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ABSTRACT
In indexing a graph for distance queries, distance labeling is

a common practice; in particular, 2-hop labeling which guar-

antees the exactness of the query results is widely adopted.

When it comes to a massive real graph with a relatively large

treewidth such as social networks and web graphs, however,

2-hop labeling can hardly be constructed due to the over-

sized index. This paper discloses the theoretical relationships

between the graph treewidth and 2-hop labeling’s index size

and query time. To scale up distance labeling, this paper

proposes Core-Tree (CT) Index to facilitate a critical and

effective trade-off between the index size and query time.

The reduced index size enables CT-Index to handle massive

graphs that no existing approaches can process while the

cost in the query time is negligible: the query time is below

0.4 milliseconds on all tested graphs including one graph

with 5.5 billion edges.

CCS CONCEPTS
• Information systems → Database query processing.

KEYWORDS
2-hop Labeling; Tree Decomposition; Shortest Distance; In-

dexing; Algorithm; Treewidth
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1 INTRODUCTION
Given a graph𝐺 (𝑉 , 𝐸) with 𝑛 = |𝑉 | nodes and𝑚 = |𝐸 | edges,
a distance query 𝑄 (𝑠, 𝑡) with query nodes 𝑠 and 𝑡 reports

the length of the shortest path from 𝑠 to 𝑡 . To handle bursty

distance queries online, linear-time searching is not efficient

enough; this incurs extensive studies on graph indexing with

distance labeling. The distance label 𝐿𝑣 on a node 𝑣 is a set

𝐿𝑣 ⊆ 𝑉 of nodes; the distance 𝑑𝑖𝑠𝑡 (𝑣,𝑢) from 𝑣 to each node

𝑢 in 𝐿𝑣 is precomputed. With the distance labels, 𝑄 (𝑠, 𝑡) re-
portsmin𝑣∈𝐿𝑠∩𝐿𝑡 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) +𝑑𝑖𝑠𝑡 (𝑣, 𝑡), the minimum distance

between 𝑠 and 𝑡 via the label nodes, as a result. This result

is an upper bound of 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) based on triangle inequality.

To guarantee an exact result, a 2-hop cover constraint [10]
is usually imposed: For any two nodes 𝑢 and 𝑣 that are con-

nected by a path, 𝐿𝑢 ∩ 𝐿𝑣 must include at least one node on

the shortest path from 𝑢 to 𝑣 . Distance labeling that satisfy

2-hop cover constraint are called 2-hop labeling [2, 19].

Enjoying a short query delay, the state-of-the-art 2-hop
labeling PLL [2] and its parallelization PSL [17], however, fail
on massive real graphs due to the oversized index: the index
size on UK07 [7] exceeds 500G. This raises a natural question:
Is there any 2-hop labeling able to handle these graphs?

Our theoretical analysis, unfortunately, reveals the inher-

ent limitation of a 2-hop labeling on graphs with a relatively

high treewidth. Our theoretical results involves several con-

cepts. We call, for a 2-hop labeling, |𝐿𝑣 | of a node 𝑣 the label
size of 𝑣 . The maximum label size over all nodes, denoted
as 𝑙 , captures the query time 𝑂 (𝑙) and index size 𝑂 (𝑛𝑙) of
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the labeling. This derives the 2-hop complexity ℎ(𝐺) of a
graph 𝐺 — the smallest possible maximum label size over all
2-hop labeling on 𝐺 . On the other hand, a tree decomposi-

tion 𝑇 of graph 𝐺 is a tree on a set of bags {𝐵1, 𝐵2, · · · , 𝐵𝑡 }
that satisfy a set of graph-related constraints (Definition 2).

Each bag is a subset of 𝑉 while the treewidth 𝑡𝑤 (𝑇 ) of 𝑇
is given by the size of the largest bag of 𝑇 . The treewidth
𝑡𝑤 (𝐺) of 𝐺 is defined as the smallest possible treewidth of

a tree decomposition of 𝐺 . The 2-hop complexity ℎ(𝐺) and
treewidth 𝑡𝑤 (𝐺) are related in the following way:

• For a graph 𝐺 with 𝑛 nodes and treewidth 𝑡𝑤 (𝐺),
ℎ(𝐺) = Ω(𝑡𝑤 (𝐺)) in the worst-case.

• Given a tree decomposition 𝑇 with 𝑡𝑤 (𝑇 ) = 𝑡𝑤 (𝐺), a
worst-case optimal (up to a log factor) 2-hop labeling

(maximum label size is �̃� (𝑡𝑤 (𝐺))) can be constructed.

The relation between ℎ(𝐺) and 𝑡𝑤 (𝐺) implies that 2-hop

labeling may work well on graphs with small treewidth;

when it comes to a graph with a relatively large treewidth,
however, the index size 𝑂 (𝑙𝑛) becomes the bottleneck.
Existing 2-hop labeling approaches embody the above

relationships. The networks with a relatively small treewidth

(e.g., road network
1
), can be properly handled (hierarchical 2-

hop labeling [19]); on graphs with relatively large treewidth,

e.g., social networks and web graphs
2
, however, the state-of-

the-art 2-hop labeling PSL [17] fails for the oversized index.

The limitation of 2-hop labeling suggests a careful trade-

off of the index size and query time. Such a trade-off is en-

abled with a tree decomposition 𝑇 (denote by ℎ the height

of tree 𝑇 and 𝑤 = 𝑡𝑤 (𝑇 ), the treewidth of 𝑇 ): distance la-

beling can be built on the tree while a query can be an-

swered in 𝑂 (ℎ) hops. The high treewidth issue has been

identified [3, 22] and a core-tree decomposition is used

to partition the graph to a large bag (of nodes), called the

core, and a number of small bags with bag size bounded by a

parameter 𝑑 and organized in a forest of height ℎ𝐹
3
. Table 1

compares these approaches. On large graphs with a relative

high treewidth, the approaches that do not consider the high

treewidth, [9, 19, 23] and [22] (under 𝑑 = 𝑤 ), suffer the gi-

gantic index size; the ones with special treatment to the core,

[3] and [22] (𝑑 < 𝑤 ), suffer from the quadratic index time in

indexing the tree (the small bags) and a long query delay.

This paper proposes a size-tunable distance index CT-

Index.With CT-Index, a slight sacrifice of the query time (still

controlled under milliseconds which is acceptable by most

online systems) leads to a cutting-edge scalability of distance

labeling. In comparison with existing approaches [3, 22] that

are based on core-tree decomposition, CT-Index carefully

1
The treewidth of 9 million-scale road networks is no more than 600.

2
Web graphs can have cliques with > 3000 nodes [8]; each clique must be

entirely included in one bag of any tree decomposition of the graph.

3
According to our experiment, the average ℎ𝐹 < 600 when 𝑑 ≤ 100.

Table 1: Labeling with Tree Decomposition
# of Hops Index Size Index Time

in Query on Tree on Tree

[9] ℎ 𝑂 (𝑛𝑤) 𝑂 (𝑛𝑚)
[23] 2 �̃� (𝑛𝑤) �̃� (𝑛𝑤2 +𝑚𝑤)
[19] 2 𝑂 (𝑛𝑤) �̃� (𝑛ℎ𝑤))
[22](𝑑 = 𝑤 ) ℎ 𝑂 (𝑛𝑤2) 𝑂 (𝑛𝑚)
[22](𝑑 < 𝑤 ),[3] ℎ𝐹 𝑂 (𝑛𝑑2) 𝑂 (𝑛𝑚)
CT-Index 4 𝑂 ((ℎ𝐹 + 𝑑)𝑛) 𝑂 (𝑑 (𝑑 + ℎ𝐹 )𝑛)

couples the index construction of the core and the forest

to reduce the index time without affecting the query time

(Section 4.4). Our contributions are summarized as follows.

• We provide a solid theoretical analysis in showing the

limitation of 2-hop labeling.

• We propose a distance index, CT-Index, that can

scale up the state-of-the-art 2-hop labeling approach

PSL [17] by reducing the index size at a negligible cost

in query time. In comparison with existing core-tree-

decomposition-based labeling approaches, both the

index time and query time are dramatically reduced.

• CT-Index is the only approach that can index massive

graphs such as WB, UK0705, and UK07 (see Section 7)

for exact distance queries with a short query delay —

0.4 milliseconds over all the graphs including a web

graph with 5.5 billion edges.

The paper is organized as follows. Section 2 defines the

problem of distance indexing. Section 3 introduces existing

solutions. Section 4 shows the limitation of 2-hop labeling

and then introduces the structure and query processing of

CT-Index. Section 5 constructs the CT-Index. Section 6 in-

troduces related work. Section 7 evaluates CT-Index while

Section 8 concludes the paper.

2 PROBLEM STATEMENT
Let 𝐺 be a graph with 𝑛 = |𝑉 (𝐺) | nodes and 𝑚 = |𝐸 (𝐺) |
edges, each edge 𝑒 ∈ 𝐸 (𝐺) has a weight 𝛿 (𝑒), 𝛿 (𝑒) = 1

on unweighted graphs. For a node 𝑣 ∈ 𝑉 (𝐺), denote by

𝑁𝐺 (𝑣) = {𝑢 | (𝑣,𝑢) ∈ 𝐸} the set of neighbors of 𝑣 in 𝐺 , by

𝑑𝑒𝑔𝐺 (𝑣) = |𝑁𝐺 (𝑣) | the degree of 𝑣 . For a set 𝑆 ⊆ 𝑉 of nodes,

denote by𝐺 [𝑆] the induced subgraph of 𝑆 whose node set is 𝑆
and edge set is {(𝑢, 𝑣) ∈ 𝐸 (𝐺) |𝑢, 𝑣 ∈ 𝑆}; denote by 𝑐𝑙𝑖𝑞𝑢𝑒 (𝑆)
the clique of all nodes in 𝑆 — the node set is 𝑆 while the edge

set is {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑆,𝑢 ≠ 𝑣}. We assume that𝐺 is undirected

while it is easy to extend our techniques to directed graphs.

For two nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺), an 𝑠-𝑡 path 𝑝 on𝐺 is a sequence

of vertices ⟨𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑘⟩ where 𝑠 = 𝑣0, 𝑡 = 𝑣𝑘 and its edge

set 𝐸 (𝑝) = {(𝑣𝑖−1, 𝑣𝑖 ) |𝑖 ∈ [𝑘]} ⊆ 𝐸 (𝐺). The length of 𝑝 is the

joint length over edges on the path, i.e., 𝛿 (𝑝) = Σ𝑒∈𝐸 (𝑝)𝛿 (𝑒).
The 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡) from 𝑠 to 𝑡 on graph 𝐺 is the length of the

shortest 𝑠-𝑡 path, 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡) = min𝑝 : 𝑠-𝑡 path on graph𝐺 𝛿 (𝑝).
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Figure 1: Running Example

Without loss of generality, we assume that𝐺 is connected,

i.e., an 𝑠-𝑡 path exists for any two nodes 𝑠 and 𝑡 in 𝐺 . For

simplicity, notation 𝐺 is discarded when the context is clear.

Shortest Distance Indexing Problem. Efficiently con-

struct a compact index for graph 𝐺 such that for any two

nodes 𝑠, 𝑡 ∈ 𝑉 , the index can report the shortest distance

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) between 𝑠 and 𝑡 within a short delay.

