
Anchored Densest Subgraph
Yizhou Dai

The University of Auckland

Auckland, New Zealand

ydai992@aucklanduni.ac.nz

Miao Qiao

The University of Auckland

Auckland, New Zealand

miao.qiao@auckland.ac.nz

Lijun Chang

The University of Sydney

Sydney, Australia

Lijun.Chang@sydney.edu.au

ABSTRACT
Given a graph, densest subgraph search reports a single subgraph

that maximizes the density (i.e., average degree). To diversify the

search results without imposing rigid constraints, this paper studies

the problem of anchored densest subgraph search (ADS). Given a

graph, a reference node set 𝑅 and an anchored node set 𝐴 with

𝐴 ⊆ 𝑅, ADS reports a supergraph of 𝐴 that maximizes the 𝑅-
subgraph density – a density that favors nodes that are close to

𝑅 and are not over-popular compared to nodes in 𝑅. These two

levels of localities to 𝑅 bring wide applications, as demonstrated by

our use cases. For ADS, we propose an algorithm that is local since

the complexity is only related to the nodes in 𝑅 as opposed to the

entire graph. Extensive experiments show that our local algorithm

for ADS outperforms the global algorithm by up to three orders of

magnitude in time and space consumption; moreover, our local al-

gorithm outperforms existing local community detection solutions

in locality, result density, and query processing time and space.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Informa-
tion systems→ Clustering.
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1 INTRODUCTION
The interconnections among real-world objects can be modeled as

a graph 𝐺 (𝑉 , 𝐸) where the vertex set 𝑉 represents the objects and

the edge set 𝐸 represents the pairwise connections among objects.

Density, the primary graph descriptor, plays an important role

in the identification of semantically important regions of a given

graph. The density of graph 𝐺 is defined as 𝜌 (𝐺) = |𝐸 ||𝑉 | , the ratio
of the number of edges and the number of nodes

1
. Let 𝑆 be a subset

1
Density can also be defined as

|𝐸 |
|𝑉 | ( |𝑉 |−1) , which will not be discussed in this paper.
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of nodes of 𝐺 . We abuse 𝑆 to denote 𝑆’s induced subgraph whose

vertex set is 𝑆 and edge set 𝐸 (𝑆) ⊆ 𝐸 is the set of all edges with

both end-points in 𝑆 . The subgraph that maximizes the density

DS(𝐺) = arg max

𝑆⊆𝑉 (𝐺 )
𝜌 (𝑆)

is computed (see seminal work [28] and a recent survey [27]) for var-

ious graph analytical tasks such as community detection on social

networks [19], spam link farms identification on web graphs [26],

experts extraction from crowdsourcing systems [30], etc..

Reporting a subgraph with the highest density can be insuf-

ficient for an application that expects multiple possible resulting

subgraphs. A line of research [6, 12, 39, 42, 43, 46] diversifies densest

subgraph search such that given a node (set), the densest subgraph

relevant to the query node(s) can be reported
2
. However, with the

density notion unchanged, algorithms in [24, 39, 46] can only get

one densest subgraph 𝑆 on a graph 𝐺 . They perform flow-based

densest subgraph search on an iteratively shrinking𝐺 to make sure

that all the resulting subgraphs are disjoint. This leads to expensive

computation especially on real-world graphs with millions of nodes

and billions of edges. Rigid overlapping constraints can also lead to

degeneration: the resulting subgraphs in [12, 39, 46] are required

to be either disjoint or nested. When the graph 𝐺 is connected and

regular (namely, all the nodes in 𝐺 are of the same degree), only

one possible subgraph can be reported by [12, 39], regardless of

the query node(s). Softerning the overlapping constraints of the

resulting subgraphs may lead to NP-hard computations [6].

Therefore, given a query node (set), how to define the density of

an arbitrary node set 𝑆 is challenging for the following reasons.

(1) The densest subgraph found under the new density definition

should have wide real-world applications;

(2) The density should reflect to what extent 𝑆 is biased to the

query node (set) while avoiding degeneration;

(3) The computation of the densest subgraph under the new

definition should be efficient even on billion-scale graphs.

To address the first challenge, we make observations on local

community search (see [49] as an entrance) applications.

