
Scaling Distance Labeling on Small-World Networks
Wentao Li

CAI, FEIT, University of

Technology Sydney, Australia

wentao.li@student.uts.edu.au

Miao Qiao

University of Auckland, New

Zealand

miao.qiao@auckland.ac.nz

Lu Qin

CAI, FEIT, University of

Technology Sydney, Australia

lu.qin@uts.edu.au

Ying Zhang

CAI, FEIT, University of

Technology Sydney, Australia

ying.zhang@uts.edu.au

Lijun Chang

The University of Sydney,

Australia

lijun.chang@sydney.edu.au

Xuemin Lin

The University of New South

Wales, Australia

lxue@cse.unsw.edu.au

ABSTRACT
Distance labeling approaches are widely adopted to speed

up the online performance of shortest distance queries. The

construction of the distance labeling, however, can be exhaus-

tive especially on big graphs. For a major category of large

graphs, small-world networks, the state-of-the-art approach

is Pruned Landmark Labeling (PLL). PLL prunes distance la-

bels based on a node order and directly constructs the pruned

labels by performing breadth-first searches in the node order.

The pruning technique, as well as the index construction,

has a strong sequential nature which hinders PLL from being

parallelized. It becomes an urgent issue on massive small-

world networks whose index can hardly be constructed by

a single thread within a reasonable time. This paper scales

distance labeling on small-world networks by proposing a

Parallel Shortest-distance Labeling (PSL) scheme and fur-

ther reducing the index size by exploiting graph and label

properties. PSL insightfully converts the PLL’s node-order
dependency to a shortest-distance dependence, which leads

to a propagation-based parallel labeling in D rounds where

D denotes the diameter of the graph. Extensive experimen-

tal results verify our efficiency on billion-scale graphs and

near-linear speedup in a multi-core environment.

KEYWORDS
Shortest Distance; Indexing; 2-hop Labeling; Parallel; Small-

World Network; Compression; Algorithm

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319877

ACM Reference Format:
Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang,

and Xuemin Lin. 2019. Scaling Distance Labeling on Small-World

Networks. In 2019 International Conference on Management of Data
(SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM,

New York, NY, USA, 18 pages. https://doi.org/10.1145/3299869.

3319877

1 INTRODUCTION
Given a graph G, a shortest distance query q(s, t) reports a
minimized length of an s-t path on G. It is a fundamental

primitive as either a main function or a building block of

applications such as geographic navigation, Internet routing,

socially tenuous group finding [25], influential community

searching [16] and event detection [24]. Many of these appli-

cations cannot afford frequent online distance computations,

and therefore, 2-hop labeling [9] and its variations prevail

as indexing techniques.

The index size of 2-hop labeling, however, can be quadratic

to the number n of the nodes in the graph. For each nodev , 2-
hop labeling selects a set of nodes as hubs and tagsv with its

distances to its hubs as labels. A query q(s, t)minimizes, over

all hubs r shared by s and t , the 2-hop distances from s to t via
r , i.e., dist(s, r) + dist(r , t). To report a precise distance, the

shared hubs of s and t must hit — have a common node with

— a shortest path between s and t . Such a requirement over

all pairs, s and t , of nodes is called the 2-hop cover constraint.
A label set that satisfies the 2-hop cover constraint can have

a cardinality quadratic to n, especially on dense graphs. For

example, a clique necessitates Ω(n2) labels.

Finding a global minimum index size of 2-hop labeling,

unfortunately, is NP-hard [9]. A local minimum, instead,

can be reached by iteratively pruning redundant labels
1
. A

label of a node v is redundant if the remaining labels in

the label set still satisfy the 2-hop cover constraint. The

pruning technique, however, has a strong sequential nature

1
In many labeling approaches, the labels are pruned in an implicit way — a

label will not be generated if pruning it is guaranteed to be safe.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1060

https://doi.org/10.1145/3299869.3319877
https://doi.org/10.1145/3299869.3319877
https://doi.org/10.1145/3299869.3319877

— pruning one label will affect the redundancy of another

label. Consider two nodes u and v on the same shortest path

between two nodes s and t . The moment when both s and t
have the hub set of {u,v}, all labels on s and t are redundant.
After pruning the label on s with the hub u, however, both
labels on s and t with the hub v become critical. Due to such

a dependency, the order of the pruning has a great influence

on the pruning outcome and effectiveness.

The optimization of the pruning order is based on graph

properties. For example, the planarity and hierarchical struc-

ture of road networks have been well explored to reach a

scalable solution (see [19] as an entrance). For a major cate-

gory of real graphs, small-world [26, 28] networks, the state-

of-the-art approach is Pruned Landmark Labeling (PLL) [3].

The key to PLL’s success on small-world networks is to

encode the highly clustered topology into a node order and

construct/prune labels strictly following the node order.

(1) PLL prunes labels based on a node order that prioritizes
the high-centrality

2
nodes. The label on a node s to its

hub t is pruned if their distance can be answered by

labels from s and t to a higher ranked hub. Therefore,

a high-centrality hub r is able to prune labels along

a large number (due to the clustered topology of the

graph) of shortest paths hit by r .

(2) PLL prunes a majority of labels in an implicit way. In

other words, PLL constructs pruned labels directly as

opposed to following a construct-and-then-prune par-

adigm. This is done by performing a pruned Breadth-

First-Search (BFS) sourced from a hub r with the as-

signment of r sequentially following the node order.

It is worth noting that the index construction of PLL is

highly node-order dependent: the pruning procedure in the

BFS of hub r is dependent on the pruned labels constructed

for the predecessor, in the node order, of r . Such a strong

sequential nature of PLL hinders its parallelization.

On the other hand, the index time becomes an urgent issue

for massive small-world networks whose index can hardly

be constructed by a single thread within a reasonable time.

For example, for the graph SINA
3
with 58 million nodes and

261 million edges, PLL cannot finish the indexing within 3

days. The same situation applies to UK
4
which has 77million

nodes and 2.9 billion edges.

This paper focuses on the scalability issue of the 2-hop

distance labeling of small-world networks. We propose non-

trivial algorithms to parallel the indexing process of PLL

2
The centrality can be defined with degree, closeness and betweenness [17].

3
http://networkrepository.com/index.php

4
http://law.di.unimi.it

and further reduce the index size. The scalability of our pro-

posed approach is confirmed by extensive experiments. Our

contributions are summarized as follows.

• We propose a Parallel Shortest distance Labeling ap-

proach PSL upon a novel and insightful conversion

from the node-order label dependency of PLL to a

shortest-distance label dependency. This conversion

leads to a non-trivial propagation based labeling pro-

cess. The algorithm completes in D rounds where D
denotes the diameter of the graph — small for small-

world networks. The resulting labels are identical to

those constructed in the sequential algorithm of PLL.

• We provide a graph compression technique for all 2-

hop labeling approaches and also exploit the property

of PLL to further reduce the index size.

• We conduct extensive experiments to verify the per-

formance of the proposed techniques. In a single-core

environment, our index reduction technique dramat-

ically shrinks the index size and improves the index

time. In a multi-core environment, our PSL approach

shows near-linear speed-up in parallelism. The pro-

posed techniques jointly enable the index construction

on networks with billion scale offline, which verifies

the efficiency of the proposed approach.

The rest of the paper is organized as follows. Section 2

introduces the state-of-the-art 2-hop labeling approach on

small-world networks. Section 3 devises a distance label-

ing algorithm. Section 4 introduces two index reduction

techniques. Section 5 summarizes related works. Section 6

experimentally evaluates our proposed approaches on real

small-world networks and Section 7 concludes the paper.

2 PRELIMINARY
2.1 Shortest Distance Problem
LetG be a graph with vertex setVG and edge set EG . Denote
by n andm the number |VG | of nodes and |EG | of edges in
the graph, respectively. For each node v ∈ VG , denote by

NG (v) = {u |(u,v) ∈ EG } the neighbors of v and deдG (v) =
|NG (v)| the degree of nodev inG . We mainly use undirected

graphs in the paper; Appendix C extends our techniques

to directed graphs. Without loss of generality, we assume

a connected graph G. Our techniques can be extended to

disconnected graphs easily.

Let p(s, t) = {v1,v2, · · · ,vk } with s = v1 to t = vk . p is

a path on G if, for ∀1 ≤ i ≤ k , edge (vi ,vi+1) ∈ EG . For
an i ∈ [1,k], denote by p(s, t) = p(s,vi) + p(vi , t) the con-
catenation of two paths. The length of a path p(s, t) is the
number of edges on the path, i.e., |p(s, t)| = k − 1. The short-
est path between s and t is the path with shortest length. The

shortest length is the length of the shortest path, denoted

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1061

as distG (s, t). Given a graph G, a point-to-point distance
query q(s, t) with s, t ∈ V returns the shortest distance

distG (s, t) between s and t . When the context is clear, we use

V ,E,N (v),deд(v),dist(s, t) to represent the node set, edge

set, neighbor set of v , the degree of v and the shortest dis-

tance from s to t , respectively, for simplicity.

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

Figure 1: Graph G

Example 2.1. Fig. 1 shows a network G = (V ,E) with
12 nodes and 23 edges. The neighbors of v6 are N (v6) =
{v2,v3,v7}. Two paths between v4 and v6 are p1(v4,v6) =
{v4,v3,v6}, p2(v4,v6) = {v4,v1,v2,v6}. The shortest path

p1(v4,v6) has the shortest length 2.

2.2 2-Hop Labeling for Distance Queries
To efficiently process point-to-point distance queries, 2-hop

labeling approach [9] precomputes the distances from each

node to preselected hub nodes and uses the 2-hop distances

via hubs to answer a query. Below we introduce the 2-hop

labeling approach that has been slightly updated [3, 11, 13]

to enable label reduction.

A labeling function L maps each node v ∈ V to a label
set L(v). L(v) consists of a set of label entries where each
entry is a key/value pair (u,dist(v,u))with a nodeu ∈ V and

the distance between v and u. The hub nodes of v are the

projections of L(v) on the key, i.e.,C(v) = {u |(u,dist(v,u)) ∈
L(v)}. C is called the hub function of L. {L(v)|v ∈ V } is a
2-hop labeling if L satisfies the 2-hop cover constraint
below.

Definition 2.2 (2-hop Cover Constraint [9]). A labeling func-

tion L satisfies the 2-hop cover constraint if for any node

pair s and t , C(s) ∩C(t) shares a node with a shortest path

from s to t .

For a 2-hop labeling L, the label size |L(v)| of a node v is

the number of entries in L(v). Denote by δ the largest label

size of G, i.e., δ =maxv ∈V (|L(v)|).

Given a 2-hop labeling L, a distance query q(s, t) is an-
swered with Query(s, t ,L) defined below.