Example 1. Figure 1(a) shows graph𝐺 with 12 nodes and 16
edges. The 4 neighbors 𝑁 (𝑣10) = {𝑣7, 𝑣9, 𝑣11, 𝑣12} of 𝑣10 defines
𝑑𝑒𝑔(𝑣10) = 4. Path 𝑝 = ⟨𝑣10, 𝑣7, 𝑣6⟩ with 𝛿 (𝑝) = 2 provides the
distance 𝑑𝑖𝑠𝑡 (𝑣10, 𝑣6) = 2 between 𝑣10 and 𝑣6.

3 EXISTING SOLUTIONS
This section formalizes two concepts related to distance la-

beling, 2-hop labeling, and tree decomposition, followed by

two 2-hop labeling approaches [2, 19]. They pave the way

to our theoretical analysis and our new index, CT-Index.

3.1 2-Hop Labeling
Given a graph 𝐺 , 2-hop labeling indexes 𝐺 for an efficient

query processing for distance queries. Index Structure. For
each node 𝑣 ∈ 𝑉 (𝐺), the index
• Includes a label set 𝐿𝑣 ⊆ 𝑉 (𝐺), and
• Records the distances from 𝑣 to each node in 𝐿𝑣 :

{𝑑𝑖𝑠𝑡𝐺 (𝑣,𝑢) |𝑢 ∈ 𝐿𝑣}.
The label sets must satisfy the 2-hop cover constraint.

Definition 1 (2-hop Cover). For any 𝑢, 𝑣 ∈ 𝑉 (𝐺), there
exists𝑤 ∈ 𝐿𝑣∩𝐿𝑢 such that𝑑𝑖𝑠𝑡 (𝑢,𝑤)+𝑑𝑖𝑠𝑡 (𝑤, 𝑣) = 𝑑𝑖𝑠𝑡 (𝑢, 𝑣),
that is,𝑤 is on a shortest path from 𝑢 to 𝑣 .

Query Processing. For a query 𝑄 (𝑠, 𝑡) with 𝑠, 𝑡 ∈ 𝑉 (𝐺),
𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min

𝑣∈𝐿𝑠∩𝐿𝑡
𝑑𝑖𝑠𝑡 (𝑠, 𝑣) + 𝑑𝑖𝑠𝑡 (𝑣, 𝑡).

Index Size & Index Time. Denote by 𝑙 = max𝑣∈𝑉 (𝐺) |𝐿𝑣 |
themaximum label size of the 2-hop labeling. The query time

is 𝑂 (𝑙) while the index size is 𝑂 (𝑛𝑙).
2-Hop Complexity. A graph can have an infinite number

of 2-hop labelings. The smallest maximum label size

ℎ(𝐺) = min

L: a 2-hop labeling of𝐺
the maximum label size of L
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Figure 2: MDE-based Tree Decomposition of 𝐺

is called the 2-hop complexity of 𝐺 which captures the best

complexity that a 2-hop labeling can have on𝐺 . This param-

eter is found to be closely related to another parameter of a

graph, the treewidth which is defined in Section 3.2.

3.2 Tree Decomposition and Treewidth
The treewidth of a graph is given by a tree decomposition.

Definition 2 (Tree Decomposition). A tree decompo-
sition 𝑇 of a graph 𝐺 is a tree on tree nodes (called bags)
{𝐵1, 𝐵2, · · · , 𝐵𝑡 } where each bag 𝐵𝑖 ⊆ 𝑉 , 𝑖 ∈ [𝑡], such that
(1) The bags jointly cover 𝑉 , that is,

⋃
𝑖∈[𝑡 ] 𝐵𝑖 = 𝑉 ,

(2) For each (𝑢, 𝑣) ∈ 𝐸 of 𝐺 , there is a bag that covers the
edge, that is, there exists 𝑘 ∈ [𝑡] such that {𝑢, 𝑣} ⊆ 𝐵𝑘 .

(3) For any 𝑖, 𝑗 ∈ [𝑡], 𝐵𝑖 ∩ 𝐵 𝑗 is a subset of all the bags on
the shortest path from 𝐵𝑖 to 𝐵 𝑗 on 𝑇 , that is, if two bags
have 𝑣 ∈ 𝐵𝑖 and 𝑣 ∈ 𝐵 𝑗 , then 𝑣 ∈ 𝐵𝑘 for all the bags 𝐵𝑘
on the shortest path between 𝐵𝑖 and 𝐵 𝑗 on 𝑇 .

The treewidth of𝑇 is 𝑡𝑤 (𝑇 ) = max𝑖∈[𝑡 ] |𝐵𝑖 | −1, the treewidth
of 𝐺 is 𝑡𝑤 (𝐺) = min𝑇 : tree decomposition of𝐺 𝑡𝑤 (𝑇 ).

Example 2. Figure 2 shows a tree decomposition 𝑇 of the
graph 𝐺 in Figure 1(a). The bags on tree 𝑇 jointly cover nodes
in 𝑉 . All edges are covered, e.g., edge (𝑣5, 𝑣8) is in the bag
{𝑣5, 𝑣8, 𝑣12} and edge (𝑣3, 𝑣4) is in bag {𝑣3, 𝑣4, 𝑣12}. 𝑇 satisfies
constraint (3), e.g., the two red bags in Figure 2, {𝑣5, 𝑣8, 𝑣12}
and {𝑣3, 𝑣4, 𝑣12}, have a common element 𝑣12. 𝑣12 is in all the
bags on shortest path between the two red bags. The treewidth
of 𝑇 is 𝑡𝑤 (𝑇 ) = 4 and 𝑡𝑤 (𝐺) ≤ 4.

A key property of a tree decomposition 𝑇 of 𝐺 which is

called the cut property (or separator property), underpins

the correctness of various labeling methods including ours.

Definition 3 (𝑠-𝑡 Separator). Given two distinct nodes
𝑠, 𝑡 ∈ 𝑉 (𝐺) and a set𝐶 ⊆ 𝑉 (𝐺) \ {𝑠, 𝑡},𝐶 is an 𝑠-𝑡 cut if there
is no 𝑠-𝑡 path in the induced subgraph𝐺 [𝑉 \𝐶] of𝐺 on𝑉 \𝐶 .
An 𝑠-𝑡 cut is also called an 𝑠-𝑡 separator.

Lemma 1 (Cut/Separator-Property [20]). Consider two
bags 𝐵𝑖 and 𝐵 𝑗 that are adjacent on tree decomposition 𝑇 . By



detaching 𝐵𝑖 from 𝐵 𝑗 , tree 𝑇 is partitioned into two parts. Let
𝐶𝑖 be the union of the bags connected to 𝐵𝑖 and𝐶 𝑗 be the union
of bags connected to 𝐵 𝑗 . 𝐵𝑖 ∩ 𝐵 𝑗 is a separator for all 𝑠 and 𝑡
pairs with 𝑠 ∈ 𝐶𝑖 \ (𝐵𝑖 ∩ 𝐵 𝑗 ) and 𝑡 ∈ 𝐶 𝑗 \ (𝐵𝑖 ∩ 𝐵 𝑗 ).

It has been proved that computing the treewidth of a graph

is NP-Complete [4]. Tree decomposition can be found using

heuristics while one of the most effective heuristics is based

on minimum degree elimination.

3.2.1 MDE-based tree decomposition. Minimum Degree

Elimination (MDE) [5] based tree decomposition eliminates,

recursively, the node 𝑣 in 𝐺 with the minimum degree and

then add the clique of the neighbors of 𝑣 back to 𝐺 . Each

node 𝑣 and its neighbors on the transient graph right before

the deletion of 𝑣 form a bag of the tree decomposition.

Minimum Degree Elimination (MDE) [5]. Generate 𝑛

bags of nodes {𝐵1, 𝐵2, · · · , 𝐵𝑛} and a sequence of nodes

{𝑣1, 𝑣2, · · · , 𝑣𝑛} in 𝑛 rounds with the starting graph 𝐺0 = 𝐺 .

In the 𝑖-th round, 𝑖 takes value from 1 to 𝑛:

(1) 𝑣𝑖 : the node with the minimum degree (or any one of

such nodes if there is a tie situation) in 𝐺𝑖−1,
(2) 𝑁𝑖 : the neighbor set of 𝑣𝑖 in 𝐺𝑖−1,
(3) 𝐵𝑖 : {𝑣𝑖 } ∪ 𝑁𝑖 ,

(4) 𝐺𝑖 : a graph that removes 𝑣𝑖 from 𝐺𝑖−1 and then adds

𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁𝑖 ), that is,𝑉 (𝐺𝑖 ) = 𝑉 (𝐺𝑖−1)\{𝑣𝑖 } and 𝐸 (𝐺𝑖 ) =
𝐸 (𝐺𝑖−1) ∪ 𝐸 [𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁𝑖 )] \ {𝑣𝑖 } × 𝑁𝑖 .

In the following discussions, the vertex indexes shall align

with the sequence generated by MDE by default.

Example 3. For graph 𝐺 in Figure 1(a), the MDE completes
in 12 steps. Step 1: 𝑣1 which has the minimum degree of𝐺0 = 𝐺

is eliminated; the neighbors of 𝑣1 in 𝐺0 is 𝑁1 = {𝑣2}, and thus
𝐵1 = {𝑣1, 𝑣2}. Remove 𝑣1 and then add the trivial clique of 𝑣1 to
form𝐺1. When 𝑣3 becomes the node with the minimum degree
node in 𝐺2, the neighbors of 𝑣3 in 𝐺2 are 𝑁3 = {𝑣4, 𝑣12}, thus
bag 𝐵3 = {𝑣3} ∪𝑁3 = {𝑣3, 𝑣4, 𝑣12}. Remove 𝑣3 and add a clique
of 𝑁3 to form 𝐺3. Figure 1(b) shows the transformation from
𝐺2 to 𝐺3, that is, remove edges on 𝑣3 and node 𝑣3, then add
edge (𝑣4, 𝑣12). It terminates when 𝑣12 is removed.

MDE-based tree decomposition [24]. Consider the deliv-
erables of the above MDE process. Construct tree decompo-

sition 𝑇𝑚𝑑
of 𝐺 on the bags {𝐵1, 𝐵2, · · · , 𝐵𝑛}:

(1) The root of 𝑇𝑚𝑑
is 𝐵𝑛

(2) For each 𝑖 ∈ [𝑛−1], denote by 𝑓 (𝑖) the minimum index

(subscription) of the nodes in 𝑁𝑖 , let the parent of 𝐵𝑖
be 𝐵𝑓 (𝑖) on 𝑇 .

Without losing clarity and for simplicity, we also call 𝑣 𝑓 (𝑖)
the parent of 𝑣𝑖 , for each 𝑖 ∈ [𝑛 − 1].

Due to Property (3) of a tree decomposition (Definition 2),

𝑇𝑚𝑑
can derive a stronger property that has been extensively

used in H2H-labeling (that we shall see in Section 3.3) and

shall be used in our techniques as well.

