max𝑓Ω,𝑅 (x, y) �
∑︁

𝑘∈{0,1,2}
(𝜆𝑘

∑︁
𝑒∈𝐸𝑘 (𝑅)

𝑦𝑒 ) =
∑︁
𝑒∈𝐸

𝜆 |𝑒∩𝑅 | · 𝑦𝑒 (8)

s.t. 𝑥𝑢 ≥ 0,∀𝑢 ∈ 𝑉 (9)

𝑦𝑒 ≥ 0,∀𝑒 ∈ 𝐸 (10)

∥x∥ �
∑︁
𝑢∈𝑉

𝑥𝑢 ≤ 1, (11)

Γ1,1,−1 (𝑒)𝑦𝑒 ≤ Γ1,0,−1 (𝑒)𝑥𝑢 + Γ0,0,1 (𝑒)𝑥𝑣,∀𝑒 (𝑢, 𝑣) ∈ 𝐸 (12)

Γ1,1,−1 (𝑒)𝑦𝑒 ≤ Γ1,0,−1 (𝑒)𝑥𝑣 + Γ0,0,1 (𝑒)𝑥𝑢,∀𝑒 (𝑢, 𝑣) ∈ 𝐸 (13)

We now show that the assignment of y can be determined by that of x in optimizing 𝑓Ω,𝑅 (x, y).

Lemma 26 (Optimal y). For any assignment of x satisfying Constraints (9) and (11) of LP-DenLCS,
a feasible solution (x, y) that maximizes 𝑓Ω,𝑅 (x, y) can be derived with y = {𝑦𝑒 |𝑒 ∈ 𝐸} defined as

For ∀𝑒 (𝑢, 𝑣) ∈ 𝐸,𝑦𝑒 =


min{𝑥𝑢, 𝑥𝑣} if 𝜆 |𝑒∩𝑅 | > 0,
0 if 𝜆 |𝑒∩𝑅 | = 0,
|𝑥𝑢 − 𝑥𝑣 | if 𝜆 |𝑒∩𝑅 | < 0.

Proof. We show that any feasible solution (x, y′) with y
′ = {𝑦′𝑒 |𝑒 ∈ 𝐸} has objective value

𝑓Ω,𝑅 (x, y′) ≤ 𝑓Ω,𝑅 (x, y) where y is defined above based on x. Specifically, we perform the following

process to each edge 𝑒 ∈ 𝐸 iteratively to convert 𝑦′𝑒 to 𝑦𝑒 while maintaining the feasibility of the

solution and non-strictly increasing the objective value, eventually having 𝑓Ω,𝑅 (x, y′) ≤ 𝑓Ω,𝑅 (x, y).
Consider an edge 𝑒 ∈ 𝐸 and Constraints 12-13 in LP-DenLCS. Recall the trident function Γ𝑎,𝑏,𝑐 (𝑒)
defined in Definition 10.

(1) If 𝜆 |𝑒∩𝑅 | > 0, then Γ1,1,−1 (𝑒) = Γ1,0,−1 (𝑒) = 1 and Γ0,0,1 (𝑒) = 0, so Constraint (12) becomes

𝑦𝑒 ≤ 𝑥𝑢 and Constraint (13) becomes 𝑦𝑒 ≤ 𝑥𝑣 , and thus 𝑦𝑒 ∈ [0,min{𝑥𝑢, 𝑥𝑣}].
(2) If 𝜆 |𝑒∩𝑅 | = 0, then Γ1,1,−1 (𝑒) = 1 and both Γ1,0,−1 (𝑒) = Γ0,0,1 (𝑒) = 0, so 𝑦𝑒 ∈ [0, 0], i.e., 𝑦𝑒 = 0.

(3) If 𝜆 |𝑒∩𝑅 | < 0, then Γ1,0,−1 = Γ1,1,−1 = −1 and Γ0,0,1 = 1, so 𝑦𝑒 ≥ 𝑥𝑢 − 𝑥𝑣 and 𝑦𝑒 ≥ 𝑥𝑣 − 𝑥𝑢 , i.e.,
𝑦𝑒 ≥ |𝑥𝑣 − 𝑥𝑢 |.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:18 Yizhou Dai, Miao Qiao, & Rong-Hua Li

Thus Constraints 12-13 can be summarized as (1) 0 ≤ 𝑦𝑒 ≤ min{𝑥𝑢, 𝑥𝑣}, if 𝜆 |𝑒∩𝑅 | > 0; (2) 𝑦𝑒 = 0, if

𝜆 |𝑒∩𝑅 | = 0; (3) 𝑦𝑒 ≥ |𝑥𝑢 − 𝑥𝑣 |, if 𝜆 |𝑒∩𝑅 | < 0. Besides, 𝑓Ω,𝑅 (x, y) =
∑

𝑒∈𝐸 𝜆 |𝑒∩𝑅 | · 𝑦𝑒 . When 𝜆 |𝑒∩𝑅 | > 0,

𝑓Ω,𝑅 increases with 𝑦𝑒 , thus by increasing 𝑦𝑒 to min{𝑥𝑢, 𝑥𝑣}, we non-strictly increase 𝑓Ω,𝑅 while the

solution is still feasible. When 𝜆 |𝑒∩𝑅 | = 0, 𝑦𝑒 = 0 is the only feasible assignment. When 𝜆 |𝑒∩𝑅 | < 0,

by decreasing 𝑦𝑒 to |𝑥𝑢 − 𝑥𝑣 |, we non-strictly increase 𝑓Ω,𝑅 while the solution is still feasible. □

Lemma 26 suggests that with a feasible assignment of x we can determine a feasible assignment

y that maximizes 𝑓Ω,𝑅 (x, y) under x. Thus, in the following, we refer to a feasible solution (x,y) as

x and the objective function as 𝑓Ω,𝑅 (x) � 𝑓Ω,𝑅 (x, y) since y can be determined by x via Lemma 26.

Throughout the rest of this section, we consider an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with Ω ∈ C𝐿𝑃 and

|𝐸 (𝑅) | ≥ 1, so 𝜌∗Ω,𝑅 ≥ 1 by Lemma 14.

Theorem 6. Given an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with Ω ∈ C𝐿𝑃 , let set 𝑆∗ be LDS, i.e., 𝜌Ω,𝑅 (𝑆∗) =
𝜌∗Ω,𝑅 , then the assignment x∗ (note that y∗ is determined by Lemma 26)

𝑥𝑢 =

{
1

|𝑆∗ | if 𝑢 ∈ 𝑆∗;
0 otherwise.

is an optimal solution of LP-DenLCSwith the objective value 𝜌Ω,𝑅 (𝑆∗). (Proof in Appendix A.4)

Theorem 7. Given an input tuple (𝐺 (𝑉 , 𝐸), 𝑅,Ω) with Ω ∈ C𝐿𝑃 , let 𝜌∗Ω,𝑅 be the optimal value of
LP-DenLCS. Adapt LP-DenLCS to parameterized LP-DenLCS+ by adding an additional constraint of
𝑥𝑢 ≤ 1

𝑘
,∀𝑢 ∈ 𝑉 , where parameter 𝑘 is a positive integer. Find the maximum integer 𝑘 via a binary

search over range [1, |𝑉 |] such that LP-DenLCS+ has the optimal value equal to 𝜌∗Ω,𝑅 ; denote by x∗

the assignment of the optimal solution. Such a solution exists because when 𝑘 = 1, LP-DenLCS+ is
LP-DenLCS. Then, the set of nodes with non-zero assignment in x∗ is a LDS for (𝐺, 𝑅,Ω).

Proof. Let the optimal value of LP-DenLCS+ be 𝜌+
𝑘
. As LP-DenLCS+ is LP-DenLCS with an

additional constraint, a feasible solution to LP-DenLCS+ also applies to LP-DenLCS. Thus, 𝜌+
𝑘
≤ 𝜌∗Ω,𝑅

for ∀𝑘 ∈ [1, |𝑉 |]. Denote by 𝑆∗ the maximum DenLCS of input tuple (𝐺, 𝑅,Ω) and 𝑘∗ = |𝑆∗ |, then
set assignment x

∗
via Theorem 7 is based on 𝑆∗, so 𝑓Ω,𝑅 (x∗) = 𝜌Ω,𝑅 (𝑆∗) = 𝜌∗Ω,𝑅 . Now we consider

LP-DenLCS+: if 𝑘 ≤ 𝑘∗, x∗ is a feasible with 𝑓Ω,𝑅 (x∗) = 𝜌∗Ω,𝑅 , so 𝜌
+
𝑘
= 𝜌∗Ω,𝑅 ; otherwise, by Lemma 34,

for any solution x
′
withmax𝑥 ′𝑣 ∈x′ 𝑥

′
𝑣 <

1

𝑘∗ , 𝑓Ω,𝑅 (x
′) < 𝜌∗Ω,𝑅 , so 𝜌

+
𝑘
< 𝜌∗Ω,𝑅 . Thus, for∀𝑘 , by comparing

𝜌+
𝑘
with 𝜌∗Ω,𝑅 , we can eventually reach 𝑘∗ by updating 𝑘 in each step of the binary search. □

Remarks.With Theorems 2-7, we draw a landscape of general density-based LCS. The general
LP-based solution LP-DenLCS+ can be plugged into the ExpansionFramework as A to form an

efficient solution for LDS exploration under Ω ∈ C𝐿𝑃 .