UC1. Consider a person 𝑥 who plans to organize a social event to

either establish or enhance his professional or personal connections.

He may have a collection 𝑅 of people who can potentially help

establish the connection and a set 𝐴 ⊆ 𝑅 of must-attend people. He

poses a query to a social network by providing node sets 𝐴 and 𝑅

and expects a densely connected community that includes all people

in 𝐴 and preferably people in 𝑅. In finding the densest subgraph

around𝐴 and 𝑅 as a community, it is likely that including a celebrity

𝑦 can increase the density of the resulting subgraph. However, if

2
Reporting the densest subgraph around a query node (set) is an instance of local

community detection; however, we avoid using the phrase “local densest subgraph”

because it carries a different meaning in the literature of densest subgraph search [39].
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𝑦 is too popular to be within the reach of 𝑥 , recommending 𝑦 as a

member of the local community could be unwise.

From the above case we find that nodes with significantly higher
centrality than the query node(s) may boost the density in the densest
subgraph search while recommending them to be in the local commu-
nity can be risky. The use case below carries the same message.

UC2. Consider the co-purchasing network of an e-commerce where

each node is a product and an edge between two nodes denotes the

co-purchasing of the two items
3
. Given a set 𝑅 of the items visited

by a user 𝑥 since the last transaction and a set 𝐴 ⊆ 𝑅 of products

that were added to 𝑥 ’s shopping cart, the system would like to

recommend the items that are most likely to be co-purchased with

𝐴 given the preferred items in 𝑅. Note that a large number of items

may have been co-purchased with popular items such as toilet paper

by past users; however, if most of the items visited by 𝑥 are in special

categories, e.g., comic books of a specific series or skateboard gears,

then it is unwise to let toilet paper supersede unpopular items that

are highly correlated to 𝑅 in the recommendation.

Based on the above use cases, we derive the problem of an-
chored densest subgraph (ADS) search. A user inputs an anchored
node set 𝐴, 𝐴 = ∅ if not specified, and a reference node set 𝑅 such

that i) 𝐴 ⊆ 𝑅, and ii) the induced subgraph of 𝑅 has at least one

edge. Upon receiving a query of 𝐴 and 𝑅, ADS reports the densest
subgraph that combines two-dimensional locality:
Inclusion ADS includes all the nodes in 𝐴 and is biased to 𝑅4;

Centrality ADS considers nodes with centralities comparable to

the nodes in 𝑅; in other words, nodes with significantly

higher centralities are less likely to be included.

For a reference node set 𝑅, to combine the density with the

locality, define the 𝑅-subgraph density of an arbitrary set 𝑆 of nodes

𝜌𝑅 (𝑆) =
2|𝐸 (𝑆) | −∑𝑣∈𝑆 and 𝑣∉𝑅 𝑑 (𝑣)

|𝑆 | .

Here 𝑑 (𝑣) denotes the degree of node 𝑣 in the graph 𝐺 — we use

node degree to reflect the node centrality in this definition. ADS
reports the supergraph of 𝐴 that maximizes the 𝑅-subgraph density

arg max

𝑆 : 𝐴⊆𝑆⊆𝑉
𝜌𝑅 (𝑆) .

𝑅-subgraph density differs from the double of traditional density,

2 |𝐸 (𝑆 ) |
|𝑆 | , with a penalty term

∑
𝑣∈𝑆 and 𝑣∉𝑅 𝑑 (𝑣) in the numerator.

This term penalizes, for each node 𝑣 ∈ 𝑆 in neither 𝐴 nor 𝑅, an

amount proportional to the centrality (degree) of 𝑣 . In other words,

a high degree node not in 𝑅 incurs a high penalty. This way, ADS
softly adjusts the locality of the reported subgraph with 𝑅. Figure 1

shows an example of the ADS of a query with 𝐴 and 𝑅.

Apart from proposing the problem of ADS, this paper provides
a local algorithm for the query processing of ADS. A local algo-

rithm has complexity (both space and time) only related to the input
nodes in 𝑅 as opposed to the node set of the entire graph 𝐺 . Recall

that the flow-based densest subgraph search cannot, so far, break

the quadratic barrier. Bearing this constraint, local computation is

dedicated to bounding the size of the graph on which the network

flow will be conducted. Our local computation guarantee is critical

3
Our definition and solution can be extended to positively weighted undirected graphs

and thus we can set the edge weight to the frequency of the co-purchase.