Example 4. Figure 2 shows an MDE-based tree decompo-
sition of 𝐺 on bags 𝐵1 to 𝐵12. Since {𝑣1, 𝑣2, · · · , 𝑣12} is the
order of removing nodes from 𝐺 in the MDE process, it can be
verified that for each bag 𝐵𝑖 , 𝑣𝑖 is the vertex with the mini-
mum index (subscription). Besides, for each 𝐵𝑖 , the minimum
index 𝑓 (𝑖) of 𝑁𝑖 decides the parent 𝐵𝑓 (𝑖) of 𝐵𝑖 . For example,
𝐵8 = {𝑣8, 𝑣10, 𝑣12} whose 𝑓 (8) = min{10, 12} = 10. Thus, the
parent of 𝐵8 is 𝐵10 on the tree.

Lemma 2. [19] Given an MDE-based tree decomposition
𝑇𝑚𝑑 of graph𝐺 whose node order is 𝑣1, 𝑣2, · · · , 𝑣𝑛 and bags are
{𝐵1, 𝐵2, · · · , 𝐵𝑛}, for each 𝑖 ∈ [𝑛], 𝑣𝑖 ∈ 𝐵 𝑗 if and only if 𝐵𝑖 is
an ancestor of 𝐵 𝑗 , i.e., all nodes in 𝑁𝑖 are ancestors of 𝑣𝑖 .

MDE-based treewidth. We call 𝑡𝑤 (𝑇𝑚𝑑 ) the MDE-based
treewidth of 𝐺 . This parameter provides an upper bound of

𝑡𝑤 (𝐺) which will capture the index size of the following two

state-of-the-art 2-hop labeling methods: H2H [19] for road

network and PLL [2] for scale-free networks.

3.3 Hierarchical 2-Hop Labeling [19]
H2H-Labeling creates distance labelings during the construc-

tion of MDE-based tree decomposition𝑇𝑚𝑑
. Specifically, con-

sider Step (4) in theMDE process (Section 3.2.1), when adding

a 𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁𝑖 ) to the graph𝐺𝑖 , H2H-Labeling assigns a weight

to each clique edge (𝑢,𝑤). The weight is the length of the

wedge between 𝑢 and𝑤 via 𝑣𝑖 , an upper bound of 𝑑𝑖𝑠𝑡 (𝑢,𝑤).
If (𝑢,𝑤) already exists in the graph𝐺𝑖−1, H2H-Labeling only
keeps the edge with the smaller weight and when an edge is

removed, the weight of its incident edges are recorded. The

recorded weights are used to construct its index structure.

Index. The H2H-labeling mainly
4
includes the following

two arrays for each node 𝑣𝑖 ∈ 𝑉 (𝐺) and its bag 𝐵𝑖 :

(1) Ancestor array stores the ancestors of 𝐵𝑖 on 𝑇
𝑚𝑑

,

(2) Distance array records the distance 𝑑𝑖𝑠𝑡𝐺 (𝑣𝑖 , 𝑣 𝑗 ), for
each ancestor 𝐵 𝑗 of 𝐵𝑖 on 𝑇

𝑚𝑑
.

Query Processing. Given two nodes 𝑣𝑖 and 𝑣 𝑗 , 𝑑𝑖𝑠𝑡𝐺 (𝑣𝑖 , 𝑣 𝑗 )
can be reported in two cases:

(1) If 𝐵 𝑗 is an ancestor of 𝐵𝑖 (or 𝐵𝑖 is an ancestor of 𝐵 𝑗 ):

answer with the distance array of 𝑣𝑖 (or 𝑣 𝑗 ) directly;

(2) Otherwise, let 𝐵𝑘 be the lowest common ancestor of 𝐵𝑖
and 𝐵 𝑗 on 𝑇 , report min𝑣𝑙 ∈𝐵𝑘

𝑑𝑖𝑠𝑡𝐺 (𝑣𝑖 , 𝑣𝑙 ) + 𝑑𝑖𝑠𝑡𝐺 (𝑣 𝑗 , 𝑣𝑙 ).
Lemma 1 ensures the correctness of the query processing:

𝐵𝑘 is a 𝑣𝑖 -𝑣 𝑗 separator on𝐺 . Lemma 2 shows that the distance

from 𝑣𝑖 (or 𝑣 𝑗 ) to 𝑣𝑙 is already in the distance array of 𝑣𝑖 (or

𝑣 𝑗 ): 𝑣𝑙 ∈ 𝐵𝑘 means either 𝑣𝑙 = 𝑣𝑘 or 𝑣𝑙 is an ancestor of 𝑣𝑘 ,

and thus, 𝑣𝑙 is a common ancestor of 𝑣𝑖 and 𝑣 𝑗 .

4
There is an additional position array whose aim is to reduce the query

time by a factor of log𝑛 – we won’t cover this part in the paper.



Remarks: The index size of H2H-Labeling is 𝑂 (𝑛ℎ) where
ℎ is the height of 𝑇𝑚𝑑

. ℎ is larger than 𝑡𝑤 (𝑇𝑚𝑑 ) since the
nodes in 𝑁𝑖 are all ancestors of 𝑣𝑖 (Lemma 2). Thus, the index
size is no less than Ω(𝑛 × 𝑡𝑤 (𝑇𝑚𝑑 )).

3.4 Pruned Landmark Labeling [2]
Without resorting to tree decomposition, pruned landmark

labeling (PLL) constructs 2-hop labeling by

(1) Firstly defining a node order {𝑢1, 𝑢2, · · · , 𝑢𝑛}, then
(2) Performing pruned breadth-first-search (BFS) sourced

from each node 𝑢𝑖 sequentially.

In the BFS from 𝑢𝑖 , when a node 𝑢 𝑗 is reached while the

existing labels can already answer 𝑑𝑖𝑠𝑡𝐺 (𝑢𝑖 , 𝑢 𝑗 ) successfully,
the BFS will prune the expansion branch from 𝑣 𝑗 (the pruned-

BFS); otherwise, 𝑢𝑖 will be added to the label set of 𝐿𝑢 𝑗
if 𝑢𝑖

has a higher rank than 𝑢 𝑗 , that is, 𝑖 > 𝑗 .

Remarks. The size of PLL index is largely dependent on

the node order. With the tree decomposition 𝑇𝑚𝑑
of 𝐺 , one

can generate a node order such that the index size of PLL is

bounded by𝑂 (𝑛 log𝑛 × 𝑡𝑤 (𝑇𝑚𝑑 )) while the maximum label

size is log𝑛 × 𝑡𝑤 (𝑇𝑚𝑑 ) (Theorem 4.4 [2]).

4 CORE TREE INDEX
The state-of-the-art 2-hop labeling methods introduced in

Section 3.1-3.4 have their index-size related to the term of

𝑛×𝑡𝑤 (𝑇𝑚𝑑 ) — the lower bound of H2H and the upper bound

of PLL. This is not a coincidence. Section 4.1 demonstrates

that the smallest index size over all 2-hop labeling methods

isΘ(𝑛×𝑡𝑤 (𝐺)) up to a factor of log𝑛 in the worst-case. This

suggests that 2-hop labeling has an intrinsic bottleneck on

the index size on big graphs with considerable treewidth.

4.1 Limitation of 2-Hop Labeling
We first construct a graph with treewidth 𝑑 such that any

2-hop labeling must have an index size no less than Ω(𝑛𝑑).

Lemma 3. A graph with 𝑛 nodes and treewidth 𝑑 has index
size of Ω(𝑛𝑑) in the worst-case.

Proof. Without loss of generality, assume that 𝑛 is divid-

able by 𝑑 while 𝑑 is even, that is, there is an integer 𝑘 such

that𝑛 = 𝑘𝑑 while𝑑/2 is an integer.We create𝐺 as a sequence

of “rolling” cliques of size 𝑑 (Figure 3). Specifically, group the

𝑛 nodes in 2𝑘 disjoint groups 𝐶0,𝐶1, · · · ,𝐶2𝑘−1, each having

𝑑/2 nodes. Let the edge set 𝐸 (𝐺) include, for 𝑖 taking values

from 0 to 2𝑘 − 1, the edges in 𝑐𝑙𝑖𝑞𝑢𝑒 (𝐶𝑖 ∪𝐶𝑖+1 𝑚𝑜𝑑 2𝑘 ). Since
𝐺 includes a clique of size 𝑑 , 𝑡𝑤 (𝐺) ≥ 𝑑 −1. Besides, because
the graph has 𝑛( 3

2
𝑑 −1) edges, there are at least Ω(𝑛𝑑) labels

in the index to satisfy the 2-hop cover constraint. Therefore,

the index size is Ω(𝑛𝑑) in the worst-case. □

. . . . . .d/2 d/2 d/2 d/2d/2 d/2 d/2

20 1 i− 1 i i+ 1 2k − 1
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d-clique d-clique d-clique d-clique

Figure 3: The Proof of Lemma 3

Lemma 4. [2] Given a tree decomposition 𝑇 with treewidth
𝑑 , there is a 2-hop labeling of size 𝑂 (𝑛𝑑 log𝑛).

Theorem 1. Given the number 𝑛 of nodes of a graph and
its treewidth 𝑑 , the 2-hop complexity ℎ(𝐺) of 2-hop labeling is
Θ(𝑑) up to a factor of log𝑛 in the worst-case.

Remarks. Theorem 1 is negative to the attempt of scaling

2-hop labeling to graphs such as social networks and web

graphs with considerable treewidth.

4.2 Core-Periphery Property
The core-periphery structure has been identified in various

community-based graphs such as social networks and web

graphs. In general, this property shows that these graphs

have a densely connected “core” and by removing this “core”,

the other nodes, called the “periphery”, are of limited con-

nectivity. This structure can potentially reduce the size of

distance labeling: building a 2-hop labeling, e.g., PLL, on the

core and “tree-like” index, e.g., tree-decomposition based

index, on the periphery, can reduce the factor of 𝑛 in the

term 𝑛 × 𝑡𝑤 (𝐺) of the index size. In this sense, a core of size

considerably smaller than the graph size would be preferred.

The “core” can be defined in different ways. Leskovec et

al. [16] define the “core” as the maximum 2-edge-connected

component, which, however, tends to produce a large core

that contains 60% of the graph nodes [16], not ideal for re-

ducing the index size of the distance labeling.

Our paper follows the core [18] defined on the MDE-based

tree decomposition which partitions a graph 𝐺 into a core

and a set of “trees”, called core-tree decomposition.

4.3 Core-Tree Decomposition [18]
Recall the MDE-based tree decomposition with 𝑛 bags

{𝐵1, 𝐵2, · · · , 𝐵𝑛} of nodes and a tree𝑇𝑚𝑑
on the𝑛 bags. Given

a parameter 𝑑 , the core-tree decomposition divides the tree

decomposition 𝑇𝑚𝑑
into a giant core and a forest.