4 CONCLUSION
This paper introduces a broad class of density-based LCS objective functions. It provides a complete

characterization of the parameter settings where a strongly local algorithm is possible. With one

weight parameter set to 0, the paper provides a linear programming algorithm that is strongly local

and practically efficient. Using the notion of strong locality, this paper characterizes a family of

LCS problems while existing work only characterizes solutions for specific LCS problems.

ACKNOWLEDGMENTS
Miao Qiao was supported by Marsden Fund (UOA1732) and MBIE Catalyst: Strategic Fund NZ-

Singapore Data Science Research Programme (UOAX2001). Rong-Hua Li was supported by the

National Key Research and Development Program of China (2020AAA0108503) and NSFC Grants

(U2241211 and 62072034).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:19

REFERENCES
[1] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning using PageRank Vectors. In 47th

Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA,
Proceedings. IEEE Computer Society, 475–486. https://doi.org/10.1109/FOCS.2006.44

[2] Yizhou Dai, Miao Qiao, and Lijun Chang. 2022. Anchored Densest Subgraph. In SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi

(Eds.). ACM, 1200–1213. https://doi.org/10.1145/3514221.3517890

[3] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale Density-friendly Graph Decomposition

via Convex Programming. In Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth,
Australia, April 3-7, 2017, Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.). ACM,

233–242. https://doi.org/10.1145/3038912.3052619

[4] Adriano Fazzone, Tommaso Lanciano, Riccardo Denni, Charalampos E. Tsourakakis, and Francesco Bonchi. 2022.

Discovering Polarization Niches via Dense Subgraphs with Attractors and Repulsers. Proc. VLDB Endow. 15, 13 (2022),
3883–3896. https://doi.org/10.14778/3565838.3565843

[5] Santo Fortunato and Mark E. J. Newman. 2022. 20 years of network community detection. Nature Physics 18, 8 (Aug.
2022), 848–850. https://doi.org/10.1038/s41567-022-01716-7

[6] Isabel M. Kloumann and Jon M. Kleinberg. 2014. Community membership identification from small seed sets. In The
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA -
August 24 - 27, 2014, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani (Eds.). ACM,

1366–1375. https://doi.org/10.1145/2623330.2623621

[7] Dongsheng Luo, Yuchen Bian, Yaowei Yan, Xiao Liu, Jun Huan, and Xiang Zhang. 2020. Local Community Detection

in Multiple Networks. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, CA, USA, August 23-27, 2020, Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). ACM, 266–274.

https://doi.org/10.1145/3394486.3403069

[8] Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, and Xiaolin Han. 2022. Finding Locally Densest Subgraphs: A

Convex Programming Approach. Proc. VLDB Endow. 15, 11 (2022), 2719–2732. https://www.vldb.org/pvldb/vol15/p2719-

ma.pdf

[9] Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-Based Algorithms for Local Graph Clustering. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, Chandra Chekuri (Ed.). SIAM, 1267–1286. https://doi.org/10.1137/1.9781611973402.94

[10] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest Subgraph Discovery. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and

Graham Williams (Eds.). ACM, 965–974. https://doi.org/10.1145/2783258.2783299

[11] M. Sozio and A. Gionis. 2010. The community-search problem and how to plan a successful cocktail party. In Proc. of
KDD’10. 939–948.

[12] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria A. Tsiarli. 2013. Denser

than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013,
Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L.

Grossman, and Ramasamy Uthurusamy (Eds.). ACM, 104–112. https://doi.org/10.1145/2487575.2487645

[13] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Minimizing Localized Ratio Cut Objectives in Hypergraphs. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1708–1718.
[14] Nate Veldt, David F. Gleich, and Michael W. Mahoney. 2016. A Simple and Strongly-Local Flow-Based Method for

Cut Improvement. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q.

Weinberger (Eds.). JMLR.org, 1938–1947. http://proceedings.mlr.press/v48/veldt16.html

[15] Nate Veldt, Christine Klymko, and David F Gleich. 2019. Flow-based local graph clustering with better seed set

inclusion. In Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM, 378–386.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.

https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1145/3514221.3517890
https://doi.org/10.1145/3038912.3052619
https://doi.org/10.14778/3565838.3565843
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1145/2623330.2623621
https://doi.org/10.1145/3394486.3403069
https://www.vldb.org/pvldb/vol15/p2719-ma.pdf
https://www.vldb.org/pvldb/vol15/p2719-ma.pdf
https://doi.org/10.1137/1.9781611973402.94
https://doi.org/10.1145/2783258.2783299
https://doi.org/10.1145/2487575.2487645
http://proceedings.mlr.press/v48/veldt16.html


88:20 Yizhou Dai, Miao Qiao, & Rong-Hua Li

A APPENDIX
A.1 Case Study
This section shows an interactive local community exploration using the linear programming

algorithm introduced in Section 3. The underlying graph is a collaboration network dblp4 where
each node represents an author and each undirected edge denotes the co-authorship of two authors

on a paper. 𝑅 can be considered as an invitation list drafted for a workshop or a panel discussion.

In Figure 9, the label of a node is in the form of “node degree-author name”, nodes in grey show a

possible 𝑅 determined by a random process around a random author. To improve the invitation

list, people invited should form a community local to 𝑅, i.e., the subgraph has a higher density

biased to 𝑅. Based on Section 1.4, by tuning 𝑥 = 𝜔12 ∈ [0, 2] and 𝑦 = 𝜔24 ≤ 0 in a configuration,

denoted as Ω𝑥,𝑦 , one can optimize the corresponding objective function using our strongly local LP

algorithm (Section 3), i.e., use𝐺, 𝑅,Ω𝑥,𝑦 to produce a refined invitation list 𝑆𝑥,𝑦 . Figure 9 shows the

results of different configurations in colored rectangles marked as 𝑆𝑥,𝑦 . Edges with only one node

displayed are not shown. Consider the rules of thumb, i.e., increasing 𝑥 expands the searching area,

especially on the nodes outside 𝑅, while decreasing 𝑦 penalizes high-degree nodes that are not in 𝑅,

in 2 scenarios below.

Fig. 9. Case Study: a Possible 𝑅 and its LCS Results under 3 Configurations

Workshop. A workshop is expected to be open and inclusive. Fixing 𝑦 = 0, a user can freely tweak

𝑥 to decide to what extent people outside 𝑅 are explored. For example, by choosing 𝑥 = 2, the

result 𝑆2,0 contains more people outside of 𝑅, e.g., Qiang He, when compared with 𝑆1,0. On the other

hand, by having more people under consideration, 𝑆2,0 has a higher density, e.g., 𝜌 (𝑆1,0) = 3.8 and

𝜌 (𝑆2,0) = 5.1, causing nodes with insufficient connections with other nodes to be excluded, such as

Ming Sun. Further decreasing 𝑥 to 0 produces a degenerated 𝑆0,0 that only contains nodes in 𝑅.

Panel Discussion. A panel discussion prefers a more close-knit community; celebrities with light

connections to the community may be excluded. Thus, 𝑦 = −1 could be more suitable. Compared

to 𝑆2,0, 𝑆2,−1 penalizes high-degree nodes that are not in 𝑅, and thus excludes Andrew Balas who
has 65 out of 70 edges to 𝑆2,−1.

Note that the rules of thumb for tuning the two parameters can apply to other scenarios; moreover,

due to the efficiency of our strongly local LP-based solution, exploration can be interactive. The user

can not only choose the resulting communities but also explain the rationale behind the selection.

4
http://konect.cc/networks/dblp_coauthor/

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.

http://konect.cc/networks/dblp_coauthor/


On Density-based Local Community Search 88:21

A.2 Proof of Lemma 1
For Equivalence (1), 𝑘 𝑎

𝑏
> 𝑘 𝑎−𝑐

𝑏−𝑑 ⇐⇒ 𝑘 (𝑎𝑏 − 𝑎𝑑) > 𝑘 (𝑎𝑏 − 𝑏𝑐) ⇐⇒ 𝑘𝑎𝑑 < 𝑘𝑏𝑐 ⇐⇒ 𝑘 𝑎
𝑏
< 𝑘 𝑐

𝑑
.