Query(s, t ,L) = min

u ∈C(s)∩C(t)
dist(s,u) + dist(u, t)

Lemma 2.3. For a 2-hop labeling L that satisfies the 2-hop
cover constraint, Query(s, t ,L) = dist(s, t).

Proof. See Appendix A. □

Assume that the label entries in each label set are stored in

the ascending order of the key. The online cost of answering

q(s, t) is on retrieving and merging the entries in L(s) and
L(t). Thus, the query time complexity is O(|L(s)| + |L(t)|).

2.3 Prune Landmark Labeling Approach
Prune Landmark Labeling Approach (PLL) is the state-of-

the-art 2-hop labeling approach on small-world networks.

Node Order. The effectiveness of PLL heavily relies on a

node order and the corresponding ranking functions r (v) on
nodes v ∈ V . A typical ranking function prioritizes nodes

with higher degrees and resorts to original ID to break ties.

Specifically, for two nodes v and v ′, r (v) > r (v ′) if

• deд(v) > deд(v ′) or
• deд(v) = deд(v ′) and ID(v) > ID(v ′).

Without loss of generality, we rename the nodes such that

r (v1) > r (v2) > · · · > r (vn).

Example 2.4. We rank the nodes in Fig. 1 according to

their degrees. When two nodes have the same degree, the

tie is broken by the original ID of the node. We re-order the

nodes such that r (v1) > r (v2) > · · · > r (v12).

The node order can similarly be selected based on other

node centralities, e.g., betweenness centrality and closeness

centrality. Please see [17] as a comprehensive comparison.

PLL with Pruned BFS. Algorithm 1 shows the process of

PLL. Given a graph G and a node order v1,v2, · · · ,vn , PLL
constructs a pruned 2-hop labeling LPLL in n rounds (Line 1).

In the i-th round, i ∈ [1,n], PLL performs a pruned BFS

search (a standard BFS search apart from Line 6-8) sourced

from vi . To prune the BFS, PLL tests if the existing index

can already report the distance between vi and a node u
(Line 6). If yes, u will neither be labeled nor expanded in

this round (Line 7); otherwise, a label with hub vi will be
added tou (Line 8) andu will be expanded right away (Line 9-

12). Obviously, on the nodes that are either unexpanded or

unreached, the labels with hub vi are conceptually pruned.

Lemma 2.5 ([3]). The index of PLL satisfies the 2-hop cover
constraint.

We analyse the index time of PLL in Theorem 2.6.

Theorem 2.6. The time complexity of PLL isO(δ 2 ·m)where
δ denotes the maximum label size over all nodes in the graph.

Proof. Every execution of Line 8 will add a new label

entry to PLL andwill expand a nodeu to its neighbors (Line 9-

12), for each neighbor of u, when it is popped, Line 6 will

call the query function to calculate the distance between

vi and u. The time complexity of Query(vi ,u,L
PLL) is O(δ).

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1062

Algorithm 1: PLL
Input: Graph G(V ,E)
Output: The index LPLL

1 for i = 1, 2, · · · ,n do
2 Q ← a queue with only one element vi ;

3 dist(vi) ← 0 and dist(v) ← ∞,∀v ∈ V \vi ;
4 while Q , � do
5 u ← Q .pop();

6 if Query(vi ,u,LPLL) ≤ dist(u) then
7 continue;

8 LPLL(u) ← LPLL(u) ∪ {(vi ,dist(u))};

9 forw ∈ N (u) do
10 if dist(w) = ∞ then
11 dist(w) ← dist(u) + 1;

12 Q .push(w);

13 return LPLL ;

The number of function calls is Σu ∈V Σr ∈C(u)deд(u) ≤ δm.

Therefore, the overall index time of PLL is O(δ 2 ·m). □

We show index time of PLL by investigating δ on two rep-

resentative small-world networks. Youtube, a social network,

has δ = 1665. UK-Tpd, a web graph, has δ = 2866. When

the number of edges is 1 billion, δ 2m = 10
15
. This amount of

work for constructing LPLL, therefore, can hardly be finished

on a single thread within a reasonable time.

3 PARALLELIZED DISTANCE LABELING
Section 3.1 -3.2 revisit PLL to identify the label properties

and order dependency. Section 3.3 transforms the order de-

pendency in PLL to distance dependency. By utilizing the

distance dependency, Section 3.4 proposes a practical ap-

proach in constructing the index in parallel.

3.1 Label Property
The labels of PLL show an important node-order property.

Theorem 3.1. For any two nodes ∀u,v ∈ V , v is a hub of u
under PLL, i.e., (v,dist(v,u)) ∈ LPLL(u), if and only if v is the
highest ranked node on all the shortest paths from u to v .

Proof. Let S be the set of nodes on all the shortest paths

from u tow . Letw be the highest ranked node in S .

We prove that all nodes in S havew as their hubs in LPLL

by contradiction. Assume that there is a node z in S such that

z does not have a hub of w in LPLL. Consider the round of

Algorithm 1 where the pruned BFS sourcedw is performing.

Let L′ be the snapshot of the PLL label set right before the

round begins. Given that z has no hub ofw , then either

• z is explicitly pruned: Query(z,w,L′) = dist(w, z), or

• z is implicitly pruned: z is not reached since there is

at least a node z ′ on the shortest path from w to z
explicitly pruned with Query(z ′,w,L′) = dist(w, z ′).

In either case, it requires a common hub between w and z
(or z ′) to produce the query result, which is impossible since

i) z, z ′ ∈ S and ii)w has the highest rank in S and iii) L′ does
not include any hub ranked higher thanw . Contradiction.

Since all nodes in S havew as their hubs in LPLL, we prove
the two directions of the theorem in two cases: 1) ifw = v ,
that is, v is the highest ranked node in S , then v is a hub

of u ∈ S and 2) if r (w) > r (v), when before the pruned BFS

sourced from v is performed,w is already a common hub of

u and v . Asw is on the shortest path between u and v , the
label with hub v on u is pruned and not in PLL. □

Lemma 3.2-3.4 are derived from Theorem 3.1.

Lemma 3.2. If v is a hub of u, r (v) > r (u).

Proof. Since v has the highest rank on a shortest path

from v to u (Theorem 3.1), r (v) > r (u). □

Lemma 3.3. For ∀u ∈ V , (u, 0) ∈ LPLL(u).

Proof. We make the path as p(u,u) and according to The-
orem 3.1, (u, 0) will be always inserted to LPLL(u). □

Lemma 3.4. For ∀(u,v) ∈ E, (u, 1) ∈ LPLL(v), if r (u) > r (v);
otherwise,(v, 1) ∈ LPLL(u).

Proof. Let p(u,v) be the path with an edge. According to

Theorem 3.1, the higher ranked node is the hub node. □

3.2 Order Dependency
To see the dependency among the labels, we partition the

labels in LPLL according to their hub nodes. Letv1,v2, · · · ,vn
be the node order under which label set LPLL was constructed.

We define two sets with particular meanings. Recall that

PLL has n rounds where the i-th round performs a pruned

BFS sourced from vi . We denote by LPLL<i (u) the snapshot of

LPLL(u) at the beginning of the i-th round and by LPLLi (u) the
incremental label of u built in the i-th round.

Definition 3.5 (Order Specific Label Set).

LPLLi (u) = {(vi ,dist(vi ,u)) ∈ L
PLL},

for ∀i ∈ [1,n], u ∈ V . Let LPLLi =
⋃

u ∈V LPLLi (u).

Definition 3.6 (Order Partial Label Set).

LPLL<i (u) = {(vj ,dist(vj ,u)) ∈ L
PLL |j < i},

for ∀i ∈ [1,n + 1], u ∈ V . Let LPLL<i =
⋃

u ∈V LPLL<i (u). L
PLL
<n+1 =

LPLL.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1063

The following lemma shows that the pruning condition

in Algorithm 1 leads to an order dependency among labels.

Lemma 3.7 (Order Dependency). LPLLi (u) depends on
LPLL<i (u). Specifically, L

PLL
i (u) ={

{(vi ,dist(vi ,u))} Query(vi ,u,L
PLL
<i) > dist(vi ,u);

� otherwise .

Proof. Let S be the set of nodes on the shortest path from

vi to u (including vi and u). Let w be the node with the

highest rank in S . Ifvi = w , according to Theorem 3.1, i)vi is
a hub ofu and ii) for∀v ∈ S\vi ,v is a not a hub ofvi , and thus
Query(vi ,u,L

PLL
<i) > dist(vi ,u). If r (vi) < r (w), thenvi is not

a hub of u and label (w,dist(w,vi)), (w,dist(w,u)) ∈ LPLL<i
and thus Query(vi ,u,L

PLL
<i) = dist(vi ,u). □

Lemma 3.7 shows that LPLLi (u) depends on LPLL<i (u) while

LPLL<i (u) depends on LPLLi−1 (u). Such a convolved dependency

can hardly be removed as long as the labels are built in the

node order.

Example 3.8. Table 1 illustrates how PLL constructs the

index. A cell at the row of vi and the column of vj records
the order specific label of vi at the j-th round. In column

v1, pruned BFS inserts v1 into LPLL
1
(u), ∀u ∈ V . In column

v2, PLL performs pruned BFS and v2 becomes the hub of

{v2,v3,v6,v7,v10} due to the pruning condition of LPLL
1
=

{LPLL
1
(u)|u ∈ V }. The order dependency in the column v7:

partial set LPLL<7 =
⋃

i<7,u ∈V LPLLi (u) prunes the labels on all

nodes except on v7.

3.3 Distance Dependency
To break the order dependency in the label construction,

consider the pruning condition of Line 6, Algorithm 1. When

Query(vi ,u,L
PLL
<i) = dist(u,vi) prunes a node label on u,

there must be two labels on u and vi , respectively, to a com-

mon hub w such that dist(u,w) + dist(w,vi) = dist(u,vi).
Therefore, dist(u,w) and dist(w,vi)must be no greater than

dist(u,vi). In other words, all the labels with distances

greater than dist(u,vi) have no effect on the query result of

Query(vi ,u,L
PLL
<i) and the corresponding pruning outcomes.

From the above intuition, we group the label entries in

LPLL based on their label distances. The rearranged label sets

will pave the way to our Parallel Shortest distance Labeling

(PSL) approach (Section 3.4) and are thus called PSL label

sets. Let D be the diameter of the graph G.

Definition 3.9 (Distance Specific Label Set).

LPSLd (u) = {(v,dist(v,u)) ∈ L
PLL(u)|dist(v,u) = d},

for ∀u ∈ V ,d ∈ [1,D]. Let LPSLd = {LPSLd (u)|u ∈ V }.