In 𝑇𝑚𝑑
(Figure 4), given a parameter 𝑑 , the boundary 𝜆

with |𝐵𝜆 | ≥ 𝑑 + 1 separates the core 𝐵𝑐 = ⋃
𝑖∈[𝜆+1,𝑛] 𝐵𝑖 from

the remainder in which all the bags have their sizes bounded

by 𝑑 + 1. Each bag 𝐵𝑖 , 𝑖 ≤ 𝜆, has a root 𝐵𝑟𝑖 — the highest

ancestor of𝐵𝑖 that is not in the core. The index 𝑟 (𝑖) of the root
node 𝐵𝑟 (𝑖) of 𝐵𝑖 is included in the root set 𝑅. The interface
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Figure 4: Core Tree Decomposition
of 𝐵𝑖 includes the nodes in 𝑁𝑟𝑖 = {𝐵𝑟𝑖 \ 𝑟𝑖 } of the root of

𝐵𝑖 , that are, the nodes shared by root 𝐵𝑟 (𝑖) and the father of

𝐵𝑟 (𝑖) in the core. The interface of any bag has no more than

𝑑 nodes, and thus, 𝑑 is called the bandwidth. Formally,

• Bandwidth 𝑑 : a user-defined parameter of the core-

tree decomposition, a non-negative integer.

• Boundary 𝜆: The first 𝜆 bags each have at most 𝑑 + 1
nodes while |𝐵𝜆+1 | > 𝑑 + 1. That is, 𝐵𝜆 locates right

before the first bag with width greater than 𝑑 .

• Core 𝐵𝑐 : the union 𝐵𝑐 =
⋃

𝑖∈[𝜆+1,𝑛] 𝐵𝑖 .
• Root set 𝑅 = {𝑖 |𝑖 ≤ 𝜆, 𝑓 (𝑖) > 𝜆}: ids of the non-core
bags whose fathers are in the core.

• Tree 𝑇𝑖 , 𝑖 ∈ [𝑛]: the subtree of 𝑇𝑚𝑑
rooted at 𝐵𝑖 .

• The root function 𝑟 (𝑖) is defined for each 𝑖 ≤ 𝜆: 𝑟 (𝑖) =
max{ 𝑗 ≤ 𝜆 |𝐵 𝑗 is an ancestor of 𝐵𝑖 on 𝑇

𝑚𝑑 }.
• Forest 𝐹 = {𝑇𝑖 |𝑖 ∈ 𝑅}: the subtrees with root ids.

• The interface of tree 𝑇𝑖 , for each 𝑖 ∈ 𝑅: the neighbor
set 𝑁𝑖 of 𝑣𝑖 , in Line (2), the MDE (Section 3.2.1).

Example 5. For the tree decomposition 𝑇𝑚𝑑 in Figure 2, if
the bandwidth 𝑑 = 2, then the boundary 𝜆 = 8 since |𝐵9 | =
4 > 3 = 𝑑 + 1 while all the bags before 𝐵9 had no more than 3

nodes. The core 𝐵𝑐 = 𝐵9 ∪ 𝐵10 ∪ 𝐵11 ∪ 𝐵12 = {𝑣9, 𝑣10, 𝑣11, 𝑣12}.
The roots 𝑅 = {4, 8}. A tree 𝑇8 is the subtree of 𝑇𝑚𝑑 rooted at
𝐵8, which contains {𝐵5, 𝐵6, 𝐵7, 𝐵8}. The forest 𝐹 contains the
subtree with root ids in 𝑅𝑜𝑜𝑡𝑠 , i.e., 𝐹 = {𝑇4,𝑇8}. The interface
of all the bags in 𝑇8 is the neighbor set 𝑁8 = {𝑣10, 𝑣12} whose
size is no more than 𝑑 .

4.4 CT-Index Structure
This section introduces the structure of the index followed

by the query processing. CT-Index includes two parts, the

core-index and the tree-index. Two concepts, 𝑘-local-path
and 𝑘-local-distance, that are essential to the reduction of

the query delay and index time are defined below.

Definition 4 (𝑘-Local-Path). Given two nodes 𝑠 and 𝑡 in
graph 𝐺 , a path is a 𝑘-local-path if all the intermediate nodes
on the path are from {𝑣1, 𝑣2, · · · , 𝑣𝑘 }.

Definition 5 (𝑘-Local-Distance). Given two nodes 𝑠 and
𝑡 in graph 𝐺 , the 𝑘-local-distance is the minimum length over
all the 𝑘-local-paths from 𝑠 to 𝑡 .

By default, 𝑘 = 𝜆, unless 𝑘 is specified in the context. The

𝜆-local-distance between 𝑠 and 𝑡 is denoted as 𝛿𝑇 (𝑠, 𝑡).

Example 6. Consider the tree decomposition𝑇𝑚𝑑 (Figure 2).
Given bandwidth 𝑑 = 2, then 𝜆 = 8 (Example 5). The path 𝑝1 =
⟨𝑣7, 𝑣6, 𝑣8, 𝑣5, 𝑣12⟩ from 𝑣7 to 𝑣12 is the 8-local-path because all
the intermediate nodes on the path 𝑝1, 𝑣6, 𝑣8 and 𝑣5, are from
𝑆 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8}. The path 𝑝2 = ⟨𝑣7, 𝑣10, 𝑣12⟩ is
not a 8-local-path because there is an intermediate node 𝑣10
not in 𝑆 . Since 𝑝1 is the path with the minimum length in all
8-local-paths from 𝑣7 to 𝑣12, 𝛿𝑇 (𝑣7, 𝑣12) = |𝑝1 | = 4.

Core-index. A 2-hop labeling on the core 𝐵𝑐 – not in

graph 𝐺 but in an intermediate graph 𝐺𝜆+1 generated in

MDE process (Section 3.2.1). Note that in our discussion,

𝐺𝜆+1 is a weighted graph: we associate each edge (𝑢, 𝑣) ∈
𝐸 (𝐺𝜆+1) a weight of the local distance 𝛿𝑇 (𝑢, 𝑣). We adopt

PLL (Section 3.4) for the core-index. Therefore, the core-

intex contains, for each vertex 𝑣 ∈ 𝑉 (𝐺𝜆+1), a label set

𝐿𝑣 ⊆ 𝑉 (𝐺𝜆+1) and the distance from 𝑣 to each node in

𝐿𝑣 : {𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑣) |𝑢 ∈ 𝐿𝑣} in 𝐺𝜆+1. Due to the correctness

of PLL, for any two nodes 𝑠, 𝑡 ∈ 𝑉 (𝐺𝜆+1), we have

𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑠, 𝑡) = min

𝑣∈𝐿𝑠∩𝐿𝑡
𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑠, 𝑣) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑣, 𝑡).

Tree-index. For each node 𝑣𝑖 with 𝑖 ≤ 𝜆, locate the tree𝑇𝑟 (𝑖)
of 𝑣𝑖 in the forest 𝐹 . The index on 𝑣𝑖 includes:

• The local distance 𝛿𝑇 (𝑣𝑖 , 𝑣 𝑗 ) for each 𝑣 𝑗 that is an an-

cestor of 𝑣𝑖 on 𝑇𝑟 (𝑖) , and
• The local distance 𝛿𝑇 (𝑣𝑖 , 𝑢) for each 𝑢 in 𝑁𝑟 (𝑖) , the
interface of the tree 𝑇𝑟 (𝑖) .

Index size analysis. Since the core diminishes under 𝑑 ≥
𝑡𝑤 (𝑇𝑚𝑑 ), we assume that 𝑑 < 𝑡𝑤 (𝑇𝑚𝑑 ).

Lemma 5. The index size of the core-index under 𝑑 <

𝑡𝑤 (𝑇𝑚𝑑 ) is 𝑠𝑖𝑧𝑒𝑐𝑜𝑟𝑒 = 𝑂 ( |𝐵𝑐 | log( |𝐵𝑐 |) × 𝑡𝑤 (𝑇𝑚𝑑 )).

Proof. Since the first 𝜆 bags in 𝑇𝑚𝑑
, the MDE-based tree

decomposition of 𝐺 , are of sizes no more than 𝑑 + 1 and

𝑑 < 𝑡𝑤 (𝑇𝑚𝑑 ), the MDE-based treewidth of 𝐺𝜆+1 is exactly
𝑡𝑤 (𝑇𝑚𝑑 ). Denote by 𝑛𝑐 = |𝐵𝑐 |, the number of nodes in 𝐺𝜆+1.
The index size of PLL on 𝐺𝜆+1 is 𝑂 (𝑛𝑐 log𝑛𝑐× (the MDE-

based tree width of 𝐺𝜆+1)), according to Theorem 4.4 [2],

this is exactly 𝑂 (𝑛𝑐 log𝑛𝑐𝑡𝑤 (𝑇𝑚𝑑 )). □

Lemma 6. Tree-index has 𝑠𝑖𝑧𝑒𝑡𝑟𝑒𝑒 = 𝑂 ((ℎ𝐹 + 𝑑) (𝑛 − |𝐵𝑐 |))
where ℎ𝐹 is the maximum height of the trees in forest 𝐹 .

Proof. For each node in the forest, the tree-index includes

its distances to its ℎ𝐹 ancestors and 𝑑 interface nodes. □
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Figure 5: The CT-Index

Theorem 2. The index size of CT-Index is

𝑂 ((ℎ𝐹 + 𝑑) (𝑛 − |𝐵𝑐 |) + |𝐵𝑐 | log( |𝐵𝑐 |) × 𝑡𝑤 (𝑇𝑚𝑑 )) .
In increasing 𝑑 , ℎ increases and |𝐵𝑐 | decreases. In other

words, in increasing 𝑑 , 𝑠𝑖𝑧𝑒𝑡𝑟𝑒𝑒 increases while 𝑠𝑖𝑧𝑒𝑐𝑜𝑟𝑒 de-

creases. As suggested by empirical study [18], as the increase

of 𝑑 , 𝐺𝜆+1 becomes more and more like a dense random

graph, that is, after a certain time, most of the bags that shall

be generated in the MDE-process will have sizes similar to

𝑡𝑤 (𝑇𝑚𝑑 ). In such a plateau stage in the elimination of the

nodes, 𝑠𝑖𝑧𝑒𝑐𝑜𝑟𝑒 decreases very slowly while 𝑠𝑖𝑧𝑒𝑡𝑟𝑒𝑒 keeps

increasing with both ℎ and 𝑛 − |𝐵𝑐 | and thus ℎ𝐹 (𝑛 − |𝐵𝑐 |) in
a faster pace. This analysis on one way shows in more detail

why H2H-labeling does not work for core-periphery graphs;

on the other way suggests that the bandwidth 𝑑 should be

adjusted to effectively tune the index size.

Example 7. Figure 5 shows the core-index and tree-index
under 𝑑 = 2 and 𝜆 = 8. In the core-index, each node in 𝐵𝑐 =

{𝑣9, 𝑣10, 𝑣11, 𝑣12} bears the 2-hop labeling in graph 𝐺𝜆+1 = 𝐺9.
In the tree-index, each node contains its 𝜆-local-distance to two
types of nodes: its ancestors in its tree in 𝐹 and its interface
nodes. For example, 𝑣5 has only one ancestor {𝑣8 : 1} and two
interface nodes {𝑣10 : 4, 𝑣12 : 1} (Figure 2).

4.5 CT-Index Query Processing
CT-Index answers a query 𝑄 (𝑠, 𝑡) in 4 cases.

Case 1: Two query nodes are in the core, i.e., 𝑠, 𝑡 ∈ 𝐵𝑐 .
• Report 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑠, 𝑡) with the core-index.