4
Constraint𝐴 ⊆ 𝑅 makes sense since a subgraph is biased to the nodes that it includes.
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Figure 1: Graph 𝐺 has 9 vertices and 11 edges. The density of 𝐺
is 𝜌 (𝐺 ) = 11

9
. The induced subgraph of 𝑆1−7 = {𝑣1, 𝑣2, · · · , 𝑣7} has

density 𝜌 (𝑆1−7 ) = 9

7
, which is the densest subgraph of𝐺 . Let𝐴 = {𝑣1}

be the anchored node set and 𝑅 = {𝑣1, 𝑣3} the reference node set.
The anchored densest subgraph is ADS(𝐴,𝑅) = {𝑣1, 𝑣2, 𝑣3} with 𝑅-
subgraph density 6−2

3
= 4

3
since the only node in 𝑆 not in 𝑅 is 𝑣2.

to bounding the time and space complexity: for graphs with billions

of edges, as long as the query is local, i.e., the number of edges on

nodes in 𝑅 is small, the computation requires little resource.

Our work provides the first local algorithm for local community

search based on the notion of density. It is worth mentioning that

our work was inspired by the local community search for the notion

of conductance (see [23, 38] as entrance); however, the density-based
problem formulation and local algorithm design are non-trivial,

which can be reflected by the fact that apart from conductance, no

other notion has led to a local algorithm prior to our work.

The contribution of this paper is summarized as follows.

(1) Problem.We propose the problem of anchored densest sub-

graph (ADS) which is rooted in real-world applications. The

definition is a concise and clean augmentation to the densest

subgraph search, which entails soft overlapping constraints

without requiring user-defined real-value parameters. We pro-

vide use cases of ADS and a case study in comparing the results

of ADS with that of other local community search algorithms.

(2) Solution. We provide a local algorithm for computing the

anchored densest subgraph. The algorithm is local because the

complexity of the algorithm is only related to the input set 𝐴

and 𝑅, irrelevant to the size of the entire graph𝐺 . This locality

of the algorithm allows low latency in query processing and is

friendly to concurrent queries on massive graphs.

(3) Experiments. Extensive experiments show our superiority:

the local algorithm outperforms the global algorithm by up

to three orders of magnitudes in both time consumption

and space consumption. Our case study on the real data set of

Amazon shows the effectiveness of our proposed problem and

solution in local community detection.

The paper is organized as follows. Section 2 provides preliminar-

ies and problem definitions. Section 3 proposes a global algorithm

that runs in time polynomial to the size of the input graph 𝐺 . Sec-

tion 4 proposes a local algorithm whose time and space complexity

are both bounded by a polynomial of

∑
𝑣∈𝑅∪𝐴 𝑑 (𝑣). Section 5 dis-

cusses related works. Section 6 demonstrates empirical studies eval-

uating the effectiveness of our proposed problem and the efficiency

of our proposed algorithms. Section 7 concludes the paper.

2 PRELIMINARIES
This section formally defines the problem, including the concepts

that may have been introduced in Section 1. In this paper, we mainly

consider unweighted and undirected graph 𝐺 = (𝑉 , 𝐸) while our
techniques can be extended to positively weighted graphs. 𝑉 is

the set of vertices and 𝐸 is the set of edges. Denote, by 𝑛 and𝑚,

respectively, the number of vertices and the number of the edges in



𝐺 . Denote the edge between 𝑢 and 𝑣 by both (𝑢, 𝑣) and (𝑣,𝑢); then,
𝑢 (resp. 𝑣) is said to be adjacent to and a neighbor of 𝑣 (resp. 𝑢). The

set of neighbors of 𝑢 in 𝐺 is 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}, and the