Similarly, the partial label of a node then becomes the set

of label entries with distance less than a certain distance and

is defined in Definition 3.10.

Definition 3.10 (Distance Partial Label Set).

LPSL<d (u) = {(v,dist(v,u)) ∈ L
PLL(u)|dist(v,u) < d},

for ∀u ∈ V ,d ∈ [1,D + 1]. Let LPSL =
⋃

u ∈V LPSL(u). In
particular, LPSL(u) = LPSL<D+1(u).

The equivalence of the index LPLL and the novel index

LPSL is given in Theorem 3.11.

Theorem 3.11. LPSL = LPLL.

Proof. Since all the label (v,dist(v,u)) in LPLL has

dist(v,u) ≤ D, LPSL includes all labels in LPLL and has no

other labels according to the definition. □

Example 3.12. Table 1 shows a rearrangement of labels in

PLL. A cell with row vi and column j denotes label set of
LPSLj (vi) — the PLL labels of vi whose distances are j.

Distance Dependency. Definition 3.9 and Definition 3.10

provide us an opportunity in removing the order dependency

in the label construction process.

Theorem 3.13 (Distance Dependency). LPSLd (u) depends
on LPSL

<d . Specifically, given a node u, for a node v ∈ V with
r (v) > r (u) and dist(u,v) = d , (v,dist(v,u)) ∈ LPSLd (u) if and
only if Query(u,v,LPSL

<d) > d .

Proof. Consider a node v with dist(u,v) = d . Denote by
S the set of nodes on the shortest paths from u tov and letw
be the highest ranked node in S . According to Theorem 3.1,

we have two exclusive cases:

• w = v if and only if v is the hub of u;
• w , v means that

– w is the hub of both u and v , and
– dist(u,w),dist(w,v) < d ,
and therefore, Query(u,v,LPSL

<d) = d .

Therefore, if (v,dist(v,u)) < LPSLd (u), namely, v is not a hub

of u, then w , v , and then Query(u,v,LPSL
<d) = d . Besides,

if (v,dist(v,u)) ∈ LPSLd (u), namely, v is a hub of u, v is the

highest ranked node in S and therefore, no other node in S
can be a hub of v , that is, Query(u,v,LPSL

<d) > d . □

By transforming the order dependency to distance depen-

dency, it is possible to complete the index construction in D
rounds where D denotes the diameter of the graph.

Example 3.14. In Table 1, each row corresponds to the

partial label of a node while each column corresponds to

the incremental labels regarding each distance value. When

d = 0, each node add to itself since the distance between

itself is zero. When d = 1, we either add nodes that are 1-hop

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1064

Table 1: The Index of PLL and PSL

PLL PSL
ID v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 0 1 2

v1 (v1, 0) - - - - - - - - - - - (v1, 0) - -

v2 (v1, 1) (v2, 0) - - - - - - - - - - (v2, 0) (v1, 1) -

v3 (v1, 1) (v2, 1) (v3, 0) - - - - - - - - - (v3, 0) (v1, 1) (v2, 1) -

v4 (v1, 1) - (v3, 1) (v4, 0) - - - - - - - - (v4, 0) (v1, 1) (v3, 1) -

v5 (v1, 1) - - (v4, 1) (v5, 0) - - - - - - - (v5, 0) (v1, 1) (v4, 1) -

v6 (v1, 2) (v2, 1) (v3, 1) - - (v6, 0) - - - - - - (v6, 0) (v2, 1) (v3, 1) (v1, 2)

v7 (v1, 2) (v2, 1) (v3, 1) - - (v6, 1) (v7, 0) - - - - - (v7, 0) (v2, 1) (v3, 1) (v6, 1) (v1, 2)

v8 (v1, 1) - - - (v5, 1) - - (v8, 0) - - - - (v8, 0) (v1, 1) (v5, 1) -

v9 (v1, 1) - - - - - - (v8, 1) (v9, 0) - - - (v9, 0) (v1, 1) (v8, 1) -

v10 (v1, 1) (v2, 1) - - - - - - (v9, 1) (v10, 0) - - (v10, 0) (v1, 1) (v2, 1) (v9, 1) -

v11 (v1, 2) - (v3, 2) (v4, 1) (v5, 1) - - - - - (v11, 0) - (v11, 0) (v4, 1) (v5, 1) (v1, 2) (v3, 2)

v12 (v1, 2) - (v3, 2) (v4, 1) (v5, 1) - - - - - - (v12, 0) (v12, 0) (v4, 1) (v5, 1) (v1, 2) (v3, 2)

away to a node u or prune the 1-hop away nodes. Note that

according to Lemma 3.2, only higher ranking nodes can be

hubs of lower ranking nodes. When d = 2, we either add

nodes that are 2-hop away to a node u or prune the 2-hop

away nodes. For instance, ifu = v11, the nodev1 that is 2-hop
away is added into LPSL

2
(v11). But node v8 is pruned since we

can make use of v5, which is less than two hops away with

v8, to prune it.

3.4 The Parallelized Labeling Method
To apply Theorem 3.13 to generate LPSLd (u), all the node pairs
with distance equal to d are to be examined which is also ex-

pensive. This section provides a practical algorithm, Parallel

Shortest distance Labeling (PSL), to construct the index LPSL

in label propagations.

Propagation-Based Label Construction. This section

provides a positive answer to the following question: can

we build the distance specific label LPSLd (u) by gathering the

labels of its neighbors, namely, LPSLd−1(v), for v ∈ N (u)? We

formally show that

⋃
v ∈N (u) L

PSL
d−1(v) is sufficient to create

LPSLd (u) in Lemma 3.15

Lemma 3.15. All the hub nodes of labels in LPSLd (u) appear
in labels

⋃
v ∈N (u) L

PSL
d−1(v) as hub nodes.

Proof. We show that if a node is not a hub of any node

v ∈ N (u) in LPSLd−1(v), then it is not a hub of u in LPSLd (u). Let

w , u be a hub of u in LPSLd (u) but is not a hub of any node

v ∈ N (u) in LPSLd−1(v). Note that the PLL was built in a BFS

search. Consider the round when the pruned BFS search is

sourced fromw . Sincew , u andw is a hub of u, there is a
shortest path fromw tou such thatw is a hub of all nodes on

the path. Let s be the predecessor of u on the shortest path.

s ∈ N (v) and (w,dist(w, s)) ∈ LPLL. Since dist(w, s) = d − 1,
w is a hub of LPSLd−1(s), contradiction. □

Pruning Conditions. From Lemma 3.15, we can construct

LPSL(u) in an iterativeway and the initial condition is given in
Lemma 3.3 by inserting u to the label LPSL

0
(u) as its own hub.

However, pouring all nodes in

⋃
v ∈N (u) L

PSL
d−1(v) directly into

LPSLd (u) produces a large set of candidate labels. Therefore,
we propose two rules to prune unnecessary label entries.

Lemma 3.16. A hub w in the label set
⋃

v ∈N (u) L
PSL
d−1(v) is

not a hub of u if r (w) < r (u).

Proof. Lemma 3.2. □

Lemma 3.17. A hub w in the label set
⋃

v ∈N (u) L
PSL
d−1(v) is

not a hub of u in LPSLd (v) if Query(w,u,L
PSL
<d) ≤ d .

Proof. If Query(w,u,LPSL
<d) < d , then dist(w,u) < d ,

w is not a hub of u with distance dist(w,u) = d . If
Query(w,u,LPSL

<d) = d , we discuss in two cases.

• dist(w,u) < d ,w is not a hub of u with distance d .
• dist(w,u) = d , there is a node z on the shortest path

betweenw and u with r (z) > r (w). According to The-

orem 3.1,w is not be a hub of u in LPLL.

Therefore,w is not a hub of u if Query(w,u,LPSL
<d) ≤ d . □

Based on the above pruning rules, we propose our label

propagation function to find the exact LPSLd (u), ∀u ∈ V .

Denote by Cd (v) the set of hub nodes in label set LPSLd (v),
for ∀v ∈ V and d ∈ [1,D + 1].

Theorem 3.18 (Label Propagation Function).

LPSLd (u) =
⋃

w ∈Cd−1(v), for ∀v ∈N (u)
LPSLd (u,w) (1)

where LPSLd (u,w) ={
�, i f r (w) < r (u) or Query(w,u,LPSL

<d) ≤ d ;
{(w,dist(w,u))}, otherwise .

(2)

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1065

Proof. Denote by L′ the label set computed from Equa-

tion (1). We show that L′ = LPSLd (u) in two directions. Due

to the correctness of Lemma 3.15 and the pruning condi-

tions, the label set LPSLd (u) ⊆ L′. The follow parts prove

L′ ⊆ LPSLd (u). Let (w,dist(w,u)) be a label in L′. Equation (2)

shows that r (w) > r (u) and Query(w,u,LPSL
<d) > d .

If in LPLL, w is not a hub of u, then according to Theo-

rem 3.1, there is a node s that in S — the set of all nodes in

the shortest path betweenw andu —with r (s) > r (w) > r (u).
Therefore, dist(w, s),dist(s,u) < d and dist(w,u) ≤ d , and
thus, Query(w,u,LPSL

<d) ≤ d , contradiction.

Therefore,w is a hub of u in LPLL. Besides, if dist(w,u) <
d , Query(w,u,LPSL

<d) = dist(w,u) < d , contradiction. Thus,
dist(w,u) = d . Now we have proved thatw is a hub of u in

LPLL with dist(w,u) = d , i.e.,w is a hub ofu in LPSLd (u)which
completes the proof. □

The PSL Algorithm. Algorithm 2 puts all parts of PSL to-

gether. LPSL
0
(u) is obtained by add u to itself (Line 1). Then,

for each edge, the higher ranked node v is added into lower

ranked node u to form LPSL
1
(u) according to Lemma 3.4

(Line 2-4). If LPSLd−1 is empty — the path with length d−1 is cov-

ered by LPSL
<d−1 — we find the final index (Line 6). Otherwise,

nodes are parallelly processed to build LPSLd for d > 1 (Line 7-

12): each node u first finds its superset cand(u) (Lemma 3.15)

(Line 8) and then, pruning conditions 3.16-3.17 apply (Line 10-

11). Entry (w,dist(w,u)) is then added to LPSLd (u) (Line 11-12).