• Complexity: 1 query to the core-index.

Lemma 7. For 𝑠, 𝑡 ∈ 𝐵𝑐 , 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑠, 𝑡) = 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡).
Proof. The length of an edge (𝑢, 𝑣) in 𝐸 (𝐺𝜆+1) \ 𝐸 (𝐺) is

an upper bound of 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑠, 𝑡) ≥ 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡). It thus remains

to prove that 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑠, 𝑡) ≤ 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡). Let 𝑝 be the shortest

path from 𝑠 to 𝑡 on 𝐺 . If all the nodes on 𝑝 are in 𝐵𝑐 then

the lemma is proved; otherwise, recursively find the node 𝑣𝑖
on 𝑝 with the minimum index, remove 𝑣𝑖 and concatenate

the predecessor 𝑝𝑟𝑒 of 𝑣𝑖 and the successor 𝑠𝑢𝑐 of 𝑣𝑖 with an

edge whose length is the summation of the distances from

𝑝𝑟𝑒 to 𝑠𝑢𝑐 via 𝑣𝑖 (thus 𝛿 (𝑝) remains unchanged) until all the

nodes on 𝑝 are in 𝐵𝑐 . The revised path 𝑝 is a path on 𝐺𝜆+1
whose length is 𝛿 (𝑝) = 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡). □
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{(v12, 0)}v12

v10
2

3 {(v10, 2), (v11, 3), (v12, 3)}

{(v10, 0), (v11, 1), (v12, 1)}

Figure 6: The Extended Label Set

Example 8. In Figure 5, 𝑠 = 𝑣11, 𝑡 = 𝑣12 have𝑑𝑖𝑠𝑡 (𝑣11, 𝑣12) =
1 from a query on the core-index: 𝐿𝑣11 = {𝑣11 : 0, 𝑣12 : 1}, 𝐿𝑣12 =
{𝑣12 : 0}, the distance is 1 (via 𝑣12).
Case 2: Only one query node is in the core, i.e., 𝑠 = 𝑣𝑖 ,
𝑖 ≤ 𝜆 while 𝑡 ∈ 𝐵𝑐 .
• Let 𝑟 = 𝑟 (𝑖), the id of 𝐵𝑖 ’s root.

• Report min𝑢∈𝑁𝑟
𝛿𝑇 (𝑣𝑖 , 𝑢) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑡).

• Complexity: 𝑂 (𝑑) queries to the core-index.

A node 𝑢 ∈ 𝑁𝑟 has its distance 𝛿
𝑇 (𝑣𝑖 , 𝑢) in the tree-index

and 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑡) in the core-index.

Lemma 8. For 𝑣𝑖 with 𝑖 ≤ 𝜆 while 𝑡 ∈ 𝐵𝑐 , 𝑑𝑖𝑠𝑡𝐺 (𝑣𝑖 , 𝑡) =
min𝑢∈𝑁𝑟

𝛿𝑇 (𝑣𝑖 , 𝑢) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑡).
Proof. Let 𝑝 be the shortest path from 𝑣𝑖 to 𝑡 on𝐺 . Let 𝐵𝑟

be the root of the tree of 𝑣𝑖 . Consider the edge from 𝐵𝑟 to its

parent 𝐵𝑓 (𝑟 ) . If 𝑡 ∉ 𝑁𝑟 , according to Lemma 1,𝑁𝑟 = 𝐵𝑟∩𝐵𝑓 (𝑟 )
is a separator of 𝑣𝑖 and 𝑡 . Therefore, 𝑉 (𝑝) ∩ 𝑁𝑟 ≠ ∅; let 𝑢
be the first such node on 𝑝 from 𝑣𝑖 . Since 𝑁𝑟 is a separator

between 𝑣𝑖 and any node in 𝐵𝑐 \ 𝑁𝑟 , 𝑝 has no node in 𝐵𝑐

before 𝑢, that is, the segment of 𝑝 from 𝑣𝑖 to 𝑢 has a length

of 𝛿𝑇 (𝑣𝑖 , 𝑢). The length of 𝑝 is thus 𝛿𝑇 (𝑣𝑖 , 𝑢) + 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑡).
According to Lemma 7, 𝑑𝑖𝑠𝑡𝐺 (𝑢, 𝑡) = 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑡). □

Example 9. In Figure 5, when 𝑠 = 𝑣6 ∉ 𝐵𝑐 and 𝑡 = 𝑣11 ∈
𝐵𝑐 , the root of 𝐵6 is 𝑟 = 𝑟 (6) = 8. Enumerate nodes in
𝑁8 = {𝑣10, 𝑣12} of 𝑣8, and report the minimum value 3 from
{𝛿𝑇 (𝑣6, 𝑣10) + 𝑑𝑖𝑠𝑡𝐺9

(𝑣10, 𝑣11), 𝛿𝑇 (𝑣6, 𝑣12) + 𝑑𝑖𝑠𝑡𝐺9
(𝑣12, 𝑣11)} =

{2 + 1, 3 + 1} as the result.
The following extension operation will be used as a build-

ing block in optimizing the query time of Case 3-4.

Extension. For a node 𝑣𝑖 with 𝑖 ≤ 𝜆, its extended label set

𝐿𝑒𝑥𝑡𝑣𝑖
with distances is constructed as below.

• Let 𝑟 = 𝑟 (𝑖) be the id of the root of 𝐵𝑖 .

• Let extended label set 𝐿𝑒𝑥𝑡𝑣𝑖
=
⋃

𝑢∈𝑁𝑟
𝐿𝑢 be the union of

the core-index label-set of the interface nodes in𝑇𝑟 , and the

extended distances for each 𝑣 ∈ 𝐿𝑒𝑥𝑡𝑣𝑖
be 𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣𝑖 , 𝑣) =

min𝑢∈𝑁𝑟 𝑠.𝑡 . 𝑣∈𝐿𝑢 {𝛿𝑇 (𝑣𝑖 , 𝑢) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑣)}.
• Complexity. 𝑂 (𝑑) queries to the core-index.

Example 10. In Figure 6, for 𝑣6, interface 𝑁𝑟 (6) = 𝑁8 =

{𝑣10, 𝑣12}. 𝐿𝑒𝑥𝑡𝑣6
=
⋃

𝑢∈𝑁𝑟 (6) 𝐿𝑢 = {𝑣10, 𝑣11, 𝑣12}. The extended
distances 𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣6, 𝑣10) = min{2 + 0} = 2, 𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣6, 𝑣11) =
min{2 + 1} = 3, 𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣6, 𝑣12) = min{2 + 1, 3 + 0} = 3.

Case 3-4 of CT-Index shall evaluate 4-hop distances (Equa-

tion 1), Lemma 9 is thus important for the query optimization.



Lemma 9. For any two nodes 𝑣𝑖 and 𝑣 𝑗 with 𝑖, 𝑗 ≤ 𝜆,

min

𝑢∈𝑁𝑟 (𝑖 ) ,𝑤∈𝑁𝑟 ( 𝑗 )
𝛿𝑇 (𝑣𝑖 , 𝑢) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢,𝑤) + 𝛿𝑇 (𝑤, 𝑣 𝑗 ) (1)

= min

𝑣∈𝐿𝑒𝑥𝑡𝑣𝑖
∩𝐿𝑒𝑥𝑡𝑣𝑗

𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣𝑖 , 𝑣) + 𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣, 𝑣 𝑗 ). (2)

Proof. PLL guarantees that for 𝑢,𝑤 ∈ 𝐵𝑐 ,
𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢,𝑤) = min

𝑣∈𝐿𝑢∩𝐿𝑤
𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑣) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑣,𝑤).

Thus, Equation 1= min𝑢∈𝑁𝑟 (𝑖 ) ,𝑤∈𝑁𝑟 ( 𝑗 ) ,𝑣∈𝐿𝑢∩𝐿𝑤 𝛿𝑇 (𝑣𝑖 , 𝑢) +
𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢, 𝑣) +𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑣,𝑤) +𝛿𝑇 (𝑤, 𝑣 𝑗 ). The condition {𝑢 ∈
𝑁𝑟 (𝑖) ,𝑤 ∈ 𝑁𝑟 ( 𝑗) and 𝑣 ∈ 𝐿𝑢 ∩ 𝐿𝑤} can be divided into

{𝑢 ∈ 𝑁𝑟 (𝑖) , 𝑣 ∈ 𝐿𝑒𝑥𝑡𝑣𝑖
𝑠 .𝑡 . 𝑣 ∈ 𝐿𝑢} and {𝑤 ∈ 𝑁𝑟 ( 𝑗) , 𝑣 ∈

𝐿𝑒𝑥𝑡𝑣𝑗
𝑠 .𝑡 . 𝑣 ∈ 𝐿𝑤}. This, combined with the definitions of

𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣𝑖 , 𝑣) and 𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑣 𝑗 , 𝑣), completes the proof. □

Lemma 9 turns 4-hop to 2-hop (upon the extended label

set), reducing the query processing cost by a factor of 𝑑 .

Specifically, Equation 1 enumerates over the Cartesian prod-

uct of 𝑁𝑟𝑖 × 𝑁𝑟 𝑗 , leading to 𝑑2 queries on the core-index.

By constructing the extended label sets of 𝑣𝑖 and 𝑣 𝑗 in 𝑂 (𝑑)
queries on the core-index, Equation 2 can equivalently report

the result with a simple intersection whose cost is dominated

by the 𝑂 (𝑑) queries on the core-index.

Case 3: Two query nodes are in different trees in the
forest, i.e., 𝑠 = 𝑣𝑖 , 𝑡 = 𝑣 𝑗 where 𝑖, 𝑗 ≤ 𝜆 and 𝑟 (𝑖) ≠ 𝑟 ( 𝑗).
• Perform the extension operations on 𝑣𝑖 and 𝑣 𝑗 .

• Report min

𝑢∈𝑁𝑟 (𝑖 )
𝑤∈𝑁𝑟 ( 𝑗 )

𝛿𝑇 (𝑣𝑖 , 𝑢) + 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢,𝑤) + 𝛿𝑇 (𝑤, 𝑣 𝑗 ).

• Complexity: 𝑂 (𝑑) queries to the core-index (computed

based on Lemma 9).

Lemma 10. The distance reported by Case 3 is 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡).

Proof. Let 𝑝 be a shortest path from 𝑣𝑖 to 𝑡 . Let 𝑢 be the

first node on the path 𝑝 in 𝑁𝑟 (𝑖) . Let 𝑤 be the last node on

the path 𝑝 in 𝑁𝑟 ( 𝑗) . According to Lemma 1, the segment

of 𝑝 on (𝑣𝑖 , 𝑢) has length 𝛿𝑇 (𝑣𝑖 , 𝑢) while that on (𝑤, 𝑣 𝑗 )
has length 𝛿𝑇 (𝑤, 𝑣 𝑗 ). Therefore, 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡) = 𝛿𝑇 (𝑣𝑖 , 𝑢) +
𝑑𝑖𝑠𝑡𝐺 (𝑢,𝑤) + 𝛿𝑇 (𝑤, 𝑣 𝑗 ) while 𝑑𝑖𝑠𝑡𝐺 (𝑢,𝑤) = 𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢,𝑤)
(Lemma 7), which completes the proof. □

Example 11. when 𝑠 = 𝑣6 and 𝑡 = 𝑣1. 𝑟 (6) = 8 ≠ 𝑟 (7) = 4.
𝐿𝑒𝑥𝑡𝑠 = {𝑣10 : 2, 𝑣11 : 3, 𝑣12 : 3} and 𝐿𝑒𝑥𝑡𝑡 = {𝑣11 : 4, 𝑣12 : 3}. Re-
port the minimum value 6 from min𝑣∈𝐿𝑒𝑥𝑡𝑠 ∩𝐿𝑒𝑥𝑡𝑡

𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑠, 𝑣) +
𝑑𝑖𝑠𝑡𝑒𝑥𝑡 (𝑡, 𝑣) as the result.