For Equivalence (2), 𝑘 𝑎
𝑏
> 𝑘 𝑎+𝑐

𝑏+𝑑 ⇐⇒ 𝑘 (𝑎𝑏 + 𝑎𝑑) > 𝑘 (𝑎𝑏 + 𝑏𝑐) ⇐⇒ 𝑘𝑎𝑑 > 𝑘𝑏𝑐 ⇐⇒ 𝑘 𝑎
𝑏
> 𝑘 𝑐

𝑑
.

The above proofs hold when substituting < with ≤ and > with ≥.

A.3 Proof of Lemma 2
Denote the node partitioningV(𝑆, 𝑅) (Definition 2) of𝑉 as {𝑉1,𝑉2,𝑉3,𝑉4}. For each unordered pair

𝑝 (𝑖, 𝑗) ∈ I, let 𝐸𝑝 = (𝑉𝑖×𝑉𝑗 )∩𝐸. As𝑅 = 𝑉1∪𝑉3 and𝑅 = 𝑉2∪𝑉4, 𝐸+ (𝑅) = (𝑆×𝑉 )∩𝐸 = (𝑆×𝑆∪𝑆×𝑆)∩𝐸,
𝐸 \ 𝐸+ (𝑅) = (𝑆 × 𝑆) ∩ 𝐸 = ((𝑉2 ∪𝑉4) × (𝑉2 ∪𝑉4)) ∩ 𝐸 = 𝐸2,2 ∪ 𝐸2,4 ∪ 𝐸4,4. Based on the definition

of C, for ∀Ω ∈ C, we have 𝜔44 = 0 and 𝜔24 ≤ 0; so if 𝜔22 = 0, for ∀𝑒 ∈ 𝐸 \ 𝐸+ (𝑅) we have

𝑤Ω,𝑅,𝑆 (𝑒) ≤ max{𝜔44, 𝜔24, 𝜔22} = 0 according to Definition 3.

A.4 Proof of Theorem 6
We first introduce notations and then show the flow of the proof. For a solution x = {𝑥𝑣 |𝑣 ∈ 𝑉 },
we call ∥x∥ � ∑

𝑢∈𝑉 𝑥𝑢 the sum of x, and 𝑉 + (x) = {𝑣 ∈ 𝑉 |𝑥𝑣 > 0} the key node set of x which is

the set of nodes with positive assignment. An assignment is simple if has at most one non-zero

value, e.g., x is simple if |{𝑥𝑣 |𝑣 ∈ 𝑉 } \ {0}| = 1 after de-duplication. To prove Theorem 6, Lemma

30 constructively proves that the lower bound of the optimal solution is 𝜌Ω,𝑅 (𝑆∗); Lemma 32 shows

that there is always an optimal solution for LP-DenLCS that is simple; Lemma 33 shows that the

upper bound of the simple optimal solution is 𝜌Ω,𝑅 (𝑆∗), which completes the proof of Theorem 6.

Lemma 27 (Simple 𝑦). Given a simple feasible solution x = {𝑥𝑣 |𝑣 ∈ 𝑉 }, let {𝑦𝑒 |𝑒 ∈ 𝐸} be the
assignment of y based on Lemma 26, then y is simple. Specifically, if after de-duplication of the values,
{𝑥𝑣 |𝑣 ∈ 𝑉 } = {0, 𝑐} then {𝑦𝑒 |𝑒 ∈ 𝐸} = {𝑐, 0}.

Proof. Consider edge 𝑒 (𝑢, 𝑣) ∈ 𝐸. By Lemma 26, when 𝑥𝑢, 𝑥𝑣 ∈ {0, 𝑐}, 𝑦𝑒 also have 𝑦𝑒 ∈ {0, 𝑐}
for all 3 cases of 𝜆 |𝑒∩𝑅 | . □

Next, we discuss the general value of 𝜆 |𝑒∩𝑅 | · 𝑦𝑒 for ∀𝑒 ∈ 𝐸.

Lemma 28. Denote by {𝐸𝑝 |𝑝 ∈ I} the edge partitioning of E(𝑆, 𝑅) an by x = {𝑥𝑣 |𝑣 ∈ 𝑉 } a feasible
solution of LP-DenLCS. Define 𝑆 � {𝑣 ∈ 𝑉 |𝑥𝑣 = max𝑣′∈𝑉 𝑥𝑣′ }. Then for ∀𝑒 (𝑢, 𝑣) ∈ 𝐸 s.t. 𝑥𝑢 ≥ 𝑥𝑣 ,

𝜆 |𝑒∩𝑅 | · 𝑦𝑒 =


𝜔24 (𝑥𝑢 − 𝑥𝑣) if 𝑒 ∈ 𝐸0 (𝑅);
𝜔12𝑥𝑣 if 𝑒 ∈ 𝐸1 (𝑅);
𝜔11𝑥𝑣 if 𝑒 ∈ 𝐸2 (𝑅).

Proof. For value of 𝜆𝑘 where 𝑘 ∈ {0, 1, 2}, from Definition 11(D1)𝐶𝑘 = {𝑝 ∈ I𝐿𝑃 ∩I𝑘 (𝑅) |Ω(𝑝) ≠
0, 𝐸𝑝 ≠ ∅} and by Lemma 24, 𝜔11 = 2, 𝜔12 ≥ 0, 𝜔24 ≤ 0, and besides 𝜔𝑝 = 0 for any 𝑝 ∈ I \ I𝐿𝑃 .
• For 𝑘 = 0, 𝜔24 ≤ 0, 𝜔44 = 0 (Definition 4), 𝜔22 = 0 as Ω ∈ C𝐿𝑃 , and by Lemma 25, I0 (𝑅) =
{(2, 2), (2, 4), (4, 4)}, so if 𝜔24 < 0 then 𝐶0 = {(2, 4)}, otherwise, 𝐶0 = ∅. By Definition 11(D2)

of 𝜆𝑘 , when 𝐶0 = {(2, 4)}, 𝜆0 = 𝜔24, and otherwise, 𝜆0 = 0 = 𝜔24. By Lemma 26, for any

𝑒 (𝑢, 𝑣) ∈ 𝐸0 (𝑅), because 𝜆 |𝑒∩𝑅 | = 𝜆0 = 𝜔24 ≤ 0, if 𝜔24 < 0 then 𝑦𝑒 = |𝑥𝑢 − 𝑥𝑣 | = 𝑥𝑢 − 𝑥𝑣 and
otherwise 𝑦𝑒 = 0. Observe that in both cases, 𝜆 |𝑒∩𝑅 | · 𝑦𝑒 = 𝜔24 (𝑥𝑢 − 𝑥𝑣).
• For 𝑘 = 1, 𝜔12 ≥ 0 and 𝜔34 = 0 (Definition 4), 𝜔14 = 𝜔23 = 0 as Ω ∈ C𝐿𝑃 . By Lemma 25,

I1 (𝑅) = {(1, 2), (1, 4), (2, 3), (3, 4)}, so if 𝜔12 > 0 then 𝐶1 = {(1, 2)}, and if 𝜔12 = 0 then

𝐶1 = ∅. By Definition 11(D2) of 𝜆𝑘 , when 𝐶1 = {(1, 2)}, 𝜆1 = 𝜔12; when 𝐶1 = ∅, 𝜆1 = 0 = 𝜔12.