Algorithm 2: PSL
Input: Graph G(V ,E)
Output: The index LPSL

1 Insert (u, 0) into LPSL
0
(u), ∀u ∈ V ;

2 for (u,v) ∈ E do
3 if r (u) > r (v) then Insert (u, 1) into LPSL

1
(v);

4 else Insert (v, 1) into LPSL
1
(u);

5 d ← 2;

6 while LPSLd−1 is not empty do
7 for u ∈ V in parallel do
8 cand(u) ← hubs in LPSLd−1(v), ∀v ∈ N (u);
9 for each nodew ∈ cand(u) do

// Pruning Condition Lemma 3.16

10 if r (w) < r (u) then continue;

// Pruning Condition Lemma 3.17

11 if Query(w,u,LPSL
<d) ≤ d then continue;

12 Insert (w,d) into LPSLd (u);

13 d ← d + 1;

14 return LPSL;

Example 3.19. In Fig. 2(a), each node u ∈ V is added

to LPSL
0
(u) for d = 0. In Fig. 2(b), for each edge (u,v),

v is added to LPSL
1
(u) if r (v) > r (u). For instance,

LPSL
1
(v3) = {(v1, 1), (v2, 1)}, L

PSL
1
(v2) = {(v1, 1)}, L

PSL
1
(v7) =

{(v2, 1), (v3, 1), (v6, 1)}, In Fig. 2(c), for each node u, hubs in
{LPSL

1
(w)|w ∈ N (u)} are candidate hubs and then added to

LPSL
2
(u) if the pass pruning conditions. v6 has three neigh-

bors v2,v3,v7. Then, candidate nodes are {v1,v2,v3,v6,v7}.
(v1, 2) will be put into LPSL

2
(v6) since the current index

gives the answer ∞ and r (v1) > r (v6). {v2,v3,v6} will be
pruned by the current index while v7 will be pruned since

r (v7) < r (v6). Therefore, L
PSL
2
(v6) = {(v1, 2)}.

Theorem 3.20. The time complexity of PSL under one core
environment is O(δ 2 ·m).

Proof. Let LPSL = LPSL<D+1 = LPLL. For each label in LPSL(v),
it has been collected by each of v’s neighbors once as candi-
dates (Line 11). For each candidate, a query (Line 15) is called

in O(δ) time. The total cost is Σv ∈V δd(v) × δ = O(δ
2m). □

4 INDEX SIZE REDUCTION
Parallel index construction reduces the index time while

leaving the index size LPSL = LPLL unchanged. This section
improves the scalability of the PSL by reducing the index

size. Section 4.1 reduces the graph size using the equivalence

relationships among nodes. Section 4.2 optimizes the index

size of PSL based on an observation on the label distribution.

4.1 Equivalence Relation Reduction
We consider the equivalence of two nodes u and v based

on their neighbors. Depending on whether u and v have an

edge, we define two types of equivalence relations.

Definition 4.1 (Node Equivalence Relations). For u,v ∈ V ,

• u ≃1 v if N (u) = N (v);
• u ≃2 v if N (u) ∪ {u} = N (v) ∪ {v}.

It can be verified that ≃1 and ≃2 are equivalence relations.

Their reflexive, symmetric and transitive properties are in-

herited from the equality operator over node sets.

Since u < N (u), u ≃1 v requires that u and v have no edge

while u ≃2 v requires that u and v must have an edge.

Each equivalence relation partitions V into disjoint equiv-

alent classes: the equivalent class of a node v includes all the

nodes that are equivalent to v . We say an equivalent class

non-trivial if it includes at least two nodes. Definition 4.2

obtains nodes in non-trivial equivalent classes under the

two equivalence relations and Lemma 4.4 shows that these

non-trivial equivalent classes are disjoint.

Definition 4.2. Define three vertex sets V1, V2 and V3 with

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1066

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

(a) d = 0

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

(b) d = 1

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

(c) d = 2

Figure 2: The execution of PSL from d = 0, d = 1 to d = 2

• V1 = {u ∈ V |there exists v , u such that u ≃1 v}
• V2 = {u ∈ V |there exists v , u such that u ≃2 v}
• V3 = V \V1 \V2.

V1

V9

V10 V8

V5

V11

V4

V2

V6 V3

Figure 3: Equivalence Relation Reduction

Example 4.3. In Fig. 3, V1 = {v11,v12} since N (v11) =
N (v12) = {v4,v5}; V2 = {v6,v7} since {N (v6) ∪ v6} =
{N (v7) ∪v7} = {v2,v3,v6,v7}.

Lemma 4.4. V1,V2 and V3 is a partition of the graph G.

Proof. Since V3 is the complement of V1 ∪V2, the three
vertex sets jointly coverV . It remains to prove thatV1∩V2 = ∅.
Letu be a nodeu ∈ V1∩V2. According to the definition, there
exist two nodesv , u andw , u such thatu ≃1 v andu ≃2 w .

In other words, N (u) = N (v) and N (u) ∪ {u} = N (w) ∪ {w}.
Since v has no edge to u while w has an edge to u, v , w .

Thus,w ∈ N (u) = N (v), namely, there is an edge betweenw
and v . Since v ∈ N (w) \ {u} ⊆ N (u), u and v have an edge,

contradiction. Therefore, V1 ∩V2 = ∅. □

According to Lemma 4.4, each node belongs to at most

one non-trivial equivalence class constructed under the two

equivalence relations. Therefore, we define themapping func-

tion f that maps a node to the node with the smallest node

ID in the corresponding non-trivial equivalent class.

Definition 4.5.

f (u) =


min{v |v ≃1 u}, i f u ∈ V1;
min{v |v ≃2 u}, i f u ∈ V2;
u, i f u ∈ V3;

(3)

Example 4.6. In Fig. 3, f (v11) = f (v12) = v11; f (v6) =
f (v7) = v6; f (u) = u, for u ∈ V3.

Graph Reduction. We compress the graph by eliminating

all the nodes u in V1 and V2 and their incident edges unless

f (u) = u. This operation transforms G to its subgraph Gs
.

Example 4.7. In Fig. 3, f (v7) , v7, we delete v7. Similarly,

f (v12) , v12, we delete v12. Nodes u with f (u) = u are kept.

Lemma 4.8. For any two nodes s, t with f (s) , f (t),
distG (s, t) = distGs (f (s), f (t)).

Proof. Let p(s, t) = {v1,v2, · · · ,vk } be a shortest path on

G from s to t and let ps (s, t) = { f (v1), f (v2), · · · , f (vk)}.

This paragraph proves that for any nodes x and y on p
with x , y, f (x) , f (y). We first show that for all v , t on
p, f (v) , f (t): if otherwise the predecessor pre(v) of v on

the path p — pre(v) exists since f (s) , f (t) — can link to

t directly and then reduces the path length, contradiction.

Therefore, any node v with f (v) , f (t) has a successor on p.
Secondly, letu , t be a node on p; denote by S the equivalent

class of u; let z be the last node in S on the path. suc(z), the
successor of z on the path exists since f (u) = f (z) , f (t)
(from the first point). There is an edge from u to suc(z) since
1) z has an edge to suc(z), 2) u, z ∈ S and 3) suc(z) < S . Thus,
if suc(z) is not the successor ofu then p is not a shortest path.

Therefore, all nodes on p have different f (·) values.

It is easy to verify that if f (u) , f (v) and there is an edge

between u and v , then there is an edge between f (u) and
f (v). Thus, ps (s, t) is a path on Gs

. Since GS
is a subgraph

of G, distG (s, t) ≤ distGS (s, t) ≤ distG (s, t). □

Table 2: Reduce Index Size with Equivalence Relations

Number of Reduced Nodes Index Space (MB)

Dataset |V | |V1 \ F (V1)| |V2 \ F (V2)| Before After

YOUT 3,223,590 1,068,666 14,405 2141.512 1474.86

TPD 1,766,010 312,166 11,912 1783.192 1495.05

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1067

Example 4.9. Denote by F (V ′) = {v ∈ V ′ |v = f (v)} the
remained nodes in a set under equivalence reduction. Ta-

ble 2 shows the effectiveness of the equivalence relations on

index reduction. For YOUT (TPD), around 33.15% (17.67%)

and 0.45% (0.67%) of nodes are eliminated by the first and

the second equivalence relation, respectively and the index

size are reduced by 31.13% (16.16%).

Query Processing. With the compressed graph, the query

processing has to be adapted. We answer query q(s, t) in the

following four cases. 1) If s = t , return 0. 2) If f (s) = f (t)
under s ≃1 t then return 2. 3) If f (s) = f (t) under s ≃2 t ,
return 1. 4) Otherwise, return q(f (s), f (t)) in Gs

.

4.2 Local Minimum Set Elimination
The index reducing technique in this section is motivated by

an observation on the PLL label distribution.

For PLL with nodes ordered in node degrees, Fig. 4 shows

the label size distribution of two representative small-world

networks: Youtube (denoted by YOUT) is a social network
and UK-Tpd (denoted by TPD) is a web graph. The maximum

degrees of YOUT and TPD are 91751 and 63731, respectively.

It can be observed that low degree nodes have significantly

larger label sizes than the high degree nodes. This observa-

tion motivates the elimination of node labels on the nodes

ranked lowest among its neighbors.

 0
 50

 100
 150
 200
 250
 300
 350

0 20K 40K 60K 80K 100K

A
vg

 L
ab

el
 S

iz
e

Degree
(a) YOUT

0

200

400

600

800

1000

0 10K 20K 30K 40K 50K 60K

A
vg

 L
ab

el
 S

iz
e

Degree
(b) TPD

Figure 4: PLL: Degree and Label Size

Definition 4.10 (Local Minimum Set). A node is local min-

imum node if it has the lowest rank among its neighbors.

Local minimum set constitutes of local minimum nodes:

M(G) = {u ∈ V |for ∀v ∈ N (u), r (u) < r (v)}.

Example 4.11. In Fig. 5,M(G) = {v7,v10,v11,v12}. For ex-
ample, node v7 has the lowest rank among its neighbors.

An ideal property of a local minimum node v is that v is

referred to by no node other than v itself as a hub.

Lemma 4.12. For any node ∀v ∈ M(G) and any node ∀u ∈
V , v is a hub of u in LPSL if and only if v = u.

Proof. According to Theorem 3.1, v is a hub of u if v is

the highest ranked node in S — the set of all nodes on the

V1

V9

V8

V5

V4

V2

V6 V3

Figure 5: Local Minimum Set

shortest path fromu tov . Unlessu = v , for any shortest path
from u to v , there is a node w ∈ N (v) on the path. If v is a

local minimum node, r (v) < r (w) and v cannot be a hub of

u. □

Construct Labels for V \ M(G). Lemma 4.12 shows that

removing nodes in M(G) does not affect the label set of any
node in V \M(G). However, in our propagation based label

construction, LPSLd (v) is built from LPSLd−1(u), ∀u ∈ N (v). In

other words, for a node u ∈ N (v) ∩M(G), without LPSLd−1(u)

we cannot construct LPSLd (u) using Theorem 3.18.