Case 4: Two query nodes are in the same tree in the
forest, i.e., 𝑠 = 𝑣𝑖 , 𝑡 = 𝑣 𝑗 , 𝑖, 𝑗 ≤ 𝜆 and 𝑟 (𝑖) = 𝑟 ( 𝑗).
• 𝐵𝑘 : the lowest common ancestor

5
of 𝐵𝑖 and 𝐵 𝑗 on 𝑇𝑟 (𝑖) .

• Perform the extension operations to 𝑣𝑖 and 𝑣 𝑗 .

5
Answering a lowest common ancestor on a tree can be done in𝑂 (1) time

with a linear space index on the tree [12].

• Report min{𝑑2, 𝑑4} where
(1) Two hops 𝑑2 = min𝑢′∈𝐵𝑘

𝛿𝑇 (𝑣𝑖 , 𝑢 ′) + 𝛿𝑇 (𝑣 𝑗 , 𝑢 ′), and
(2) Four hops 𝑑4 = min𝑢,𝑤∈𝑁𝑟 (𝑖 ) 𝛿

𝑇 (𝑣𝑖 , 𝑢) +𝑑𝑖𝑠𝑡𝐺𝜆+1 (𝑢,𝑤) +
𝛿𝑇 (𝑤, 𝑣 𝑗 ). Apply Lemma 9 to compute 𝑑4.

• Complexity: 𝑂 (𝑑) queries to the core-index.

Since what we record on the tree-index is the “local” in-

stance, therefore, searching over the s-t separator 𝐵𝑘 may

not be sufficient in reporting the “global” distance: a path

going through 𝐵𝑘 and to some nodes in 𝐵𝑐 and then back to

another node in 𝐵𝑘 can be the actual shortest path.

Lemma 11. The distance reported by Case 4 is 𝑑𝑖𝑠𝑡𝐺 (𝑠, 𝑡).

Proof. Let 𝑝 be a shortest path from 𝑠 to 𝑡 . If 𝑝 is a local

path, 𝑑2 returns the shortest distance. If 𝑝 is not a local path,

let 𝑢 be the first node on 𝑝 in 𝐵𝑐 and𝑤 the last. According

to Lemma 10, the shortest distance can be captured by 𝑑4
in concatenating two local paths with a global distances

between a pair of nodes in 𝑁𝑟 . □

Example 12. In Figure 5, 𝑠 = 𝑣5, 𝑡 = 𝑣6, 5, 6 ≤ 8 and
𝑟 (5) = 𝑟 (6) = 4. 𝐵8 is the lowest common ancestor of 𝐵5 and
𝐵6. 𝑑2 = min{𝛿𝑇 (𝑠,𝑢 ′) + 𝛿𝑇 (𝑡,𝑢 ′) |𝑢 ′ ∈ 𝐵8} = min{1 + 1, 4 +
2, 1 + 3} = 2. 𝑑4 = 4 since 𝐿𝑒𝑥𝑡 (𝑠) = {𝑣10 : 4, 𝑣11 : 5, 𝑣12 : 1}
and 𝐿𝑒𝑥𝑡 (𝑡) = {𝑣10 : 2, 𝑣11 : 3, 𝑣12 : 3}. Report min{𝑑2, 𝑑4} = 2.

Query Complexity. In the 4 cases above, the query com-

plexity is given by 𝑂 (𝑑) pairwise shortest distance queries
on the core-index. The query time can thus be bounded.

Lemma 12. The query time on the core-index is
𝑂 (𝑡𝑤 (𝑇𝑚𝑑 ) log |𝐵𝑐 |).

Proof. Recall that the core-index is a PLL index on

𝐺𝜆+1 with a particular node order such that the index size

is 𝑂 (𝑛 log𝑛 × 𝑡𝑤 (𝑇𝑚𝑑 )). Follow the construction (Theo-

rem 4.4 [2]) of the PPL based on 𝑇𝑚𝑑
, the maximum label

size is 𝑡𝑤 (𝑇𝑚𝑑 ) log |𝐵𝑐 |. Therefore, the query time on the

core-index is 𝑂 (𝑡𝑤 (𝑇𝑚𝑑 ) log |𝐵𝑐 |). □

Theorem 3. The query complexity of CT-Index is
𝑂 (𝑑 log |𝐵𝑐 | × 𝑡𝑤 (𝑇𝑚𝑑 )).

Remarks. Theorem 2-3 shows that 𝑑 provides a trade-off

mechanism of the index size and query time.

5 CT-INDEX CONSTRUCTION
This section focuses on an effective construction of the CT-

Index. We start with an adapted MDE process (Section 3.2.1)

which assigns each clique edge a weight before inserting it

into the graph and records the length of an edge upon its

removal. Then we build up the distance labels, including the

core-index and tree-index described in Section 4.4, based on

these deliverables of the MDE process. Algorithm 1 describes

the construction process.



MDE-based tree decomposition. In Algorithm 1, Line 1-

16 is essentially the tree decomposition which terminates

whenever the node to be eliminated has 𝑑 or more than 𝑑

neighbors (Line 17); right before the ending of the decom-

position, we record the boundary and core (Line 7-8). As

explained in Section 3.2.1, upon the elimination of a node

𝑣𝑖 , we remove all the affiliated edges while reinvesting a

clique of the neighbors of 𝑣𝑖 into the graph (Line 13-14). Dis-

tance information is maintained constantly. Most of the time,

the edge weight retains through the elimination; when a

clique edge (𝑢,𝑤) is inserted, it will associated with a weight

𝛿−𝑖 (𝑢) + 𝛿−𝑖 (𝑤), the length of the wedge of the two edges

from 𝑢 and𝑤 to 𝑣𝑖 — as an upper bound of 𝑑𝑖𝑠𝑡𝐺 (𝑢,𝑤) — to

the graph (Line 16). If the graph already has (𝑢,𝑤), then the

distance will be updated with the smaller distance among the

two without duplicating the edge. This effort is harvested

when edge (𝑣𝑖 , 𝑢) is deleted upon the deletion of 𝑣𝑖 : we write

down the edge weight as 𝛿−𝑖 (𝑢) (Line 12). As we shall see, this
distance will play an important role in index construction.

Next we show an important property of the distance that

we have written down, 𝛿−𝑖 (𝑢). Recall the definition of a 𝑘-

local-path, the paths with intermediate nodes in 𝑣1, · · · , 𝑣𝑘 ,
and 𝑘-local-distance defined in Definition 4-5.

Lemma 13. For 𝑖 ∈ [𝜆] and 𝑢 ∈ 𝑉 (𝐺), 𝑢 ∈ 𝑁𝑖 if and only if
there is, between 𝑣𝑖 and 𝑢, an (𝑖 − 1)-local path.

Proof. Let𝐺+ be the graphwhich includes all the edges in
𝐺0 to𝐺𝑛 generated in theMDE process. Edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 (𝐺+)
if and only if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 (𝐺min{𝑖, 𝑗 }). The lemma is proved

according to Lemma 2.1 [5]. □

Based on a similar rationale of Floyd-Warshall algorithm

in computing the shortest distances, 𝛿−𝑖 (𝑢) is the shortest
distance between 𝑣𝑖 and 𝑣 over all the (𝑖 − 1)-local-paths.

Lemma 14. 𝛿−𝑖 (𝑢) is the (𝑖 − 1)-local-distance between 𝑣𝑖
and 𝑢.

Proof. According to Lemma 13, there is at least one (𝑖−1)-
local-path from 𝑣𝑖 to𝑢. Let 𝑝 be the shortest (𝑖−1)-local-path
from 𝑣𝑖 to𝑢. Consider 𝑝 in theMDE process: the intermediate

nodes on 𝑝 will be contracted in the ascending order of their

indexes. Specifically, in contracting a node 𝑣 𝑗 , MDE connects

its predecessor 𝑝𝑟𝑒𝑑 (𝑣 𝑗 ) and successor 𝑠𝑢𝑐 (𝑣 𝑗 ) directly with

an edge weighted as the summation of edges from 𝑝𝑟𝑒𝑑 (𝑣 𝑗 )
and 𝑠𝑢𝑐 (𝑣 𝑗 ) to 𝑣 𝑗 — such an edge weight will not be updated

by other edges since they are already the shortest distances

between the corresponding nodes on 𝑝 . In this sense, the

length of 𝑝 sustains during MDE until it becomes an edge.

Therefore, 𝛿−𝑖 (𝑢) is the length of 𝑝 . □

Tree-Index Construction. Lemma 14 shows that for a root

𝑣𝑖 and any neighbor𝑢 ∈ 𝑁𝑖 of𝑢, the 𝜆-local-distance 𝛿
𝑇 (𝑣𝑖 , 𝑢)

is exactly 𝛿−𝑖 (𝑢) (Line 25). The tree-index on the root is thus

Algorithm 1: CT-Index Construction
Input: Graph𝐺 , bandwidth parameter 𝑑

Output: CT-Index
1 𝐺0 ← 𝐺 with default edge weight 𝛿0 (𝑒) = 1, ∀𝑒 ∈ 𝐸 (𝐺0) ;
2 𝑖 ← 1;

3 repeat
4 𝑣𝑖 ← the node with the minimum degree in𝐺𝑖−1;

5 𝑁𝑖 ← the neighbor set of 𝑣𝑖 in𝐺𝑖−1;

6 if |𝑁𝑖 | ≥ 𝑑 then
7 Boundary 𝜆 ← 𝑖 − 1;
8 Core 𝐵𝑐 ← 𝑉 \ {𝑣1, · · · , 𝑣𝜆 };
9 else
10 Bag 𝐵𝑖 ← {𝑣𝑖 } ∪ 𝑁𝑖 ;

11 for each 𝑢 ∈ 𝑁𝑖 do
12 𝛿−

𝑖
(𝑢) ← the edge weight of (𝑢, 𝑣𝑖 ) in𝐺𝑖−1;

13 𝑉 (𝐺𝑖 ) ← 𝑉 (𝐺𝑖−1) \ {𝑣𝑖 };
14 𝐸 (𝐺𝑖 ) ← 𝐸 (𝐺𝑖−1) ∪ 𝐸 (𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁𝑖 )) \ ( {𝑣𝑖 } × 𝑁𝑖 ) ;
15 for each 𝑒 (𝑢, 𝑤) ∈ 𝐸 (𝐺𝑖 ) do
16 𝛿𝑖 (𝑒) =