By Lemma 26, for any 𝑒 (𝑢, 𝑣) ∈ 𝐸1 (𝑅), since 𝜆 |𝑒∩𝑅 | = 𝜆1 = 𝜔12 ≥ 0, it follows that 𝑦𝑒 =

min{𝑥𝑢, 𝑥𝑣} = 𝑥𝑣 if 𝜔12 > 0 and 𝑦𝑒 = 0 otherwise, and in both cases, 𝜆 |𝑒∩𝑅 | · 𝑦𝑒 = 𝜔12𝑥𝑣 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:22 Yizhou Dai, Miao Qiao, & Rong-Hua Li

• For 𝑘 = 2, 𝜔11 = 2, 𝜔33 = 0, 𝜔14 ≤ 𝜔13 ≤ 0 (Definition 4), since 𝜔14 = 0 for Ω ∈ C𝐿𝑃 , we have
𝜔13 = 0. By Lemma 25, I2 (𝑅) = {(1, 1), (1, 3), (3, 3)}, so 𝐶2 = {(1, 1)}. By Definition 11(D2),

𝜆2 = 𝜔11. By Lemma 26, for ∀𝑒 (𝑢, 𝑣) ∈ 𝐸2 (𝑅), since 𝜆 |𝑒∩𝑅 | = 𝜆2 = 𝜔11 > 0, 𝑦𝑒 = min{𝑥𝑢, 𝑥𝑣} =
𝑥𝑣 because 𝑥𝑢 ≥ 𝑥𝑣 and therefore 𝜆 |𝑒∩𝑅 | · 𝑦𝑒 = 𝜔11𝑥𝑣 . □

Lemma 29. Given 𝑆 ⊆ 𝑉 , the assignment of x with 0 ≤ 𝑐 ≤ 1

|𝑆 | can be defined as 𝑥𝑢 = 𝑐 if𝑢 ∈ 𝑆 , and
𝑥𝑢 = 0 otherwise, which is feasible with 𝑓Ω,𝑅 (x) = 𝑐𝑔Ω,𝑅 (𝑆) = 𝑐 |𝑆 |𝜌Ω,𝑅 (𝑆) = ∥x∥𝜌Ω,𝑅 (𝑆) ≤ 𝜌Ω,𝑅 (𝑆).

Proof. x is a feasible solution as ∥x∥ = ∑
𝑢∈𝑉 𝑥𝑢 = |𝑆 |𝑐 ≤ 1 and all its values are non-negative.

Consider an edge 𝑒 (𝑢, 𝑣). W.l.o.g., we assume 𝑥𝑢 ≥ 𝑥𝑣 , thus, if |𝑒 ∩ 𝑆 | = 0, then 𝑥𝑢, 𝑥𝑣 ∉ 𝑆 , thus

𝑥𝑢 = 𝑥𝑣 = 0; If |𝑒 ∩ 𝑆 | = 1, then 𝑥𝑢 ∈ 𝑆 and 𝑥𝑣 ∉ 𝑆 , thus 𝑥𝑢 = 𝑐, 𝑥𝑣 = 0; And if |𝑒 ∩ 𝑆 | = 2, then

𝑥𝑢, 𝑥𝑣 ∈ 𝑆 , thus 𝑥𝑢 = 𝑥𝑣 = 𝑐 . Denote by 𝑡 = |𝑒 ∩ 𝑅 |, 𝑒 ∈ 𝐸𝑡 (𝑅) (Definition 10). Consider 𝜆𝑡 · 𝑦𝑒 :
𝑡 = 0. By Lemma 25, 𝐸0 (𝑅) = 𝐸22 ∪ 𝐸24 ∪ 𝐸44 where 𝐸22 ⊆ 𝐸2 (𝑆), 𝐸24 ⊆ 𝐸1 (𝑆), and 𝐸44 ⊆ 𝐸0 (𝑆).

Thus, if 𝑒 ∈ 𝐸22, then |𝑒 ∩ 𝑆 | = 2, 𝑥𝑢 − 𝑥𝑣 = 0, thus 𝜆𝑡𝑦𝑒 = 𝜔24 (𝑥𝑢 − 𝑥𝑣) = 0 (Lemma 28); if

𝑒 ∈ 𝐸24, then |𝑒 ∩ 𝑆 | = 1, 𝑥𝑢 − 𝑥𝑣 = 𝑐 , thus 𝜆𝑡𝑦𝑒 = 𝜔24 (𝑥𝑢 − 𝑥𝑣) = 𝑐𝜔24(Lemma 28); if 𝑒 ∈ 𝐸44,
then |𝑒 ∩ 𝑆 | = 0, thus 𝑥𝑢 − 𝑥𝑣 = 0, so 𝜆𝑡𝑦𝑒 = 𝜔24 (𝑥𝑢 − 𝑥𝑣) = 0 (Lemma 28).

𝑡 = 1. By Lemma 25, 𝐸1 (𝑅) = 𝐸12 ∪𝐸14 ∪𝐸23 ∪𝐸34 where 𝐸12 ⊆ 𝐸2 (𝑆), 𝐸14, 𝐸23 ⊆ 𝐸1 (𝑆), 𝐸34 ⊆ 𝐸0 (𝑆).
Thus, if 𝑒 ∈ 𝐸12, |𝑒 ∩ 𝑆 | = 2, 𝑥𝑣 = 𝑐 , by Lemma 28, 𝜆𝑡𝑦𝑒 = 𝜔12𝑥𝑣 = 𝜔12𝑐 ; if 𝑒 ∈ 𝐸14 ∪ 𝐸23 ∪ 𝐸34,
then |𝑒 ∩ 𝑆 | ≤ 1, 𝑥𝑣 = 0, so 𝜆𝑡𝑦𝑒 = 𝜔12𝑥𝑣 = 0.

𝑡 = 2. By Lemma 25, 𝐸2 (𝑅) = 𝐸11 ∪ 𝐸13 ∪ 𝐸33, where 𝐸11 ⊆ 𝐸2 (𝑆), 𝐸13 ⊆ 𝐸1 (𝑆), 𝐸33 ⊆ 𝐸0 (𝑆). Thus, if
𝑒 ∈ 𝐸11, |𝑒 ∩ 𝑆 | = 2, 𝑥𝑣 = 𝑐 , by Lemma 28, 𝜆𝑡𝑦𝑒 = 𝜔11𝑥𝑣 = 𝜔11𝑐; if 𝑒 ∈ 𝐸13 ∪ 𝐸33, |𝑒 ∩ 𝑆 | ≤ 1,

𝑥𝑣 = 0, so 𝜆𝑡𝑦𝑒 = 𝜔11𝑥𝑣 = 0 (Lemma 28).

To summarize the above discussion, 𝜆 |𝑒∩𝑅 | · 𝑦𝑒 = 𝜔11𝑐 if 𝑒 ∈ 𝐸11, 𝜔12𝑐 if 𝑒 ∈ 𝐸12, 𝜔24𝑐 if 𝑒 ∈ 𝐸24,

and 0 otherwise. Since for Ω ∈ C𝐿𝑃 , 𝜔𝑝 = 0 for 𝑝 ∈ I \ {(1, 1), (1, 2), (2, 4)}, 𝑓Ω,𝑅 (x) = 𝜔11𝑐 |𝐸11 | +
𝜔12𝑐 |𝐸12 | + 𝜔24𝑐 |𝐸24 | = 𝑐

∑
𝑝∈I 𝜔𝑝 |𝐸𝑝 | = 𝑐𝑔Ω,𝑅 (𝑆) = 𝑐 |𝑆 |𝜌Ω,𝑅 (𝑆) = ∥x∥𝜌Ω,𝑅 (𝑆) ≤ 𝜌Ω,𝑅 (𝑆). □

Lemma 30 (Lower bound). The optimal value of LP-DenLCS𝑓 ∗Ω,𝑅 = max∀ feasible x 𝑓Ω,𝑅 (x) ≥ 𝜌∗Ω,𝑅 .

Proof. Consider an LDS 𝑆∗ with 𝜌Ω,𝑅 (𝑆∗) = 𝜌∗Ω,𝑅 and the corresponding x
∗
decided by Lemma 29

with 𝑐 = 1

|𝑆∗ | , thus 𝑓Ω,𝑅 (x
∗) = 1

|𝑆∗ | |𝑆
∗ |𝜌Ω,𝑅 (𝑆∗) = 𝜌∗Ω,𝑅 , proving the lemma. □

Definition 13 (Peeling). Given a feasible solution x = {𝑥𝑣 |𝑣 ∈ 𝑉 }, define the x-ordering of 𝑉
as an non-increasing ordering of the nodes 𝑣 in 𝑉 under x, i.e., 𝑥𝑣1 ≥ 𝑥𝑣2 ≥ . . . ≥ 𝑥𝑣𝑛 , break ties
arbitrarily. For each integer 𝑖 ∈ [𝑛], denote by Pre(x, 𝑖) � {𝑣1, 𝑣2, · · · , 𝑣𝑖 } the prefix of the x-ordering
under x, let Δ(x, 𝑖) � 𝑥𝑣𝑖 − 𝑥𝑣𝑖+1 ≥ 0 be the difference between the assignments of 𝑣𝑖 and 𝑣𝑖+1. Here
𝑥𝑣𝑛+1 = 0 is a dummy value for the simplicity of formulation s.t. Δ(x, 𝑛) = 𝑥𝑣𝑛 . Define the peeling
of x as 𝑛 solutions x1, x2, · · · x𝑛 of LP-DenLCS as follows: for ∀𝑙 ∈ [1, 𝑛], x𝑙 = {𝑥𝑙𝑣𝑖 |𝑖 ∈ [𝑛]}, where
𝑥𝑙𝑣𝑖 = Δ(x, 𝑙) if 𝑖 ≤ 𝑙 , and 𝑥𝑙𝑣𝑖 = 0 otherwise. Note that each prefix 𝑝𝑟𝑒 (x, 𝑖), 𝑖 ∈ [𝑛] is a subgraph of𝐺 .
Let 𝜌+Ω,𝑅 (x) � max𝑙∈[𝑛] 𝜌Ω,𝑅 (Pre(x, 𝑙)) the maximum local density among all prefixes of x-ordering.
Let 𝑘 be the maximum integer such that the k-prefix reaches density 𝜌+Ω,𝑅 (x) = 𝜌Ω,𝑅 (Pre(x, 𝑘)). 𝑘 is
called the critical integer of x.