To tackle the above problem, the key finding is that nodes

in M(G) are independent. That is, there is no edge between

nodes inM(G). Thus, a nodeu with some of its neighbor from

M(G) can be saved by resorting to u’s two-hop neighbors

via nodes in M(G). These 2-hop neighbors will certainly fall

in V \M(G) and their labels are ready for use.

Definition 4.13 (Generalized Neighbors). Given a node v ∈
V \M(G), we define two neighbor sets. N 1(v) = N (v)\M(G)
includes the neighbors ofv that fall inV \M(G) and N 2(v) =
{w |w ∈ (N (u) \ {v}),∀u ∈ (N (v) ∩ M(G))} includes the
two-hop neighbors of v connected via nodes inM(G).

Example 4.14. In Fig. 5, since v9 ∈ V \ M(G), N 1(v9) =
{v1,v8}, N

2(v9) = {v1,v2}.

We show that the generalized neighbors are not inM(G).

Lemma 4.15. Given a nodev ∈ V \M(G),N 1(v)∩M(G) = ∅
and N 2(v) ∩M(G) = ∅.

Proof. N 1(v) ∩ M(G) = ∅ by Definition 4.13. Let x ∈
N 2(v) be a node expanded from y ∈ N (v) ∩ M(G). If x ∈
M(G), then r (y) < r (x) and r (x) < r (y), contradiction. □

Example 4.16. In Fig. 5, N 2(v9) = {v1,v2}, which are all

in the set V \M(G).

We show a label propagation function onV \M(G) below.

For ∀v ∈ V and d ∈ [1,D + 1], denote, byCd (v), the set of
hub nodes in label set LPSLd (v).

Theorem 4.17. For each node u ∈ V \M(G)

LPSLd (u) =
⋃

w ∈Cd−1(v), for ∀v ∈N 1(u)
w ∈Cd−2(v ′), for ∀v ′∈N 2(u)

LPSLd (u,w), (4)

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1068

where LPSLd (u,w) ={
�, i f r (w) < r (u) or Query(w,u,LPSL

<d) ≤ dist(w,u);
(w,dist(w,u)), otherwise .

Proof. Let L′′ be the labels drawn from Equation (4). We

reuse the proof of Theorem 3.18 by showing that the hubs

L′ constructed in Equation (1) is a subset of the hubs in

L′′. According to Lemma 3.15,

⋃
v ′∈N 2(u)Cd−2(v

′) is a su-

per set of

⋃
v ∈N (v)∩M(G)Cd−1(v), besides, N (u) = N 1(u) ∪

(N (u) ∩M(G)), thus
⋃

v ∈N (u)Cd−1(v) ⊆
⋃

v ∈N 1(u)Cd−1(v) ∪⋃
v ′∈N 2(u)Cd−2(v

′) which completes the proof. □

Table 3: Reduced Index Size with Local Minimum Set

Node Number Index Space (MB)

Dataset |V | |M(G)| Before After

YOUT 3,223,590 2,287,357 2141.512 1234.377

TPD 1,766,010 1,151,224 1783.192 989.567

Example 4.18. Table 3 shows the effectiveness on reducing

the index size using local minimum set. For YOUT (TPD), the
local minimum set eliminates about 70.95% (65.18%) nodes

and reduces the index size by 42.4% (44.5%).

Query Processing. The reduced index provides the labels

for nodes in V \M(G). When it comes to query processing,

we can recover the labels of nodes inM(G) with the union

of the labels of neighbors. For a query q(s, t), without loss of
generality, if s ∈ M(G) and t ∈ V \M(G), we swap s and t .
To reduce the online cost, we use a hash join to produce the

2-hop distances. Let H be a table of size |V \M(G)| where
H (w) records the labelled distance in LPSL(s) with hub w .

H (w) = ∞ if w is not a hub of s . Since the label set LPSL(s)
may not be available, we construct H in two cases.

• If s ∈ V \M(G), we hash the labels in LPSL(s) by letting
H (v) = dist(s,v) for each hub v of s .
• Otherwise, we construct labels of s by visiting neigh-

borsw ∈ N (s) of s and updateH (v) with dist(v,w)+ 1
for each hub v ofw — H (v) only keeps the minimum

value along the updates.

After H being constructed, we generate labels of t in a

similar way and instead of updating the table H , we fetch

the value stored in the table H under the same hub node and

then compose a 2-hop distance.

Note that, the hash table H can be maintained across dif-

ferent queries without initialization: we keep a dirty log and

recover H after processing each query.

Lemma 4.19. When s, t ∈ M(G), the time cost of distance
query is O(Σa∈N (s) |LPSL(a)| + Σb ∈N (t) |L

PSL(t)|).

Proof. For s , we store nodes in {LPSL(a)|a ∈ N (s)} in
H . For t , we scan the nodes in {LPSL(b)|b ∈ N (t)} to gain

the distance. The linear scan takes O(|{LPSL(a)|a ∈ N (s)}| +
|{LPSL(b)|b ∈ N (s)}|) time in total. □

Table 4: Local Minimum Set: Index and Query Time

Index Time (sec) Query Time (sec)

Dataset Before After Before After

YOUT 23.805 15.786 1.13E-06 1.71E-06

TPD 18.997 13.71 1.80E-06 3.71E-06

Example 4.20. Table 4 shows the index time and query

time in a 45-core environment. Local minimum set tech-

nique reduces, for YOUT (TPD), the index time by 33.69%

(27.83%) at a cost of 1.5× (2.06×) query time. The trade-off is

worthwhile since the query time is still in micro-seconds.

5 RELATEDWORK
Indexing shortest distances for fast online query processing

has been extensively studied. A recent experimental compar-

ison on distance labeling algorithms can be found in [17].

Distance Labeling on Small-world Networks. To index

shortest distances for small-world networks, existing solu-

tions either build a partial index to assist the online search

algorithms [5, 11, 12] or build a complete index to fully sup-

port the distance query [3, 13]. The solutions in the latter

category require a larger index but will obtain much faster

query processing time. In the first category, Is-label approach

first determines the vertex hierarchy through the indepen-

dent set and then creates the label for each node by this

hierarchy structure [11]. Tree decomposition is used in [5]

to discover the core-fringe structure of social-networks and

then index is created on these two separate parts. Shortest

path trees of high degree nodes are used [12] as index to

guide the online searching to process the distance query. In

the second category, PLL [3] constructs the index by per-

forming pruned BFS whose detail is given in Section 2.3. The

hop doubling approach in [13] applies generation rules to

join the short paths to long paths, until the whole paths are

covered. Compared to PLL, the algorithm proposed in [13]

uses less memory but will spend much more index time.

Distance Labeling on Road Networks. For distance in-

dexing approaches on road networks, the approach in [1]

constructs the index by eliminating the high ranking nodes

and add it to the labels of its neighbors. The approach pro-

posed by Wei [29] first decomposes the graph into a tree as

the index, and then the distance of two nodes are answered

through this index using dynamic programming. The pruned

highway labeling approach proposed by Akiba et al. [2] de-

composes the road network into disjoint paths and the label

of a node include the distance to some nodes of the paths. A

hierarchical hop-based index is proposed in [19] to answer

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1069

Table 5: The Description of the Datasets

Name Dataset n m Type
DELI Delicious

10
536,109 1,365,961 Social Network

GP GPlus
10

211,188 1,506,896 Social Network

LAST Lastfm
10

1,191,806 4,519,330 Social Network

GOOG Google
11

875,713 5,105,039 Web Graph

AMAZ Amazon
7

735,323 5,158,388 Social Network

DIGG Digg
10

770,800 5,907,132 Social Network

FLIX Flixster
8

2,523,386 7,918,801 Social Network

TREC Trec
8

1,601,787 8,063,026 Web Graph

YOUT Youtube
8

3,223,589 9,375,374 Social Network

SKIT Skitter
8

1,696,415 11,095,298 Internet Topology

TWIT Twitter
11

456,631 14,855,875 Social Network

HUDO Hudong
10

1,984,485 14,869,484 Web Graph

PET Petster
8

623,766 15,699,276 Social Network

BAID Baidu
10

2,141,301 17,794,839 Web Graph

TPD UK-Tpd
7

1,766,010 18,244,650 Web Graph

DBLP DBLP
8

1,314,050 18,986,618 Coauthorship

TOPC Topcats
11

1,791,489 28,511,807 Web Graph

POK Pokec
11

1,632,803 30,622,564 Social Network

FLIC Flickr
8

2,302,925 33,140,017 Social Network

HOST UK-Host
7

4,769,354 50,829,923 Web Graph

STAC Stack
11

6,024,271 63,497,050 Interaction

LJ Ljournal
7

5,363,260 79,023,142 Social Network

FB Facebook
10

58,790,783 92,208,195 Social Network

INDO Indochina
7

7,414,866 194,109,311 Web Graph

SINA Sina
10

58,655,850 261,321,071 Social Network

WIKI Wiki
8

12,150,976 378,142,420 Web Graph

ARAB Arabic
7

22,744,080 639,999,458 Web Graph

IT IT-2004
7

41,291,594 1,150,725,436 Web Graph

SK SK-2005
7

50,636,154 1,949,412,601 Web Graph

UK UK-2006
7

77,741,046 2,965,197,340 Web Graph

shortest distance queries in a road network with bounded

query processing time and index size. More details about the

distance query on road networks can be found in [17, 30].

Approximate Distance Labeling. For approximate dis-

tance labeling algorithms, the basic idea is to select nodes

as landmarks and then precompute the distances from the

landmarks to all the other nodes. The distance between any

node pair can be estimated using triangle inequality [8, 20].

Online processing on landmarks is used to improve the preci-

sion [21, 27]. However, on small-world networks, the relative

error becomes significant since the distances are bounded

by the small diameter.

6 EXPERIMENTAL RESULTS
Algorithms. We compare our proposed algorithms against

the state-of-the-art algorithm PLL [3]. Our techniques in-

clude the following three methods:

• PSL: the parallelized distance labeling technique intro-
duced in Section 3.

• PSL+: PSL with the equivalence relation elimination

technique as introduced in Section 4.1.

• PSL∗: PSL with the equivalence relation elimination

technique plus the local minimal set elimination tech-

nique as introduced in Section 4.2.

All algorithms were implemented in C++ and compiled

with GNU GCC 4.8.5 and -O3 level optimization. All experi-

ments were conducted on a machine with 48 CPU cores and

384 GB main memory running Linux (Red Hat Linux 4.8.5,

64bit). Each CPU core is Intel Xeon 2.1GHz. The parallelized

programs are supported by the OpenMP framework. We set

the cut-off time as 24 hours.