𝛿𝑖−1 (𝑒), if 𝑒 ∈ 𝐸 (𝐺𝑖−1) \ 𝐸 (𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁𝑖 ))
𝛿−
𝑖
(𝑢) + 𝛿−

𝑖
(𝑤), if 𝑒 ∈ 𝐸 (𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁𝑖 )) \ 𝐸 (𝐺𝑖−1)

min{𝛿−
𝑖
(𝑢) + 𝛿−

𝑖
(𝑤), 𝛿𝑖−1 (𝑒) }, if otherwise

17 until |𝑁𝑖 | ≥ 𝑑 ;

18 Roots 𝑅 ← ∅;
19 for each 𝑖 = 𝜆 downto 1 do
20 Parent 𝑓 (𝑖) ← min𝑣𝑗 ∈𝑁𝑖

𝑗 ;

21 if 𝑓 (𝑖) > 𝜆 or 𝑁𝑖 = ∅ then
22 Roots 𝑅 ← 𝑅 ∪ {𝑖 };
23 Root function 𝑟 (𝑖) ← 𝑖;

24 for each 𝑢 ∈ 𝑁𝑖 do
25 Local distance 𝛿𝑇 (𝑣𝑖 ,𝑢) ← 𝛿−

𝑖
(𝑢) ;

26 else
27 Root function 𝑟 (𝑖) ← 𝑟 (𝑓 (𝑖)) ;
28 𝑁𝑇

𝑖
← 𝑁𝑖 \ 𝐵𝑐

;

29 for each 𝑢 ∈ 𝑁𝑖 do
30 𝛿𝑇 (𝑣𝑖 ,𝑢) ←

min{𝛿− (𝑢),min
𝑣𝑗 ∈𝑁𝑇

𝑖
𝛿−
𝑖
(𝑣𝑗 ) + 𝛿𝑇 (𝑣𝑗 ,𝑢) };

31 for each 𝑢 ∉ 𝑁𝑖 but in 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑇 (𝑣𝑖 ) ∪ 𝑁𝑟 (𝑖 ) do
32 𝛿𝑇 (𝑣𝑖 ,𝑢) ← min

𝑣𝑗 ∈𝑁𝑇
𝑖
𝛿−
𝑖
(𝑣𝑗 ) + 𝛿𝑇 (𝑣𝑗 ,𝑢) ;

33 Construct the PLL (or PSL equivalently) index on𝐺𝜆+1;

built. For a node 𝑣𝑖 that is not a root, we compute its 𝜆-local-

distances (Line 27-32) with Lemma 15.

Lemma 15. Given 𝜆, for each 𝑖 ∈ [𝜆] and 𝑟 = 𝑟 (𝑖) the root
of 𝑖 , let 𝑁𝑇

𝑖 be the nodes in 𝑁𝑖 that are ancestors of 𝑣𝑖 on tree
𝑇𝑟 rooted at 𝑟 . The following properties hold:

(1) 𝑁𝑇
𝑖 = 𝑁𝑖 \ 𝐵𝑐 , and

(2) For each node 𝑢 ∈ 𝑉 (𝐺) \ {𝑣1, 𝑣2, · · · , 𝑣𝑖−1} and a 𝜆-
local-path 𝑝 from 𝑣𝑖 to 𝑢 with the shortest length 𝛿 (𝑝) =
𝛿𝑇 (𝑣𝑖 , 𝑢), either 𝛿 (𝑝) = 𝛿−𝑖 (𝑢) or there is a node 𝑣 𝑗 ∈ 𝑁𝑇

𝑖

such that 𝛿 (𝑝) = 𝛿−𝑖 (𝑣 𝑗 ) + 𝛿𝑇 (𝑣 𝑗 , 𝑢).



Proof. According to Lemma 2, all the nodes in 𝑁𝑖 are

ancestors of 𝑣𝑖 on 𝑇𝑚𝑑
. Besides, all the ancestors of 𝑣𝑟 are

in 𝐵𝑐 , thus 𝑁𝑇
𝑖 = 𝑁𝑖 \ 𝐵𝑐 . Let𝑤 be the first node on 𝑝 from

𝑣𝑖 such that𝑤 ∉ {𝑣1, 𝑣2, · · · , 𝑣𝑖−1}.𝑤 exists since 𝑢 is such a

node. If𝑤 ∈ 𝐵𝑐 , then according to the definition of 𝜆-local-

path,𝑤 = 𝑢. Thus, the length of 𝑝 is 𝛿 (𝑝) = 𝛿− (𝑢). If𝑤 ∉ 𝐵𝑐 ,

then 𝑤 is a node 𝑣 𝑗 with 𝑗 ≤ 𝜆 and 𝑣 𝑗 ∈ 𝑁𝑖 (Lemma 13).

Therefore, 𝑣 𝑗 is an ancestor of 𝑣𝑖 on 𝑇𝑟 (𝑖) . The segment on 𝑝

from 𝑣𝑖 to 𝑣 𝑗 has length 𝛿−𝑖 (𝑣 𝑗 ) while the rest part of 𝑝 has

length 𝛿𝑇 (𝑣 𝑗 , 𝑢), namely, 𝛿 (𝑝) = 𝛿−𝑖 (𝑣 𝑗 ) + 𝛿𝑇 (𝑣 𝑗 , 𝑢). □

Note that the loop in Line 19 is in reverse order while

the ancestors of a node 𝑣𝑖 have their indexes larger than 𝑖 .

Therefore, when we use 𝛿𝑇 (𝑣 𝑗 , 𝑢) in Line 30 and 32, it has

already been correctly computed since 𝑗 > 𝑖 . Line 19-32 can,

thus, construct the CT-Index correctly.

Index Time Complexity. In decomposing the core and the

trees, we spend 𝑂 (𝑑2) time in eliminating each node, which

takes 𝑂 (𝑑2 (𝑛 − |𝐵𝑐 |)) time in total. In computing each local

distances that are needed for the Tree-Index (Line 30 and 32)

we spend time no more than the size of |𝑁𝑇
𝑖 |, which takes

𝑂 ((ℎ𝐹 +𝑑) (𝑛− |𝐵𝑐 |)) time in total where ℎ𝐹 is the maximum

tree height in the forest 𝐹 .

Theorem 4. The index time for constructing everything
apart from the core-index is 𝑂 (𝑑 (𝑑 + ℎ𝐹 ) (𝑛 − |𝐵𝑐 |)).

Decide the bandwidth 𝑑 . 𝑑 manages the trade-off between

the index size and query time which is essential when PSL
fails in constructing the index in exceeding the memory limit.

If the memory is large enough, 𝑑 should be 0 that provides

the best query efficiency; otherwise, 𝑑 should be as small as

possible. This initiates a binary search. The upper bound 𝑑𝑢𝑏
of the binary search takes an experienced value to reduce the

search time; double 𝑑𝑢𝑏 when a feasible 𝑑 cannot be found.

Remarks. The concepts of local-path and the correspond-

ing local-distance dramatically reduce the index time since

computing the “global” distance from each node to its an-

cestors on the tree incurs 𝑂 (𝑑 × 𝑡𝑤 (𝑇𝑚𝑑 )) query cost on

the core-index. 𝑑 is typically set to 100 while 𝑡𝑤 (𝑇𝑚𝑑 ) of a
big core-periphery graph is more than 1000. In this sense,

CT-Index reduces the index time of “global” construction of

the core-index and tree-index by a factor of 10
5
.

6 RELATEDWORK
2-hop Labeling. 2-hop labeling [10] has been adapted to

graphs with different properties. For road networks, planar

graph properties have been extensively exploited to reduce

the index size and query time. For example, Abraham et al.

proposed a contraction hierarchies algorithm and then used

hubs to improve efficiency [1]. The state-of-the-art 2-hop

labeling on road network [19] is explained in Section 3.1.

It uses the small treewidth of a road network to achieve a

superior index and query efficiency. These approaches do

not apply to graphs without the designated properties.

For small-world networks such as social networks andweb

graphs, the state-of-the-art approach is PLL [2] (Section 3.4).

Due to its immense index size, Jiang et al. [13] designed a

disk labeling algorithm that gradually covers all the shortest

paths in a graph by hop doubling; to improve its index time,

Li et al. PSL [17] parallelized PLL’s labeling process a multi-

core environment which achieves a near-linear speedup. In

this scenario, the index size remains the bottleneck.

Tree-Decomposition. Tree-decomposition was first stud-

ied by Halin [11] and later explored by Robertson et al. [20]

as part of their graph minor theories. Arnborg et al. [4]

proved the NP-Completeness in determining whether the

treewidth of a graph is more than a given value. Bodlaen-

der et al. [6] generate a tree decomposition with the min-

imum treewidth in time exponential to the treewidth. For

graphs with treewidth more than a constant, researchers

study heuristic-based tree decomposition algorithms.

Xu et al. [24] listed several heuristics for tree decompo-

sition, including the widely adopted [18, 19, 22] Minimum

Degree Elimination (MDE) heuristic [5]. On graphs with

large treewidth, core-tree decomposition [3, 18, 22] termi-

nates MDE once the minimum degree exceeds a threshold.

Distance Computation with Tree Decomposition. Ta-
ble 1 compares the labeling approaches using tree decom-

position techniques. Wei et al. [22] were the first in this

category. For a tree decomposition 𝑇 of width𝑤 and height

ℎ, they use the bags along the tree path that connects the

two query nodes to perform dynamic programming online,

the query time is 𝑂 (𝑤2ℎ). Following this work, Chang et

al. [9] presented a multi-hop labeling approach whose query

time is𝑂 (𝑤 (𝑤 + ℎ)); Xiang [23] proposed an approach with

index size𝑂 (𝑛𝑤 log𝑛). The state-of-the-art approach of this

line [19] has an index size of Ω(𝑛𝑤) (Section 3.3). On real

graphs with potentially large treewidth, these approaches

entail either excessive query time or index size.

Core-tree decomposition has been used [3, 22] to partition

the graph into a core and a forest. It treats the core as a

special bag and computes, for each bag, pairwise shortest

distance of nodes in the bag, which incurs 𝑂 (𝑚𝑛) time for

indexing. It processes a query based on the stored distances

with a special treatment to the nodes in the core. In contrast,

CT-Index stores local distance for nodes on the tree while

builds a PSL index for nodes in the core to achieve a smaller

index size and shorter index time.



7 EXPERIMENTAL RESULTS
Algorithms. The proposed CT-Index is compared with the

state-of-the-art 2-hop labeling approach PSL [17] which is

a multi-core parallelization of PLL [2]. PSL further provides

two index reduction techniques. Equivalence relation elim-
ination keeps only one node for those who share the same

set of neighbors while local minimal set elimination removes

(since PSL keeps a global order over all the graph nodes) the

label sets of the nodes who bear the minimum order among

their neighbors — these label sets are restores in querying

time. These two techniques derive two baseline approaches.

• PSL+: PSL with equivalence relation elimination.

• PSL∗: PSL with equivalence relation elimination plus

local minimal set elimination.

Since the equivalence relation elimination shrinks the

graph and is not depending on any specific technique, we

have integrated it into our proposed CT-Index. Bandwidth 𝑑

is a parameter in our algorithm, we denote by “CT-𝑑” as our

algorithm with a specific bandwidth 𝑑 . Note that, when 𝑑

becomes zero, our method CT-0 is the same as PSL+ because
the whole graph is treated as a core.