degree of 𝑢 in 𝐺 is 𝑑𝐺 (𝑢) = |𝑁𝐺 (𝑢) |. Given a vertex subset 𝑆 of 𝐺 ,

denote by 𝜕𝑆 the set of neighbors of vertices in 𝑆 , i.e., 𝜕𝑆 = {𝑣 ∈
𝑉 \ 𝑆 | ∃𝑢 ∈ 𝑆 s.t. (𝑢, 𝑣) ∈ 𝐸}, and by 𝐸 (𝑆) the set of edges whose
both end-points are in 𝑆 , i.e., 𝐸 (𝑆) = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}. Let 𝑆
be the compliment of 𝑆 in 𝑉 , i.e., 𝑆 = 𝑉 \ 𝑆 . Denote by 𝐸 (𝑆, 𝑆) the
set of edges between 𝑆 and 𝑆 , i.e., 𝐸 (𝑆, 𝑆) = 𝐸 ∩ (𝑆 × 𝑆). When the

context is clear, we abbreviate 𝑁𝐺 (𝑢) and 𝑑𝐺 (𝑢) as 𝑁 (𝑢) and 𝑑 (𝑢).
For an arbitrary graph 𝑔, denote by𝑉 (𝑔) and 𝐸 (𝑔), respectively, the
set of vertices and set of edges of 𝑔.

Given a graph 𝐺 = (𝑉 , 𝐸), the anchored densest subgraph prob-

lem finds, for an anchor vertex set 𝐴 ⊆ 𝑉 and a reference vertex

set 𝑅 ⊆ 𝑉 such that 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅, the subgraph 𝑆∗ with
𝐴 ⊆ 𝑆∗ that maximizes the 𝑅-subgraph density 𝜌𝑅 (𝑆∗). Denote by
vol(𝑆) = ∑

𝑢∈𝑆 𝑑𝐺 (𝑢) the aggregated (sum) degree of vertices in 𝑆 .

𝑅-subgraph density is defined below.

Definition 2.1 (𝑅-subgraph Density). Given a graph 𝐺 = (𝑉 , 𝐸)
and a reference vertex set 𝑅 ⊆ 𝑉 , the 𝑅-subgraph density of a

non-empty vertex set 𝑆 ⊆ 𝑉 is

𝜌𝑅 (𝑆) =
2|𝐸 (𝑆) | −∑𝑣∈𝑆\𝑅 𝑑 (𝑣)

|𝑆 | =
2|𝐸 (𝑆) | − vol(𝑆 ∩ 𝑅)

|𝑆 | .

Note that, the definition of 𝑅-subgraph density aims at localizing

the notion of density. If 𝑆 is not local to 𝑅, then 𝜌𝑅 (𝑆) may be

negative. Nevertheless, the maximum 𝑅-subgraph density is always

positive, as it is no smaller than 𝜌𝑅 (𝑅) = 2 |𝐸 (𝑅) |
|𝑅 | > 0. Also, it

is worth pointing out that vertices of 𝑅 are not penalized by the

𝑅-subgraph density.

Thus, given 𝐴 and 𝑅 with 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅, our problem is

to find the subgraph 𝑆∗ with the maximum 𝑅-subgraph density, i.e.,

𝑆∗ = arg max

𝑆 :𝐴⊆𝑆⊆𝑉 ,𝑆≠∅
𝜌𝑅 (𝑆) = arg max

𝑆 :𝐴⊆𝑆⊆𝑉 ,𝑆≠∅

2|𝐸 (𝑆) | − vol(𝑆 ∩ 𝑅)
|𝑆 | .

In the following, we denote by 𝜌∗
𝑅
themaximum𝑅-subgraph density,

i.e.,
𝜌∗𝑅 = max

𝑆 :𝐴⊆𝑆⊆𝑉 ,𝑆≠∅
𝜌𝑅 (𝑆) .

Frequently used notations are summarized in Table 1.

3 A GLOBAL ALGORITHM
This section presents a baseline approach called the global algorithm.

It reports the exact solution to anchored densest subgraph problem

with running time polynomial to the size of the input graph𝐺 . The

global algorithm iteratively probes, using binary search, a value 𝛼

for 𝜌∗
𝑅
: if 𝛼 < 𝜌∗

𝑅
, then we increase our guess value 𝛼 ; otherwise,

we decrease our guess value 𝛼 . The key to the algorithm is to

efficiently check whether 𝛼 < 𝜌∗
𝑅
. In the following, we first present

in Section 3.1 an algorithm for efficiently checking whether 𝛼 < 𝜌∗
𝑅
,

then discuss how to conduct the binary search in Section 3.2, and

finally present the overall global algorithm in Section 3.3.