Datasets. We conducted experiments on 30 real-world

graphs whose properties are shown in Table 5. The largest

graph has more than 2.9 billion edges. The datasets are

from various types of small-world networks including so-

cial networks, web graphs, internet topology graphs, coau-

thorship graphs, and interaction networks. All graphs were

downloaded from Network Repository
5
[23], Stanford Large

Network Dataset Collection
6
[15], Laboratory for Web Algo-

rithms
7
[6, 7], and the Koblenz Network Collection

8
[14].

Exp 1: Index Time on a Single Core. We compare the

index time of PLL with PSL, PSL+ and PSL∗ on a single core.

Note that, the bit-parallel technique introduced in [3] is used

for all methods since it is a separate optimization which can

be plugged into all distance labeling methods.

Fig. 6 shows that PSL has an index time comparable to

PLL while PSL+ and PSL∗ reduce the index time of PLL—
a by-product of the index reduction. For example, on the

dataset ARAB, PSL+ and PSL∗ successfully constructed the

index while PLL and PSL failed.

Exp 2: Index Time on Multiple Cores. Fig. 7 shows the
index time of PSL, PSL+ and PSL∗ on 45 cores. Compared to

the single-core results shown in Fig. 6, all the three methods

have a significant speedup. This speedup allows PSL to index
multiple massive graphs, e.g., LJ, ARAB and SK, that cannot
be indexed on a single core. PSL∗ succeeded in indexing all

the graphs while both PSL and PSL+ failed on FB and UK—
thanks to the index reduction. The results show that the

parallelism together with the index reduction techniques

scale up the distance labeling to handle larger graphs.

Exp 3: Index Size. Fig. 8 shows the index size of PLL, PSL,
PSL+ and PSL∗. The label size of PLL and PSL is the same,

which conforms to the analysis in Section 3.3. Both index

reduction techniques are effective. PSL+ reduces the index
size of PSL on SK bymore than 50%. Moreover, only PSL∗ can

5
http://networkrepository.com/index.php

6
http://snap.stanford.edu/data/

7
http://law.di.unimi.it

8
http://konect.uni-koblenz.de/

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1070

100

101

102

103

104

105

106
INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TWIT

HUDO
PET BAID

TPD DBLP
TOPC

POK FLIC
HOST

STAC
LJ FB INDO

SINA
WIKI

ARAB
IT SK UK

Ti
m

e
C

on
su

m
pt

io
n

(s
ec

)

PLL PSL PSL+ PSL*

Figure 6: The Comparison of the Index Time on One Core

100

101

102

103

104

105

106
INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TWIT

HUDO
PET BAID

TPD DBLP
TOPC

POK FLIC
HOST

STAC
LJ FB INDO

SINA
WIKI

ARAB
IT SK UK

Ti
m

e
C

on
su

m
pt

io
n

(s
ec

)

PSL PSL+ PSL*

Figure 7: The Comparison of the Index Time on 45 Cores

index massive graphs such asUKwhile the other approaches

ran out of memory. This verified the effectiveness of our

index reduction approaches.

Exp 4: Query Time. We compare the average query time

of PSL, PSL+ and PSL∗ on 10
6
random queries. Fig. 9 shows

that PSL+ and PSL∗ have a query time comparable to PSL.
For PSL+, the additional query cost on checking equivalence

relations is negligible. Since Gs
is smaller than G, the query

time of PSL+ is sometimes smaller than PSL. For example,

the query time of PSL+ on DELI is 1.17E-6 seconds while the
query time of PSL is 1.31E-6 seconds. For PSL∗, although the

labels of nodes in M(G) need to be constructed on-the-fly,

the query time of PSL∗ is within twice the query time of PSL
on average, remaining in micro-second level.

Exp 5: Indexing Speedup on Multi Cores. The speedup
of the index time of an approach on x cores is calculated by

speedup =
the index time of the approach with 1 core

the index time of the approach with x cores

. (5)

According to Equation 5, when the core number is 1, the

speedup is constantly 1; when an approach fails in indexing

on 1 core within the time limit, its speedup cannot be derived.

Fig. 10 shows the index time speedup of PSL, PSL+ and PSL∗

with the core number varying from 1, 12, 23, 34, to 45 on six

networks, DBLP, POK, LJ, FB, WIKI, and SK, respectively.
A near linear speedup has been observed for all the three

approaches along with the increasing number of cores. The

speedup of each approach is relatively stable over different

graphs. On 45 cores, PSL shows, over all datasets, an average

speedup of 30 and a maximum speedup of 32, PSL+ shows
average 28 and maximum 31 while PSL∗ shows average 27
and maximum 31. The index reduction techniques have little

influence on the speedup: the lines of the three approaches

clutter, especially onDBLP. A mild slowdown in the speedup

when the core number gets close to 45 can be explained by

the imbalance resource allocation introduced by more cores.

The index size reduction techniques can be critical: PSL
failed on FB even when 45 cores were engaged while PSL∗

removed redundant nodes to achieve an completion.

Exp 6: Scalability on Index Time. We randomly divided

the nodes of a graph into 5 groups, each group consisted

of 1/5 of the nodes. We created 5 graphs while the i-th test

case is the induced subgraph on the first i node groups. The
experiments were performed on the 5 graphs, respectively.

Fig. 11 shows that the index time of PSL∗ increases almost

linearly with the number of nodes of the graph. For example,

the index time is about 48 times on 100% nodes than on 20%

nodes ofDBLP and is about 8 times for FB. For PSL and PSL+,
although there is a situation where these two methods fail

to create the index, the index time increases smoothly when

the number of nodes increases. Therefore, the above results

justify the scalability of PSL for index time.

Exp 7: Scalability on Index Size. The setting is the same

as the former experiment. Fig. 12 shows that the space con-

sumption grows smoothly with the graph size for all three

methods. For example, the index space on 100% nodes of

DBLP is about 184.6, 251.2, 182.5 times larger than that on

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1071

102

103

104

105

106

107
INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TWIT

HUDO
PET BAID

TPD DBLP
TOPC

POK FLIC
HOST

STAC
LJ FB INDO

SINA
WIKI

ARAB
IT SK UK

Sp
ac

e
C

on
su

m
pt

io
n

(M
B

)

PLL PSL PSL+ PSL*

Figure 8: The Comparison of the Index Size

10-7

10-6

10-5

10-4

10-3

INF

DELI
GP LAST

GOOG
AMAZ

DIGG
FLIX

TREC
YOUT

SKIT
TWIT

HUDO
PET BAID

TPD DBLP
TOPC

POK FLIC
HOST

STAC
LJ FB INDO

SINA
WIKI

ARAB
IT SK UK

Q
ue

ry
 T

im
e

(s
ec

)

PLL PSL PSL+ PSL*

Figure 9: The Comparison of the Query Time

PSL PSL+ PSL*

 0
 5

 10
 15
 20
 25
 30
 35

1 12 23 34 45

Speedup

(a) DBLP

 0
 5

 10
 15
 20
 25
 30
 35

1 12 23 34 45

Speedup

(b) POK

 0
 5

 10
 15
 20
 25
 30

1 12 23 34 45

Speedup

(c) LJ

 0

 5

 10

 15

 20

 25

1 12 23 34 45

Speedup

(d) FB

 0
 5

 10
 15
 20
 25
 30

1 12 23 34 45

Speedup

(e) WIKI

 0

 5

 10

 15

 20

 25

1 12 23 34 45

Speedup

(f) SK
Figure 10: The Effect of Core Number on the Index Time

20% nodes for PSL, PSL+, and PSL∗ respectively. Therefore,
the smooth increase of the index space shows the scalability

of PSL for the index size.

Exp 8: Scalability on Query Time. Fig. 13 shows that the
query time of the proposed approaches grows smoothly with

the graph size. For example, on LJ, the query time on 100%

nodes is about 368.34, 372.92 and 546.26 times larger than that

on 20% nodes for PSL, PSL+, and PSL∗ respectively. Other
graphs show a similar trend. Combining the above experi-

ments on the scalability test, we draw the conclusion that

the proposed methods all show excellent scalability.

For more experiments please see Appendix B.

7 CONCLUSIONS
In this paper, we propose a novel parallelized labeling scheme

for distance queries on small-world networks. Our method

accelerates the index construction by concurrently creating

labels with the same label distances. Moreover, the index size

is further reduced by removing redundant nodes from the

graph and removing labels of local minimum sets from the

index. Extensive experimental results illustrate the superior

efficiency of our approach. In particular, our approach en-

ables the building of the index for networks at billion scales.

Experimental results verify the near-linear speedup of our

algorithms in a multi-core environment.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1072

PSL PSL+ PSL*

101

102

103

104

20% 40% 60% 80% 100%

Time Consumption (sec)

(a) DBLP

100

101

102

103

104

20% 40% 60% 80% 100%

Time Consumption (sec)

(b) POK

101

102

103

104

20% 40% 60% 80% 100%

Time Consumption (sec)

(c) LJ

102

103

104

105

INF

20% 40% 60% 80% 100%

Time Consumption (sec)

(d) FB

101

102

103

104

20% 40% 60% 80% 100%

Time Consumption (sec)

(e) WIKI

102

103

104

20% 40% 60% 80% 100%

Time Consumption (sec)

(f) SK
Figure 11: The Test of Scalability for the Index Time

PSL PSL+ PSL*

101

102

103

104

105

20% 40% 60% 80% 100%

Space Consumption (MB)

(a) DBLP

102

103

104

105

20% 40% 60% 80% 100%

Space Consumption (MB)

(b) POK

102

103

104

105

20% 40% 60% 80% 100%

Space Consumption (MB)

(c) LJ

102
103
104
105
106
107
INF

20% 40% 60% 80% 100%

Space Consumption (MB)

(d) FB

102

103

104

105

20% 40% 60% 80% 100%

Space Consumption (MB)

(e) WIKI

103

104

105

106

20% 40% 60% 80% 100%

Space Consumption (MB)

(f) SK
Figure 12: The Test of Scalability for the Index Size

PSL PSL+ PSL*

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(a) DBLP

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(b) POK

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(c) LJ

10-8
10-7
10-6
10-5
10-4
10-3
INF

20% 40% 60% 80% 100%

Query Time (sec)

(d) FB

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(e) WIKI

10-8

10-7

10-6

10-5

10-4

20% 40% 60% 80% 100%

Query Time (sec)

(f) SK
Figure 13: The Test of Scalability for the Query Time

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1073

Acknowledgements.Miao Qiao is supported by Marsden

Fund UOA1732, Royal Society of New Zealand. Lu Qin is sup-

ported by ARC DP160101513. Ying Zhang is supported by

ARC FT170100128 and DP180103096. Lijun Chang is sup-

ported by ARC DP160101513 and FT180100256. Xuemin

Lin is supported by NSFC 61672235, DP170101628 and

DP180103096.

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Wer-

neck. 2012. Hierarchical hub labelings for shortest paths. In European
Symposium on Algorithms. Springer, 24–35.