Lemma 31 (Peeling property). Given a feasible solution x, let x1, · · · , x𝑛 be the peeling of x. Then
(1) For each 𝑖 ∈ [𝑛], x𝑖 is a simple feasible solution of LP-DenLCS,
(2) ∥x∥ = ∑

𝑖∈[𝑛] ∥x𝑖 ∥, and
(3) 𝑓Ω,𝑅 (x) =

∑
𝑖∈[𝑛] 𝑓Ω,𝑅 (x𝑖 ).

Proof. (1) Consider 𝑖 ∈ [𝑛]. x𝑖 is simple as x
𝑖 = {0,Δ(x, 𝑖)}. For ∀𝑣 ∈ Pre(x, 𝑖), 𝑥𝑣𝑖 ≤ 𝑥𝑣 , thus

0 ≤ 𝑥𝑖𝑣 = Δ(x, 𝑖) = 𝑥𝑣𝑖 − 𝑥𝑣𝑖+1 ≤ 𝑥𝑣𝑖 ≤ 𝑥𝑣 . For ∀𝑣 ∉ Pre(x, 𝑖), 0 = 𝑥𝑖𝑣 ≤ 𝑥𝑣 . Thus 0 ≤ ∥𝑥𝑖 ∥ ≤ ∥𝑥 ∥ ≤ 1.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:23

Thus, 𝑥𝑖 is simple and feasible. (2)

∑
𝑖∈[𝑛] ∥x𝑖 ∥ =

∑
𝑖∈[𝑛] 𝑖 · Δ(x, 𝑖)

=
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[1,𝑖 ]

Δ(x, 𝑖) =
∑︁
𝑗∈[𝑛]

∑︁
𝑖∈[ 𝑗,𝑛]

Δ(x, 𝑖) (14)

=
∑︁
𝑗∈[𝑛]
(𝑥𝑣𝑗 − 𝑥𝑣𝑗+1 + 𝑥𝑣𝑗+1 − 𝑥𝑣𝑗+2 + · · · + 𝑥𝑣𝑛 − 𝑥𝑣𝑛+1 ) =

∑︁
𝑗∈[𝑛]
(𝑥𝑣𝑗 − 𝑥𝑣𝑛+1 ) =

∑︁
𝑗∈[𝑛]

𝑥𝑣𝑗 = ∥x∥. (15)

(3) For each integer 𝑗 ∈ [𝑛], from Equations 14-15,∑︁
𝑖∈[ 𝑗,𝑛]

Δ(x, 𝑖) = 𝑥𝑣𝑗 . (16)

Define 𝑛 solutions x
1, x2, · · · , x𝑛 : For ∀𝑙 ∈ [𝑛], x𝑙 = {𝑥𝑙𝑣𝑖 |𝑖 ∈ [𝑛]}, where 𝑥

𝑙
𝑣𝑖

= 𝑥𝑣𝑙 if 𝑖 ≤ 𝑙 , and

𝑥𝑙𝑣𝑖 = 𝑥𝑣𝑖 otherwise. From Equation 16, 𝑥𝑣𝑙 =
∑

𝑗∈[𝑙,𝑛] Δ(x, 𝑗) and 𝑥𝑣𝑖 =
∑

𝑗∈[𝑖,𝑛] Δ(x, 𝑗). Note that
each x

𝑙
is feasible because when 𝑖 ≤ 𝑙 , 𝑥𝑙𝑣𝑖 = 𝑥𝑣𝑙 ≤ 𝑥𝑣𝑖 , when 𝑖 > 𝑙 , 𝑥𝑙𝑣𝑖 = 𝑥𝑣𝑖 . Thus, 𝑥

𝑙
𝑣𝑖
≤ 𝑥𝑙𝑣𝑖 for

each 𝑖 ∈ [𝑛] and thus ∥x𝑙 ∥ ≤ ∥x∥ = 1. Besides, we can verify that x
1 = x and x

𝑛 = x
𝑛
.

We now use induction starting from 𝑙 = 𝑛 back to 1 to prove that 𝑓Ω,𝑅 (x𝑙 ) =
∑

𝑖∈[𝑙,𝑛] 𝑓Ω,𝑅 (x𝑖 )
holds for all 𝑙 ∈ [𝑛], which, when 𝑙 = 1 proves (3) 𝑓Ω,𝑅 (x) =

∑
𝑖∈[𝑛] 𝑓Ω,𝑅 (x𝑖 ).

When 𝑙 = 𝑛, 𝑓Ω,𝑅 (x𝑛) = 𝑓Ω,𝑅 (x𝑛) =
∑

𝑖∈[𝑛,𝑛] 𝑓Ω,𝑅 (x𝑖 ). Assume that for 𝑘 > 2, 𝑓Ω,𝑅 (x𝑙 ) =∑
𝑖∈[𝑙,𝑛] 𝑓Ω,𝑅 (x𝑖 ) for 𝑙 ∈ [𝑘, 𝑛]. We now prove that 𝑓Ω,𝑅 (x𝑘−1) =

∑
𝑖∈[𝑘−1,𝑛] 𝑓Ω,𝑅 (x𝑖 ).

Consider 𝑓Ω,𝑅 (x𝑘−1) − 𝑓Ω,𝑅 (x𝑘 ). Denote by: (1) 𝑆 = Pre(x, 𝑘 − 1) = {𝑣1, 𝑣2, · · · , 𝑣𝑘−1}; (2) {𝐸𝑝 |𝑝 ∈
I}, the edge partitioning of E(𝑆, 𝑅); (3) y𝑖 = {𝑦𝑖𝑒 |𝑒 ∈ 𝐸}, obtained by applying Lemma 26 on x

𝑖
;

(4) y
𝑖−1 = {𝑦𝑖−1𝑒 |𝑒 ∈ 𝐸}, obtained by applying Lemma 26 on x

𝑖−1
. By Equation (8), 𝑓Ω,𝑅 (x𝑘−1) =∑

𝑒∈𝐸 𝜆 |𝑒∩𝑅 |𝑦
𝑘−1
𝑒 and 𝑓Ω,𝑅 (x𝑘 ) =

∑
𝑒∈𝐸 𝜆 |𝑒∩𝑅 |𝑦

𝑘
𝑒 . Recall that 𝑆 = Pre(x, 𝑘 − 1), so for any 𝑖 ∈ [𝑛],

if 𝑖 ≤ 𝑘 − 1, then 𝑣𝑖 ∈ 𝑆 and 𝑥𝑘−1𝑣𝑖
= 𝑥𝑣𝑘−1 , and 𝑥𝑘𝑣𝑖 = 𝑥𝑣𝑘 . If 𝑖 ≥ 𝑘 , then 𝑣𝑖 ∉ 𝑆 and by definition,

𝑥𝑘−1𝑣𝑖
= 𝑥𝑘𝑣𝑖 = 𝑥𝑣𝑖 . Consider edge 𝑒 (𝑢, 𝑣). W.l.o.g., we assume 𝑢 is before 𝑣 in the x-ordering, i.e.,

𝑥𝑢 ≥ 𝑥𝑣 , the values of 𝑥
𝑘−1
𝑢 , 𝑥𝑘−1𝑣 , 𝑥𝑘𝑢 and 𝑥𝑘𝑣 have the following properties.

• If |𝑒 ∩ 𝑆 | = 0, 𝑢, 𝑣 ∉ 𝑆 , thus 𝑥𝑘−1𝑢 = 𝑥𝑘𝑢 = 𝑥𝑢 ≥ 𝑥𝑣 = 𝑥𝑘−1𝑣 = 𝑥𝑘𝑣
• If |𝑒 ∩ 𝑆 | = 1, 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆 , thus 𝑥𝑘−1𝑢 = 𝑥𝑣𝑘−1 , 𝑥

𝑘
𝑢 = 𝑥𝑣𝑘 , 𝑥

𝑘−1
𝑣 = 𝑥𝑘𝑣 = 𝑥𝑣 , and thus 𝑥𝑘−1𝑢 ≥

𝑥𝑘−1𝑣 , 𝑥𝑘𝑢 ≥ 𝑥𝑘𝑣 .