All algorithms were implemented in C++ and compiled

with GNU GCC 4.8.5 and -O3 level optimization. All experi-

ments were conducted on a machine with 48 CPU cores and

384 GB main memory running Linux (Red Hat Linux 4.8.5,

64bit). Each CPU core is Intel Xeon 2.1GHz. The parallelized

programs are supported by the openMP framework. When a

program runs out of memory, we mark the index size, and

the corresponding index time and query time as “OM”.

Datasets.The experimentswere conducted on 30 real graphs

(Table 2) including social networks, web graphs, coauthor-

ship graphs, communication networks, and interaction net-

works that were downloaded from Network Repository
6
[21],

Stanford Large Network Dataset Collection
7
[15], Laboratory

for Web Algorithms
8
[7], and the Koblenz Network Collec-

tion
9
[14]. The largest graph has over 5.5 billion edges.

Exp 1: Index Size. Figure 7 shows the index size of CT-

Index with the bandwidth 𝑑 = 20 (CT-20), CT-Index with

bandwidth 𝑑 = 100 (CT-100), PSL+ (CT-0) and PSL∗.
CT-100 is the only algorithm that completed the index

construction on all the graphs. CT-20 failed on UK0705 and
UK07 due to the oversized index; on other graphs, the index

size of CT-100 is 1.41 times smaller than CT-20 on average.

PSL+ failed on 6 out of 30 graphs due to the oversized index.

The index size of CT-100 is 4.79 times smaller than PSL+ on
average and 23.72 at a maximum (on SINA). PSL∗ failed on 3

6
http://networkrepository.com/index.php

7
http://snap.stanford.edu/data/

8
http://law.di.unimi.it

9
http://konect.uni-koblenz.de/

Table 2: The Description of Dataset

Name Dataset 𝑛 𝑚 Type

TALK Wikitalk
7

2,394,385 5,021,410 Communication

AMAZ Amazon
8

735,323 5,158,388 Social Network

YOUT Youtube
9

3,223,589 9,375,374 Social Network

EPIN Epinions
6

755,762 13,396,320 Social Network

DBPE Dbpedia
9

3,966,924 13,820,853 Web Graph

HUDO Hudong
6

1,984,485 14,869,484 Web Graph

BAID Baidu
6

2,141,301 17,794,839 Web Graph

DBLP DBLP
9

1,314,050 18,986,618 Coauthorship

TOP Topcats
7

1,791,489 28,511,807 Web Graph

POK Pokec
7

1,632,803 30,622,564 Social Network

FLIC Flickr
9

2,302,925 33,140,017 Social Network

FRIE Friendster
6

8,658,745 55,170,227 Social Network

STAC Stack
7

6,024,271 63,497,050 Interaction

LJ Ljournal
8

5,363,260 79,023,142 Social Network

FB Facebook
6

58,790,783 92,208,195 Social Network

ENWI Enwiki
8

5,616,717 128,835,798 Social Network

INDO Indochina
8

7,414,866 194,109,311 Web Graph

HOLL Hollywood
8

2,180,759 228,985,632 Social Network

SINA Sinaweibo
6

58,655,850 261,321,071 Social Network

TWIT Twitter
6

21,297,772 265,025,809 Social Network

UK02 UK-2002
8

18,520,486 298,113,762 Web Graph

WIKI Wikipedia
9

12,150,976 378,142,420 Web Graph

ARAB Arabic
8

22,744,080 639,999,458 Web Graph

UK05 UK-2005
8

39,459,925 936,364,282 Web Graph

WB Webbase
8

118,142,155 1,019,903,190 Web Graph

IT04 IT-2004
8

41,291,594 1,150,725,436 Web Graph

SK05 SK-2005
8

50,636,154 1,949,412,601 Web Graph

UK06 UK-2006
8

77,741,046 2,965,197,340 Web Graph

UK0705 UK-07-05
8

105,896,555 3,738,733,648 Web Graph

UK07 UK-2007
8

133,633,040 5,507,679,822 Web Graph

out of 30 graphs due to the oversized index; on other graphs,

CT-100 reduces the index size of PSL∗ by a factor of 2.31 on

average and 5.66 at a maximum; this reduction is critical

especially when the bottleneck is in the index size.

Exp 2: Index Time. Figure 8 shows the index time for the

algorithms, CT-20, CT-100, PSL+, and PSL∗, ran on 45 threads.
CT-100 has a slightly (4% on average) longer index time

than CT-20. CT-100 speeds up PSL+ by a factor of 3.26 on

average (on the graphs where PSL+ can finish the labeling)

and 21.85 at a maximum (on SINA), and speeds up PSL∗ by a

factor of 1.68 on average and 4.64 at a maximum (on UK02).
Exp 3: Query Time. Figure 9 shows the average query time

of CT-20, CT-100, PSL+, and PSL∗ on 10
6
random queries.

The query time of CT-100 is comparable to the other ap-

proaches. CT-100 has query time slightly longer than (2.37×
on average and 4.48× at the maximum) CT-20. CT-100 is on

average 7.55 times slower than PSL+ and on average 3.17

times slower than PSL∗. Even on the largest graph UK07, the
average query time of CT-100 is 0.39 millisecond while all

other methods failed to complete the index construction.

Exp 4: The Effect of bandwidth 𝑑 . Figure 10(a) shows the
index size of CT-Index under bandwidth 0, 2, 5, 10, 20, 50, and

100 on 6 data graphs. The index size drops with an increasing

𝑑 . OnUK05, when𝑑 is 0 or 2, the index cannot be constructed
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Figure 10: The Effect of bandwidth 𝑑

due to the oversized index. When 𝑑 = 5, the index size is

182.94GB which decreases to 117.94GB when 𝑑 = 10, 69.02

under 20, 37.09 under 50, and 29.11 under 100. The marginal

gain (index size reduction) decreases in increasing 𝑑 and

becomes very small when 𝑑 = 100.

Figure 10(b) presents the index time of CT-Index under a

varying 𝑑 . With the increase of bandwidth 𝑑 , the index time

normally (on graphs such as DBLP, FB, UK02, and UK05)
decreases while showing some fluctuates on TWIT and WB.

This can be explained by the trade-off between the core-tree

decomposition time and the core index construction time.

Figure 10(b) shows the average query time of CT-Index

under a varying 𝑑 . The query time of CT-Index mildly in-

creases when 𝑑 is increasing but even when 𝑑 = 100, the

query time is constantly below 0.4ms, 8 times slower than

PSL∗ (see Figure 9). This is cost-effective for the improved

scalability: PSL∗ cannot be constructed on WB.
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Figure 11: The Test of Scalability for the Index Size
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Figure 12: The Test of Scalability for the Index Time
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Figure 13: The Test of Scalability for the Query Time
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Figure 14: The Determination of 𝑑

Table 3: The Comparison Between CT-Index and CD

Index Time (sec) Index Size (MB) Query Time (sec)

CD CT-Index CD CT-Index CD CT-Index

TALK 6653.524 3.32 521.94 77.13 1.84E-6 8.93E-7

EPIN 35865.233 9.14 5839.77 223.82 9.261E-6 7.56E-6

Exp 5: The Test of Scalability. We randomly divided the

nodes of a graph into 5 equally sized node groups and created

5 graphs for the cases of 20%, 40%, 60%, 80%, and 100%: the

𝑖-th graph is the induced subgraph on the first 𝑖 node groups.

Figure 11 shows that the index size of all approaches in-

creases smoothly with the number of nodes of the graph.

CT-Index constantly has a smaller index size compared with

PSL+ and is better than PSL∗ in most of the cases. These

results justify the scalability of CT-Index in the index size.

Figure 12 shows that the index time grows smoothly with

the graph size for all four methods. The proposed approach

CT-20 and CT-100 spends less time than PSL+ in all cases

and are better than PSL∗ on most of the cases.

Figure 13 shows that the query time of all approaches

grows smoothly with the graph size for all four methods. The

query time of PSL+ (CT-0) smaller than that of CT-20 while

that of CT-20 is smaller than that of CT-100. This conforms

to the query time analysis of CT-Index. But even for CT-100,

our query time is no slower than 10 times with PSL∗ on all

test cases, which shows the superiority and scalability of the

proposed method CT-Index.

Exp 6: The Comparison with other Approaches with
Core Tree Decomposition. Denote by CD the algorithm

of [3] (see Section 6 for details). Table 3 compares CT-Index

with CD under bandwidth 𝑑 = 100. Since CD ran out of

memory on 28 out of 30 graphs tested, Table 3 shows only

two graphs, TALK and EPIN.
CD has the index size 10× larger than CT-Index on EPIN.

Moreover, CD is four orders of magnitude slower than CT-

Index in index construction. Such large index size and slow

index construction lead to the failure of CD on the other

28 graphs. The results conform to Table 1: CT-Index outper-

forms CD in all aspects.

Exp 7: The Efficiency of Finding 𝑑 . The efficiency was

evaluated on two real-world graphs, LJ and ARAB, with the

memory limit𝑚𝑒𝑚𝑙𝑚𝑡 ranging from 20 GB to 100 GB and

upper bound 𝑑𝑢𝑏 = 200. Figure 14 shows the running time

of finding 𝑑 and the resulting bandwidth 𝑑 .

On both graphs, a larger memory limit produces a smaller

𝑑 ; once the memory is large enough to hold the PSL index of

the graph, 𝑑 = 0 will be reported. A smaller 𝑑 means larger

index size and longer indexing time: on LJ, 𝑑 = 0 (when

the memory limit is 100GB) has the running time longer

than 𝑑 = 30 (under the memory limit 20GB) by only 56%. To

conclude, a small 𝑑 that is optimal for the current memory

setting can be reported within a reasonable time especially

when PSL (𝑑 = 0) fails to create the index. CT-Index can be

used for distance queries in all settings.

Summary of the findings in the experiments. CT-Index
reduces the index size and thus can index massive graphs

such as UK0705 and UK07 that no other approaches can

process. The index time of CT-Index is up to 21.85 times

shorter than PSL+. The query time of CT-Index comparable

to PSL+: CT-100 is on average 7.55 times slower than PSL+

and on average 3.17 times slower than PSL∗. Note that this
is the pay off for the scalability of CT-Index that is tuned by

the bandwidth 𝑑 . The construction of CT-Index is 4 orders

of magnitudes faster than other distance labeling based on

core-tree decomposition. Overall, CT-Index shows that a

slight sacrifice of the query time of CT (controlled under

milliseconds) can lead to a cutting-edge scalability.

8 CONCLUSION
On big graphs with large treewidth (e.g., social networks and

web graphs), 2-hop distance labeling approaches demand

a massive index whose size becomes the bottleneck. We

leverage the core-periphery property of these graphs and

then propose a Core-Tree (CT) index to scale up, by reducing

the index size, the distance labeling to the billion-scale graphs

that can not be processed with existing 2-hop solutions. More

importantly, such scalability comes at a negligible cost in

query time. Extensive experiments verify the superiority of

CT-Index on real graphs. This paper also provides treewidth-

based theoretical analysis on distance labeling that may be

of independent interest.
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