[2] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata.

2014. Fast shortest-path distance queries on road networks by pruned

highway labeling. In 2014 Proceedings of the Sixteenth Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 147–154.

[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact

shortest-path distance queries on large networks by pruned landmark

labeling. In Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data. ACM, 349–360.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2014. Dynamic and

historical shortest-path distance queries on large evolving networks

by pruned landmark labeling. In Proceedings of the 23rd international
conference on World wide web. ACM, 237–248.

[5] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. 2012.

Shortest-path queries for complex networks: exploiting low tree-width

outside the core. In Proceedings of the 15th International Conference on
Extending Database Technology. ACM, 144–155.

[6] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011.

Layered Label Propagation: A MultiResolution Coordinate-Free Or-

dering for Compressing Social Networks. In Proceedings of the 20th
international conference on World Wide Web, Sadagopan Srinivasan,

Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and

Ravi Kumar (Eds.). ACM Press, 587–596.

[7] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework

I: Compression Techniques. In Proc. of the Thirteenth International
World Wide Web Conference (WWW 2004). ACM Press, Manhattan,

USA, 595–601.

[8] Wei Chen, Christian Sommer, Shang-Hua Teng, and Yajun Wang. 2012.

A compact routing scheme and approximate distance oracle for power-

law graphs. ACM Transactions on Algorithms (TALG) 9, 1 (2012), 4.
[9] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reach-

ability and distance queries via 2-hop labels. In Proceedings of the thir-
teenth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 937–946.

[10] Daniel Delling, Andrew V Goldberg, and Renato F Werneck. 2013.

Hub label compression. In International Symposium on Experimental
Algorithms. Springer, 18–29.

[11] Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-

Wing Wong. 2013. Is-label: an independent-set based labeling scheme

for point-to-point distance querying. Proceedings of the VLDB Endow-
ment 6, 6 (2013), 457–468.

[12] Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. 2016.

Fully dynamic shortest-path distance query acceleration on massive

networks. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. ACM, 1533–1542.

[13] Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and

Yanyan Xu. 2014. Hop doubling label indexing for point-to-point

distance querying on scale-free networks. Proceedings of the VLDB
Endowment 7, 12 (2014), 1203–1214.

[14] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In

Proceedings of the 22nd International Conference on World Wide Web.
ACM, 1343–1350.

[15] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large

Network Dataset Collection. http://snap.stanford.edu/data.

[16] Jianxin Li, Xinjue Wang, Ke Deng, Xiaochun Yang, Timos Sellis, and

Jeffrey Xu Yu. 2017. Most influential community search over large so-

cial networks. In Data Engineering (ICDE), 2017 IEEE 33rd International
Conference on. IEEE, 871–882.

[17] Ye Li, Man Lung Yiu, Ngai Meng Kou, et al. 2017. An experimental

study on hub labeling based shortest path algorithms. Proceedings of
the VLDB Endowment 11, 4 (2017), 445–457.

[18] Mark EJ Newman. 2005. A measure of betweenness centrality based

on random walks. Social networks 27, 1 (2005), 39–54.
[19] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and

Qing Zhu. 2018. When Hierarchy Meets 2-Hop-Labeling: Efficient

Shortest Distance Queries on Road Networks. In Proceedings of the
2018 International Conference on Management of Data. ACM, 709–724.

[20] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides

Gionis. 2009. Fast shortest path distance estimation in large networks.

In Proceedings of the 18th ACM conference on Information and knowledge
management. ACM, 867–876.

[21] Miao Qiao, Hong Cheng, Lijun Chang, and Jeffrey Xu Yu. 2014. Approx-

imate shortest distance computing: A query-dependent local landmark

scheme. IEEE Transactions on Knowledge and Data Engineering 26, 1

(2014), 55–68.

[22] Yongrui Qin, Quan Z Sheng, Nickolas JG Falkner, Lina Yao, and Simon

Parkinson. 2017. Efficient computation of distance labeling for decre-

mental updates in large dynamic graphs. World Wide Web 20, 5 (2017),
915–937.

[23] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repos-

itory with Interactive Graph Analytics and Visualization. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
http://networkrepository.com

[24] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Niko-

laj Tatti. 2014. Event detection in activity networks. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 1176–1185.

[25] Chih-Ya Shen, Liang-Hao Huang, De-Nian Yang, Hong-Han Shuai,

Wang-Chien Lee, and Ming-Syan Chen. 2017. On finding socially

tenuous groups for online social networks. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 415–424.

[26] Jeffrey Travers and Stanley Milgram. 1967. The small world problem.

Phychology Today 1, 1 (1967), 61–67.

[27] Konstantin Tretyakov, Abel Armas-Cervantes, Luciano García-

Bañuelos, Jaak Vilo, and Marlon Dumas. 2011. Fast fully dynamic

landmark-based estimation of shortest path distances in very large

graphs. In Proceedings of the 20th ACM international conference on
Information and knowledge management. ACM, 1785–1794.

[28] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of

‘small-world’ networks. nature 393, 6684 (1998), 440.
[29] Fang Wei. 2010. TEDI: efficient shortest path query answering on

graphs. In Proceedings of the 2010 ACM SIGMOD International Confer-
ence on Management of data. ACM, 99–110.

[30] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen

Zhu, and Shuigeng Zhou. 2012. Shortest path and distance queries on

road networks: An experimental evaluation. Proceedings of the VLDB
Endowment 5, 5 (2012), 406–417.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1074

http://snap.stanford.edu/data
http://networkrepository.com

A PROOF OF LEMMA 2.3
According to triangle inequality, for any node u ∈ V ,
dist(s,u) + dist(u, t) ≥ dist(s, t). For a node u ′ on a shortest

path from s to t , dist(s, t) = dist(s,u ′) + dist(u ′, t). Since
C(s) ∩ C(t) shares a node with a shortest path from s to t ,
minv ∈C(s)∩C(t) dist(s,v) + dist(v, t) = dist(s, t).

B ADDITIONAL EXPERIMENTS
Exp 9: The Impact of Node Order. Theorem 3.1 shows

that the index structure of PSL and PLL is determined by the

node order. Apart from the degree-based node order engaged

by Exp 1-8 in Section 6, a popular node order is based on

the betweenness centrality of each node u — the fraction of

shortest paths between node pairs that pass through u [18].

Paper [17] also mentioned a significant-path-based node

order generated from an iterative process. For each i ∈ [1,n],
the i-th iteration has the following steps.

(1) Ci denotes the candidate set. C1 = V is the node set of

the graph. For i ∈ [2,n], Ci is determined in the (i −
1)-th round. Si denotes the set of previously selected

significant nodes where S1 = ∅.
(2) ri , the significant node, is the highest-degree node in

Ci . Denote by T (ri) the shortest path tree rooted at ri .
(3) Compute the trimmed shortest path treeTi , the largest

subtree of T (ri) rooted at ri without a node in Si .
(4) Computepi , the root to leaf path inTi where each node

v in pi is the maximum-degree child inTi of prec(v,pi)
— the predecessor of v in pi ;

(5) If pi has only one node, then let Ci+1 be V \ Si+1, oth-
erwise, let Ci+1 be the nodes in pi with ri excluded.

The iteration terminates in n = |V | rounds. The significant-
path-based node order is r1, r2, · · · , rn .

This experiment computes the three node orders:

D Degree-based node order,

B Betweenness-centrality-based node order, and

S Significant-path-based node order,

using existed source code
9
and then compares the perfor-

mance of our proposed approaches, PSL, PSL+ and PSL∗ un-
der the three node orders. PSLD denotes PSL under node or-

der D and this notation similarly applies to other approaches

and node orders. Note that it is necessary to list the com-

putation time of a node order — the betweenness centrality

of nodes in V and the significant path of the graph requires

heavy computation.

Table. 6 shows the index time (with the node order compu-

tation timeOT), index size, and query time of PSL, PSL+, and
PSL∗ under different node orders D, B, and S, respectively,
on four graphs DELI, GP, LAST, GOOG. The node order of
a bold number wins the corresponding comparison.

9
http://degroup.cis.umac.mo/sspexp

In terms of the total index time — the summation of the in-

dex time and node order computation time — under one core,

node order D wins over all the comparisons. This attributes

to the fast computation time of the node order D. Node order
B allows smaller index time at a cost of a far more expensive

node order computation. The computation of node order S
is on average 40% cheaper than that of node order B but is

still far more expensive than that of node order D.

Node order D produces index with sizes comparable and

even lower than that of node orders B and S. Though for

PSL, the index size under node order B is on average 37%

smaller than that under node order D; for PSL+ and PSL∗,
node order D wins the comparisons on, respectively, 2 out of

4 and 3 out of 4 datasets, which is surprising in considering

its low computation cost.

The wining node order (typically node orders B and S) in
query time spends, compared to node order D on average,

29% less query time. For PSL∗, node order D wins the query

time on 2 out of 4 datasets.

The degree-based node order has a comparable or even

smaller index size and query time than that of betweenness-

centrality-based and significant-path-based node orders.

Betweenness-centrality-based node order shows better index

size and query time but is expensive to compute.

Exp 10: Comparisonwith other Index Reduction Tech-
niques. This experiment compares the two index reduction

techniques proposed in Section 4 (PSL+ utilises the first re-
duction technique while PSL∗ applies both) to the existing

index reduction technique HLC [10]. HLC compresses the

index by coding the common labels into reusable tokens

while restoring the labels in query time. The code of HLC
was from the authors of [17].

The performance gained by applying an index reduction

technique can be captured by the ratio of the costs (index

time, index size, or query time) before and after the technique

is applied. A ratio greater than 1 if and only if the index

reduction technique is reducing the cost.

Fig. 14 shows the index time ratio, index size ratio and

query time ratio of the three index reduction techniques on

four datasets DELI, GP, LAST and GOOG.

The index time ratio of HLC is constantly smaller than 1:

HLC pays 36%more time than PLL in compressing the index

of PLL. In contrast, the index time of PSL+ (and PSL∗) is 64%
(and 75%) less than that of the baseline.

HLC, PSL+ and PSL∗ can all reduce the index size; however,
the index reduction of HLC is not for free — the query time

of HLC becomes much longer (ratio much smaller than 1).

In contrast, PSL+ reduces the query time of the baseline.