• If |𝑒 ∩ 𝑆 | = 2, 𝑢, 𝑣 ∈ 𝑆 , thus 𝑥𝑘−1𝑢 = 𝑥𝑘−1𝑣 = 𝑥𝑣𝑘−1 , 𝑥
𝑘
𝑢 = 𝑥𝑘𝑣 = 𝑥𝑣𝑘 , and thus 𝑥𝑘−1𝑢 ≥ 𝑥𝑘−1𝑣 , 𝑥𝑘𝑢 ≥ 𝑥𝑘𝑣 .

Note that, the above discussion shows that when 𝑥𝑢 ≥ 𝑥𝑣 , 𝑥
𝑘−1
𝑢 ≥ 𝑥𝑘−1𝑣 and 𝑥𝑘𝑢 ≥ 𝑥𝑘𝑣 , and thus we

can apply Lemma 28 in the discussions below on the value of 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) where 𝑡 = |𝑒 ∩ 𝑅 |.
𝑡 = 0. By Lemma 28, 𝜆𝑡𝑦

𝑘−1
𝑒 = 𝜔24 (𝑥𝑘−1𝑢 − 𝑥𝑘−1𝑣 ) and 𝜆𝑡𝑦

𝑘
𝑒 = 𝜔24 (𝑥𝑘𝑢 − 𝑥𝑘𝑣 ), so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) =

𝜔24 ((𝑥𝑘−1𝑢 −𝑥𝑘−1𝑣 )−(𝑥𝑘𝑢−𝑥𝑘𝑣 )). By Lemma 25, 𝐸0 (𝑅) = 𝐸22∪𝐸24∪𝐸44 where 𝐸22 ⊆ 𝐸2 (𝑆), 𝐸24 ⊆
𝐸1 (𝑆), 𝐸44 ⊆ 𝐸0 (𝑆). Therefore,
• If 𝑒 ∈ 𝐸22, |𝑒 ∩𝑆 | = 2, 𝑥𝑘−1𝑢 = 𝑥𝑘−1𝑣 = 𝑥𝑣𝑘−1 , 𝑥

𝑘
𝑢 = 𝑥𝑘𝑣 = 𝑥𝑣𝑘 , so 𝜆𝑡 (𝑦𝑘−1𝑒 −𝑦𝑘𝑒 ) = 𝜔24 (0− 0) = 0;

• If 𝑒 ∈ 𝐸24, |𝑒 ∩ 𝑆 | = 1, 𝑥𝑘−1𝑢 = 𝑥𝑣𝑘−1 , 𝑥
𝑘
𝑢 = 𝑥𝑣𝑘 , 𝑥

𝑘−1
𝑣 = 𝑥𝑘𝑣 , so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) = 𝜔24 ((𝑥𝑣𝑘−1 −

𝑥𝑘−1𝑣 ) − (𝑥𝑣𝑘 − 𝑥𝑘−1𝑣 )) = 𝜔24 ((𝑥𝑣𝑘−1 − 𝑥𝑣𝑘 ) − (𝑥𝑘−1𝑣 − 𝑥𝑘𝑣 )) = 𝜔24Δ(x, 𝑘 − 1);
• If 𝑒 ∈ 𝐸44, |𝑒 ∩ 𝑆 | = 0, 𝑥𝑘−1𝑢 = 𝑥𝑘𝑢, 𝑥

𝑘−1
𝑣 = 𝑥𝑘𝑣 , so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) = 𝜔24 ((𝑥𝑘−1𝑢 − 𝑥𝑘−1𝑣 ) − (𝑥𝑘𝑢 −

𝑥𝑘𝑣 )) = 𝜔24 ((𝑥𝑘−1𝑢 − 𝑥𝑘𝑢) − (𝑥𝑘−1𝑣 − 𝑥𝑘𝑣 )) = 0.

𝑡 = 1. By Lemma 28, 𝜆𝑡𝑦
𝑘−1
𝑒 = 𝜔12𝑥

𝑘−1
𝑣 and 𝜆𝑡𝑦

𝑘
𝑒 = 𝜔12𝑥

𝑘
𝑣 . By Lemma 25, 𝐸1 (𝑅) = 𝐸12∪𝐸14∪𝐸23∪𝐸34

where 𝐸12 ⊆ 𝐸2 (𝑆), 𝐸14, 𝐸23 ⊆ 𝐸1 (𝑆) and 𝐸34 ⊆ 𝐸0 (𝑆). Therefore,
• If 𝑒 ∈ 𝐸12, |𝑒 ∩ 𝑆 | = 2, 𝑥𝑘−1𝑣 = 𝑥𝑣𝑘−1 , 𝑥

𝑘
𝑣 = 𝑥𝑣𝑘 , so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) = 𝜔12 (𝑥𝑘−1𝑣 − 𝑥𝑘𝑣 ) =

𝜔12 (𝑥𝑣𝑘−1 − 𝑥𝑣𝑘 ) = 𝜔12Δ(x, 𝑘 − 1);
• If 𝑒 ∈ 𝐸14 ∪ 𝐸23 ∪ 𝐸34, |𝑒 ∩ 𝑆 | ≤ 1, 𝑥𝑘−1𝑣 = 𝑥𝑘𝑣 , so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) = 𝜔12 (𝑥𝑘−1𝑣 − 𝑥𝑘𝑣 ) = 0.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



88:24 Yizhou Dai, Miao Qiao, & Rong-Hua Li

𝑡 = 2. By Lemma 28, 𝜆𝑡𝑦
𝑘−1
𝑒 = 𝜔11𝑥

𝑘−1
𝑣 and 𝜆𝑡𝑦

𝑘
𝑒 = 𝜔11𝑥

𝑘
𝑣 . By Lemma 25, 𝐸2 (𝑅) = 𝐸11 ∪ 𝐸13 ∪ 𝐸33

where 𝐸11 ⊆ 𝐸2 (𝑆), 𝐸13 ⊆ 𝐸1 (𝑆) and 𝐸33 ⊆ 𝐸0 (𝑆). Therefore,
• If 𝑒 ∈ 𝐸11, |𝑒 ∩ 𝑆 | = 2, 𝑥𝑘−1𝑣 = 𝑥𝑣𝑘−1 , 𝑥

𝑘
𝑣 = 𝑥𝑣𝑘 , so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) = 𝜔11 (𝑥𝑘−1𝑣 − 𝑥𝑘𝑣 ) =

𝜔11 (𝑥𝑣𝑘−1 − 𝑥𝑣𝑘 ) = 𝜔11Δ(x, 𝑘 − 1);
• If 𝑒 ∈ 𝐸13 ∪ 𝐸33, |𝑒 ∩ 𝑆 | ≤ 1, 𝑥𝑘−1𝑣 = 𝑥𝑘𝑣 , so 𝜆𝑡 (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) = 𝜔11 (𝑥𝑘−1𝑣 − 𝑥𝑘𝑣 ) = 0.

From the above discussion, 𝜆𝑡 (𝑦𝑘−1𝑒 −𝑦𝑘𝑒 ) equals 𝜔11Δ(x, 𝑘 − 1) if 𝑒 ∈ 𝐸11, 𝜔12Δ(x, 𝑘 − 1) if 𝑒 ∈ 𝐸12,
𝜔24Δ(x, 𝑘 −1) if 𝑒 ∈ 𝐸24, and 0 otherwise. Since for Ω ∈ C𝐿𝑃 ,𝜔𝑝 = 0 for 𝑝 ∈ I \ {(1, 1), (1, 2), (2, 4)},
we summarize that 𝑓Ω,𝑅 (x𝑘−1) − 𝑓Ω,𝑅 (x𝑘 ) =

∑
𝑒∈𝐸 𝜆 |𝑒∩𝑅 | (𝑦𝑘−1𝑒 − 𝑦𝑘𝑒 ) =

∑
𝑝∈I𝐿𝑃 𝜔𝑝Δ(x, 𝑘 − 1) |𝐸𝑝 | =

Δ(x, 𝑘 − 1)𝑔Ω,𝑅 (𝑆) = 𝑓Ω,𝑅 (x𝑘−1). Note the last equality comes from Lemma 29. This, alongside the

inductive assumption, proves that 𝑓Ω,𝑅 (x𝑙 ) =
∑

𝑖∈[𝑙,𝑛] 𝑓Ω,𝑅 (x𝑖 ) for 𝑙 = 𝑘 − 1 and thus proves the

correctness for any 𝑙 ∈ [𝑛] whose special case when 𝑙 = 1 is 𝑓Ω,𝑅 (x) =
∑

𝑖∈[𝑛] 𝑓Ω,𝑅 (x𝑖 ). □

Lemma 32 (Merging property). Given a feasible solution x, let x1, x2, · · · , x𝑛 be the peeling of x.
Let𝑘 be the critical integer of x (Definition 13). Define a simple feasible solution x+ = {𝑥+𝑣 |𝑣 ∈ 𝑉 }, where
𝑥+𝑣 =

∥x∥
𝑘

if 𝑣 ∈ Pre(x, 𝑘), and 𝑥+𝑣 = 0 otherwise. Then we have ∥x+∥ = ∥x∥ and 𝑓Ω,𝑅 (x+) ≥ 𝑓Ω,𝑅 (x).

Proof. ∥x+∥ = ∥x∥ because by definition, x
+
has 𝑘 values with

∥x∥
𝑘

and 0 otherwise, so ∥x+∥ =
𝑘
∥x∥
𝑘

= ∥x∥. Also 𝜌Ω,𝑅 (Pre(x, 𝑘)) ≥ 𝜌Ω,𝑅 (Pre(x, 𝑖)) for any 𝑖 ∈ [𝑛] as 𝑘 is critical. Thus,

𝑓Ω,𝑅 (x+) = ∥x+∥𝜌Ω,𝑅 (Pre(x, 𝑘)) (Lemma 29)

= ∥x∥𝜌Ω,𝑅 (Pre(x, 𝑘)) =
∑︁
𝑖∈[𝑛]
∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x, 𝑘)) (Lemma 31 (2))

≥
∑︁
𝑖∈[𝑛]
∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x, 𝑖)) =

∑︁
𝑖∈[𝑛]

𝑓Ω,𝑅 (x𝑖 ) (Lemma 29)

= 𝑓Ω,𝑅 (x) (Lemma 31 (3))

□
Lemma 33. 𝑓Ω,𝑅 (x) ≤ 𝜌∗Ω,𝑅 for any feasible solution x.

Proof. By Lemma 32, for any feasible solution x, there exists a simple feasible solution x
′
s.t.

𝑓Ω,𝑅 (x′) ≥ 𝑓Ω,𝑅 (x). Let 𝑆 ′ = 𝑉 + (x′), the set of nodes with positive assignments in x
′
, and thus

𝑐 =
∥𝑥 ∥
|𝑆 ′ | . By Lemma 29, 𝑓Ω,𝑅 (x) ≤ 𝑓Ω,𝑅 (x′) = 𝑐 |𝑆 ′ |𝜌Ω,𝑅 (𝑆 ′) = ∥x∥𝜌Ω,𝑅 (𝑆 ′) ≤ 𝜌Ω,𝑅 (𝑆 ′) ≤ 𝜌∗Ω,𝑅 . □

Lemma 34. Let 𝑆∗ be the maximal densest subgraph. Let x = {𝑥𝑣 |𝑣 ∈ 𝑉 } be a feasible solution of
LP-DenLCS. If max{𝑥𝑣 |𝑣 ∈ 𝑉 } < 1

|𝑆∗ | , then x is not optimal for LP-DenLCS.

Proof. According to Lemma 13, 𝑆∗ is also the maximum LDS, i.e., no other LDS has cardinality

larger than 𝑆∗. Prove by contradiction. Assume there is a feasible, optimal solution x
′ = {𝑥 ′𝑣 |𝑣 ∈ 𝑉 }

s.t. max{𝑥 ′𝑣 |𝑣 ∈ 𝑉 } < 1

|𝑆∗ | with critical integer 𝑘 ′ (defined in Definition 13).

If 𝑘 ′ > |𝑆∗ |, by Lemma 32 we can find a simple feasible solution x
+ = {𝑥+𝑣 |𝑣 ∈ 𝑉 }, where

𝑥+𝑣 =
∥x′ ∥
𝑘 ′ if 𝑣 ∈ Pre(x, 𝑘 ′) and 𝑥+𝑣 = 0 otherwise. With 𝑓Ω,𝑅 (x+) ≥ 𝑓Ω,𝑅 (x′) and Lemma 29,

𝑓Ω,𝑅 (x+) = 𝜌Ω,𝑅 (Pre(x, 𝑘 ′))= 𝜌∗Ω,𝑅 , contradicting to 𝑆
∗
being the maximum LDS.

If 𝑘 ′ ≤ |𝑆∗ |, let x1, x2, · · · , x𝑛 be the peeling of x
′
defined by Definition 13, we discuss in two

cases, i) ∥x𝑖 ∥ = 0 for all 𝑖 ∈ [𝑘 ′ + 1, 𝑛], and ii) there exists 𝑙 > 𝑘 ′ such that ∥x𝑙 ∥ > 0. We show that

in any of the two cases, there will be contradictions and thus complete the proof.

Case(i). From Equation (16), 𝑥𝑣𝑖 =
∑

𝑗∈[𝑖,𝑛] Δ(x, 𝑗). By Definition 13, 𝑥
𝑗
𝑣𝑖 = Δ(x, 𝑗) if 𝑖 ≤ 𝑗 , so

𝑥
𝑗
𝑣1 = Δ(x, 𝑗) and 𝑥𝑣𝑖 =

∑
𝑗∈[𝑖,𝑛] 𝑥

𝑗
𝑣1 . Note that for Case (i), 𝑥

𝑗
𝑣𝑖 = 0 for ∀𝑖 ∈ [1, 𝑛] and ∀𝑗 ∈ [𝑘 ′ + 1, 𝑛],

so 𝑥𝑣𝑖 = 0 for all 𝑖 ∈ [𝑘 ′ + 1, 𝑛], so |{𝑣 ∈ 𝑉 |𝑥 ′𝑣 > 0}| ≤ 𝑘 ′, then because max{𝑥 ′𝑣 |𝑣 ∈ 𝑉 } < 1

|𝑆∗ | ,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.



On Density-based Local Community Search 88:25

∥x′∥ < 𝑘 ′ 1

|𝑆∗ | ≤ 1. We then can construct a feasible solution x
′′ = {𝑥 ′′𝑣 |𝑣 ∈ 𝑉 } where 𝑥 ′′𝑣 =

𝑥 ′𝑣
∥x′ ∥ for

each 𝑣 ∈ 𝑉 . Given x
′′
, define y

′′ = {𝑦′′𝑒 |𝑒 ∈ 𝐸} following Lemma 26 such that 𝑦′′𝑒 = min{𝑥 ′′𝑢 , 𝑥 ′′𝑣 }
if 𝜆 |𝑒∩𝑅 | > 0, 𝑦′′𝑒 = 0 if 𝜆 |𝑒∩𝑅 | = 0, and |𝑥 ′′𝑢 − 𝑥 ′′𝑣 | if 𝜆 |𝑒∩𝑅 | < 0. Then for all 𝑒 ∈ 𝐸, 𝑦′′𝑒 =

𝑦′𝑒
∥x′ ∥ .

Besides, 𝑓Ω,𝑅 (x′′) =
∑

𝑒∈𝐸 𝜆 |𝑒∩𝑅 |𝑦
′′
𝑒 =

∑
𝑒∈𝐸 𝜆 |𝑒∩𝑅 |

𝑦′𝑒
∥x′ ∥ =

𝑓Ω,𝑅 (x′ )
∥x′ ∥ . Since 𝑓Ω,𝑅 (x′) = 𝜌Ω,𝑅 (𝑆∗) > 0,

𝑓Ω,𝑅 (x′′) = 𝑓Ω,𝑅 (x′ )
∥x′ ∥ > 𝑓Ω,𝑅 (x′), contradicting to x

′
being an optimal solution.