In conclusion, HLC achieves smaller index size at a cost of

a much longer index and query time while PSL+ reduces the

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1075

Table 6: The Effect of Node Order on Index Time (IT), Index Size (IS), and Query Time (QT)

Dataset

PSL PSL+ PSL∗

PSLD(OT) PSLB(OT) PSLS(OT) PSL+D(OT) PSL+B(OT) PSL+S(OT) PSL∗D(OT) PSL∗B(OT) PSL∗S(OT)

IT (sec)

DELI 23.9(0.1) 20.9(173.4) 24.6(81.5) 16.1(0.1) 17.7(173.4) 19.5(81.5) 9.6(0.1) 13.1(173.4) 12.2(81.5)

GP 53.8(0.1) 22.2(118.8) 23.6(62.3) 53.8(0.1) 21.0(118.8) 21.5(62.3) 38.4(0.1) 24.6(118.8) 20.9(62.3)

LAST 282.6(0.3) 228.9(1481) 287.4(1040) 182.6(0.3) 162.8(1481) 209.2(1040) 75.2(0.3) 86.9(1481) 85.0(1040)

GOOG 74.5(0.2) 34.7(123.4) 39.2(87.6) 39.2(0.2) 26.7(123.4) 33.1(87.6) 33.6(0.2) 23.9(123.4) 26.9(87.6)

IS (MB)

DELI 364.0 319.4 338.9 184.0 244.4 255.9 114.5 180.8 183.7

GP 355.2 143.1 158.8 341.8 141.0 156.3 235.4 107.5 123.9

LAST 1997.5 1778.7 1958.8 1182.1 1242.8 1343.6 351.8 461.3 473.8

GOOG 589.1 366.1 399.9 331.6 324.0 343.0 245.0 283.3 291.5

QT (sec)

DELI 1.3E-06 1.1E-06 1.2E-06 1.2E-06 1.0E-06 1.1E-06 1.4E-06 1.6E-06 1.5E-06

GP 3.2E-06 1.4E-06 1.3E-06 3.1E-06 1.2E-06 1.3E-06 3.8E-06 2.6E-06 2.0E-06
LAST 3.3E-06 2.9E-06 3.2E-06 3.1E-06 2.8E-06 3.1E-06 5.9E-06 6.4E-06 6.5E-06

GOOG 1.1E-06 7.4E-07 8.6E-07 9.4E-07 7.7E-07 8.2E-07 2.3E-06 1.6E-06 1.6E-06

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

DELI GP LAST GOOG

In
de

x
Ti

m
e

R
at

io

HLC PSL+ PSL*

(a) Index Time Ratio

10-2

10-1

100

101

102

DELI GP LAST GOOG

In
de

x
Si

ze
 R

at
io

HLC PSL+ PSL*

(b) Index Size Ratio

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

DELI GP LAST GOOG

Q
ue

ry
 T

im
e

R
at

io

HLC PSL+ PSL*

(c) Query Time Ratio

Figure 14: The Comparison of Size Reduction Techniques

Table 7: The Description of the Road Networks

Name Dataset n m D
BO road-belgium-osm

10
1,441,295 1,549,970 1987

CA roadNet-CA
11

1,971,281 2,766,607 865

PA roadNet-PA
11

1,090,920 1,541,898 794

TX roadNet-TX
11

1,393,383 1,921,660 1064

index size, index time and query time simultaneously. PSL∗

reduces the index time and index size at cost of a moderate

increase on the query time.

Exp 11: Performance on Road Networks.We evaluated

our approaches on graphs with large diameters. A majority

of real graphs with large diameters are weighted, we thus

downloaded 4 Road Networks (RN) from Network Reposi-

tory
10
and Stanford Large Network Dataset Collection

11
and

then turned them into unweighted graphs by letting the

weight of each edge be 1. Table 7 shows the details of the

four RNs.

We performed PSL, PSL+ and PSL∗ on the four road net-

works. The index time, index space and query time on 1 core

are shown in Fig. 15. PSL+ performed identically with PSL
since on road networks, it is hard to find non-trivial equiva-

lent node classes. In contrast, PSL∗ can still reduce the index

time and index size of PSL at a cost of a slight increase of

query time. On 45 cores, the speedup of the three approaches

10
http://networkrepository.com/index.php [23]

11
http://snap.stanford.edu/data/ [15]

stays stably within 16-21. This means that our parallelization

also works for graphs with large diameters.

We carried out the state-of-the-art road network distance

labeling approach, the hierarchical 2-hop labeling method

(H2H) [19]. H2H makes full use of the graph structure of

road networks to achieve the superior efficiency in index

time and query time by combining the 2-hop labeling with

the additional node hierarchy. We obtained the source code

from the authors of [19] and adopted default parameters.

Fig. 16 compares the performance ofH2Hwith that of PSL-
1 and PSL-45, the PSL on one core and 45 cores, respectively.

PSL-1 takes up to two orders of magnitude longer index

time than H2H and one order of magnitude longer query

time. The index size of PSL is also larger than that of H2H.
Even equipped with 45 cores, the index time of PSL-45 is still
slower than H2H on 2 out of 4 datasets. This result echoes

the fact that PLL was not designed for road networks.

C EXTEND PSL TO DIRECTED GRAPHS
For directed graphs, each node v ∈ V is associated with

a set of hub nodes CIN(v), where w ∈ CIN(v) can reach v
and another set of hub nodes COUT(v), where v can reach

w ∈ COUT(v). Combined with the distance, we obtain two

labels LIN(v) = {(u,dist(u,v))|u ∈ CIN(v)} and LOUT(v) =
{(u,dist(v,u))|u ∈ COUT(v)} for the node v . To compute

the labels LOUT(v), we run PSL on G; To compute LIN(v),
we reverse the edge direction of graph and run PSL on the

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1076

103

104

105

BO CA PA TX

Ti
m

e
C

on
su

m
pt

io
n

(s
ec

)

PSL PSL+ PSL*

(a) Index Time

103

104

105

BO CA PA TX

Sp
ac

e
C

on
su

m
pt

io
n

(M
B

) PSL PSL+ PSL*

(b) Index Space

10-7

10-6

10-5

10-4

BO CA PA TX

Q
ue

ry
 T

im
e

(s
ec

)

PSL PSL+ PSL*

(c) Query Time

Figure 15: Performance of PSL-Based Approaches on Road Networks

100
101
102
103
104
105
106

BO CA PA TX

Ti
m

e
C

on
su

m
pt

io
n

(s
ec

)

H2H PSL-1 PSL-45

(a) Index Time

103

104

105

BO CA PA TX

Sp
ac

e
C

on
su

m
pt

io
n

(M
B

) H2H PSL-1 PSL-45

(b) Index Space

10-7

10-6

10-5

10-4

BO CA PA TX

Q
ue

ry
 T

im
e

(s
ec

)

H2H PSL-1 PSL-45

(c) Query Time

Figure 16: Compare PSL to the State-Of-The-Art Road Network Labeling Approach

reversed graph. To process the distance query q(s, t), we
make use of Query(s, t ,L) defined in the following equation.

Query(s, t ,L) =minu ∈COUT(s)∩CIN(t)(dist(s,u) + dist(u, t)).

D DISCUSSIONS
Empower PLL with two index reduction techniques.
PLL adopts the equivalence relation reduction technique

by initializing with a graph reduction: map each node to

the smallest node in the non-trivial equivalent class (Defini-

tion 4.5) and then remove the nodeswith f (u) , u. According
to Theorem 4.17, PLL on the reduced graph is identical to

PSL on the reduced graph which is the index of PSL+.

PLL adopts the local minimum set reduction by adapting

the graph G(V ,E) to G ′(V ′,E ′). Specifically, let M(G) be the
local minimal set of G. For each node v ∈ M(G), let Ev =
{(u,w) ∈ E |u,w ∈ N (v)}. The new graphG ′ has V ′ = V \ S
and E ′ = E ∪

⋃
v ∈M(G) Ev . We assign to each newly added

edge a weight of 2 and perform PLL onG ′ under the original
node order. It can be easily proved that for any two nodes

u,v < M(G), their shortest distance on G ′ is the same with

that on G. According to Theorem 3.1, u is a hub of v on G ′

if and only if u is a hub of v on G. Besides, according to the

local minimality, nodes in M(G) do not contribute to any

label of other nodes on G, thus, the PLL labels of a node v
on G ′ is identical to that of v on G. The index of PLL on G ′,
therefore, is identical to the index of PSLwith local minimum

set technique on G. The query processing in Section 4.2 can

be directly applied. Since the degree of a local minimal node

is not larger than that of its neighbors, the size of G ′ can be

well bounded. For example, on GOOG, |E ′ | = 2.29|E |, and
the number of |E ′ | is no more than 3|E | over all the datasets
in Table 5.

Extend PSL to Dynamic Graphs. Extending PLL to dy-

namic graphs has been studied in the literature and the

existing results show that maintaining the PLL index for

both edge insertion and edge deletion is challenging. For the

distance label maintenance under edge insertion, existing

technique [4] fails in eliminating the outdated labels and

thus breaks the minimal property of PLL. For the distance la-
bel maintenance under edge deletion, existing approach [22]

needs to conduct BFS from affected nodes and the speedup

over the baseline of recomputing all the labels is thus mar-

ginal (up to one order of magnitude). Due to the challenges

to maintain the PLL index, it is non-trivial to extend PSL to

handle dynamic graphs using multiple cores. We will further

explore how to parallelize PLL to handle dynamic graphs as

our future work.

Extend PSL to Weighted Graphs. To handle weighted

graphs, we need to modify the pruning condition in

Lemma 3.17 as follows:

Lemma D.1. A hub w in the label set
⋃

v ∈N (u) L
PSL
d−1(v)

is not a hub of u in LPSLd (u) if Query(w,u,LPSL
<d) ≤

minx ∈LPSLd−1(u)∩N (w)
dist(w,x) + lenдth(LabelPSLd−1(u,x)).

Since x ∈ LPSLd−1(u), there is a label ofu with d−1 hops from
x . Here its weighted length recorded by the label is denoted

as lenдth(LabelPSLd−1(u,x)).

Since the labels are generated based on the increasing

order of number of hops other than the weighted distances,

it is possible that a label with more hops may be shorter

than the label with fewer hops. Consequently, some labels

that can be pruned by PLL may not be pruned by PSL. As a
result, PSL will produce a super set of labels of PLL although

PSL still guarantees the correctness of query processing. It

remains hard to trim the labels efficiently.

Research 10: Graphs 1 SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

1077

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Shortest Distance Problem
	2.2 2-Hop Labeling for Distance Queries
	2.3 Prune Landmark Labeling Approach

	3 Parallelized Distance Labeling
	3.1 Label Property
	3.2 Order Dependency
	3.3 Distance Dependency
	3.4 The Parallelized Labeling Method

	4 Index Size Reduction
	4.1 Equivalence Relation Reduction
	4.2 Local Minimum Set Elimination

	5 Related work
	6 Experimental Results
	7 Conclusions
	References
	A Proof of Lemma 2.3
	B Additional Experiments
	C Extend PSL to Directed Graphs
	D Discussions