Case (ii) By Lemma 31 (3), 𝑓Ω,𝑅 (x′) =
∑

𝑖∈[𝑛] 𝑓Ω,𝑅 (x𝑖 ). Further, by Lemma 29,

∑
𝑖∈[𝑛] 𝑓Ω,𝑅 (x𝑖 ) =∑

𝑖∈[𝑛] ∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x′, 𝑖)). By the setting of Case (ii), 𝑘 ′ is the critical integer and 𝑙 > 𝑘 ′, so

𝜌Ω,𝑅 (Pre(x′, 𝑙)) < 𝜌∗Ω,𝑅 = 𝜌Ω,𝑅 (Pre(x′, 𝑘)). Recall the setting of Case (ii), s.t., ∥x𝑙 ∥ > 0, it follows that

∥x𝑙 ∥𝜌Ω,𝑅 (Pre(x′, 𝑙)) < ∥x𝑙 ∥𝜌Ω,𝑅 (Pre(x′, 𝑘)). Since ∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x′, 𝑖)) ≤ ∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x′, 𝑘)) for
all 𝑖 ∈ [𝑛], 𝑓Ω,𝑅 (x′) =

∑
𝑖∈[𝑛] ∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x′, 𝑖)) <

∑
𝑖∈[𝑛] ∥x𝑖 ∥𝜌Ω,𝑅 (Pre(x′, 𝑘)) = ∥x′∥𝜌Ω,𝑅 (Pre(x′, 𝑘)) =

𝑓Ω,𝑅 (x′), contradiction. Note that the second last equation is supported by Lemma 31(2). Thus,

combining Case (i) and Case (ii) under 𝑘 ′ ≤ |𝑆∗ | and the case where 𝑘 ′ > |𝑆∗ |, there does not exist
a feasible optimal solution x

′ = {𝑥 ′𝑣 |𝑣 ∈ 𝑉 } s.t. max{𝑥 ′𝑣 |𝑣 ∈ 𝑉 } < 1

|𝑆∗ | . □

A.5 Proof of Lemma 20
As 𝑆𝑖 is an LDS on 𝐿𝑖 , 𝜌Ω,𝑅 (𝑆𝑖+1 ∩ 𝑉𝑖 |𝐿𝑖 ) ≤ 𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ). By Lemma 11, if 𝑆𝑖+1 \ 𝑉𝑖 ≠ ∅, then
𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1) < 𝜌Ω,𝑅 (𝑆𝑖+1 ∩ 𝑉𝑖 |𝐿𝑖 ) ≤ 𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ); else, 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1) ≤ 𝜌Ω,𝑅 (𝑆𝑖+1 ∩ 𝑉𝑖 |𝐿𝑖 ) ≤
𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ). It follows that when 𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) = 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1), 𝑆𝑖+1 ⊆ 𝑉𝑖 and N+ (𝑆𝑖+1) ⊆ 𝑉𝑖+1. If
𝑆𝑖+1 \𝑉 (𝐿𝑖 ) ≠ ∅, then 𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) > 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1), contradiction. Therefore, 𝑆𝑖+1 ⊆ 𝑉𝑖 . Denote by
𝐶𝑖+1 the core set at iteration 𝑖 + 1. If 𝑆𝑖+1 ⊆ 𝑆𝑖 , since at iteration 𝑖 + 1, 𝑆𝑖 ⊆ 𝐶𝑖+1, thusN+ (𝑆𝑖 ) ⊆ 𝑉𝑖+1,
and thusN+ (𝑆𝑖+1) ⊆ 𝑉𝑖+1 which terminates the loop. Otherwise, 𝑆𝑖+1 \𝑆𝑖 ≠ ∅, which we show below

that it will lead to a contradiction. By Lemma 11 and 𝑆𝑖+1 ⊆ 𝑉𝑖 , 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖 ) ≥ 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1).
Since [𝜌∗Ω,𝑅 |𝐿𝑖 ] = 𝜌Ω,𝑅 (𝑆𝑖 |𝐿𝑖 ) = 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖+1), it follows that 𝜌Ω,𝑅 (𝑆𝑖+1 |𝐿𝑖 ) ≥ [𝜌∗Ω,𝑅 |𝐿𝑖 ], i.e., 𝑆𝑖+1 is
also optimal in 𝐿𝑖 . Therefore, by Lemma 13, 𝜌Ω,𝑅 (𝑆𝑖 ∪ 𝑆𝑖+1 |𝐿𝑖 ) = [𝜌∗Ω,𝑅 |𝐿𝑖 ] where 𝑆𝑖 ∪ 𝑆𝑖+1 \ 𝑆𝑖 ≠ ∅,
contradicting the fact that A returns a maximal LDS (Lemma 8) of 𝐿𝑖 .

A.6 Proof of Lemma 21
In ExpansionFramework, consider iteration 𝑙 with 0 ≤ 𝑙 < 𝑘 , the working subgraph is 𝐿𝑙 (𝑉𝑙 , 𝐸𝑙 )
and LDS is 𝑆𝑙 ⊆ 𝑉𝑙 . By Lemma 14, 𝜌Ω,𝑅 (𝑆𝑙 |𝐿𝑙 ) ≥ 1 and thus 2 ≤ |𝑆𝑙 | ≤ 𝑔Ω,𝑅 (𝑆𝑙 |𝐿𝑙 ). Lemma 15:

𝑔Ω,𝑅 (𝑆𝑙 |𝐿𝑙 ) ≤ 2vol(𝑅) � 𝑈𝑠 , thus |𝑆𝑙 | ≤ 𝑈𝑠 .

If the weights in Ω are integers, then 𝑔Ω,𝑅 (𝑆𝑙 ) is an integer. As the density value strictly decreases

in each iteration before termination according to Lemmas 20, iteration 𝑙 needs to have a different

value of 𝜌Ω,𝑅 (𝑆𝑙 |𝐿𝑙 ) from all previous iterations, so the pair of (𝑔Ω,𝑅 (𝑆𝑙 ), |𝑆𝑙 |) has𝑈𝑠 (𝑈𝑠 −1) possible
values. So 𝑘 − 1 ≤ 𝑈𝑠 (𝑈𝑠 − 1). As vol(𝑅) ≥ 1, 𝑘 ≤ 𝑈 2

𝑠 = 𝑂 (vol2 (𝑅)).
Recall that in the input tuple Ω ∈ C𝐿 . According to Lemma 12, Ω(𝑝) ≠ 0 only if 𝑝 ∈ 𝐼𝐿 =

{(1, 1), (1, 2), (2, 3), (2, 4)}, in other words, 𝑔Ω,𝑅 (𝑆𝑙 ) =
∑

𝑝∈𝐼𝐿 Ω(𝑝) |𝐸𝑙𝑝 | where {𝐸𝑙𝑝 |𝑝 ∈ I} denotes
the edge partitioning E(𝑆𝑙 , 𝑅 |𝐿𝑙 ). Note that 𝑆𝑙 = 𝑉1 ∪𝑉2 where node partitioning 𝑉1 � 𝑆𝑙 ∩ 𝑅 and

𝑉2 � 𝑆𝑙 \ 𝑅. Observe that for any 𝑝 ∈ I𝐿 , 𝑝 ∩ {1, 2} ≠ ∅, in other words, 𝐸𝑙𝑝 ⊆ ((𝑉1 ∪𝑉2) ×𝑉 ) ∩ 𝐸 =

𝐸+ (𝑉1 ∪𝑉2) = 𝐸+ (𝑆𝑙 ). Thus, 0 ≤ |𝐸𝑙𝑝 | ≤ |𝐸+ (𝑆𝑙 ) | where |𝐸𝑙𝑝 |, |𝐸+ (𝑆𝑙 ) | ∈ Z. Also, since |𝑆𝑙 | is bounded
by𝑈𝑠 by Lemma 15 and deg(𝑣) for each 𝑣 ∈ 𝑆𝑙 is bounded by𝑈𝑑 by Lemma 18, |𝐸+ (𝑆𝑙 ) | ≤ 𝑈𝑠𝑈𝑑 , i.e,

bounded by their multiplication. Since each iteration 𝑙 has a different value of 𝜌Ω,𝑅 (𝑆𝑙 |𝐿𝑙 ), tuple
( |𝐸𝑙

11
|, |𝐸𝑙

12
|, |𝐸𝑙

23
|, |𝐸𝑙

24
|, |𝑆𝑙 |)} ∈ Z5 will also be different for each iteration 𝑙 . Recall that 0 ≤ |𝐸𝑙𝑝 | ≤

𝑈𝑠𝑈𝑑 for 𝑝 ∈ 𝐼𝐿 and 2 ≤ |𝑆𝑙 | ≤ 𝑈𝑠 , 𝑘 ≤ (𝑈𝑠𝑈𝑑 + 1)4 (𝑈𝑠 − 1) + 1 ≤ (𝑈𝑠𝑈𝑑 + 1)4𝑈𝑠 = 𝑂 (vol9 (𝑅)).

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 88. Publication date: May 2024.


	Abstract
	1 Introduction
	1.1 Encode Seed Set Inclusion in Optimization
	1.2 Strongly Local Computation
	1.3 Density-based LCS and Our Results
	1.4 Application

	2 Global or strongly local?
	2.1 Global Configurations
	2.2 Local Density Configurations

	3 Generalized LP-based Solution
	3.1 Generic LP Formulation

	4 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Case Study
	A.2 Proof of Lemma 1
	A.3 Proof of Lemma 2
	A.4 Proof of Theorem 6
	A.5 Proof of Lemma 20
	A.6 Proof of Lemma 21