3.1 Checking Whether 𝛼 < 𝜌∗
𝑅

To efficiently check whether 𝛼 < 𝜌∗
𝑅
, we derive an equivalent

condition of 𝜌𝑅 (𝑆) > 𝛼 for ∀ 𝛼 ∈ R+ and set 𝑆 ⊆ 𝑉 with 𝑆 ≠ ∅.

Table 1: Frequently used notations

Notation Definition
𝑁𝐺 (𝑢 ) the set of neighbors of 𝑢 in𝐺 : 𝑁𝐺 (𝑢 ) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈

𝐸}
𝑑𝐺 (𝑢 ) the degree of 𝑢 in𝐺 : 𝑑𝐺 (𝑢 ) = |𝑁𝐺 (𝑢 ) |
𝑑max (𝑅) the maximum degree among vertices of 𝑅: 𝑑max (𝑅) =

max𝑢∈𝑅 𝑑𝐺 (𝑢 )
𝜕𝑆 the set of neighbors of vertices of 𝑆 : 𝜕𝑆 = {𝑣 ∈ 𝑉 \ 𝑆 | ∃𝑢 ∈

𝑆 s.t. (𝑢, 𝑣) ∈ 𝐸}
𝐸 (𝑆 ) the set of edges with both end-points in 𝑆 : 𝐸 (𝑆 ) = { (𝑢, 𝑣) ∈

𝐸 | 𝑢, 𝑣 ∈ 𝑆 }
𝑆 the complement of 𝑆 in𝑉 : 𝑆 = 𝑉 \ 𝑆

𝐸 (𝑆, 𝑆 ) the set of edges between 𝑆 and 𝑆 : 𝐸 (𝑆, 𝑆 ) = 𝐸 ∩ (𝑆 × 𝑆 )
vol(𝑆 ) the sum of the degrees of vertices of𝑆 : vol(𝑆 ) = ∑

𝑢∈𝑆 𝑑𝐺 (𝑆 )
𝜌𝑅 (𝑆 ) 𝑅-subgraph density of 𝑆 : 𝜌𝑅 (𝑆 ) = 2|𝐸 (𝑆 ) |−vol(𝑆∩�̄�)

|𝑆 |
𝜌∗
𝑅

the maximum 𝑅-subgraph density: max𝑆 :𝐴⊆𝑆⊆𝑉 ,𝑆≠∅ 𝜌𝑅 (𝑆 )
𝐺𝛼 the augmented graph of𝐺 for 𝛼 ∈ R+
({𝑠 } ∪ 𝑆, {𝑡 } ∪ 𝑆 ) the 𝑠–𝑡 cut in 𝐺𝛼 that consists of all edges

between {𝑠 } ∪ 𝑆 and {𝑡 } ∪ 𝑆

Lemma 3.1. For ∀𝛼 ∈ R+ and ∀𝑆 ⊆ 𝑉 with 𝑆 ≠ ∅, it holds that
𝜌𝑅 (𝑆) > 𝛼 ⇐⇒ vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 | < vol(𝑅) .

Similarly, 𝜌𝑅 (𝑆) = 𝛼 ⇐⇒ vol(𝑆∩𝑅)+|𝐸 (𝑆, 𝑆) |+𝛼 |𝑆 | = vol(𝑅) .

Proof. As 𝑆 ≠ ∅ and 2|𝐸 (𝑆) | = vol(𝑆) − |𝐸 (𝑆, 𝑆) |, we have
𝜌𝑅 (𝑆) > 𝛼 ⇐⇒ 2|𝐸 (𝑆) | − vol(𝑆 ∩ 𝑅) > 𝛼 |𝑆 |

⇐⇒ vol(𝑆) − |𝐸 (𝑆, 𝑆) | − vol(𝑆 ∩ 𝑅) > 𝛼 |𝑆 |
⇐⇒ vol(𝑆 ∩ 𝑅) − |𝐸 (𝑆, 𝑆) | > 𝛼 |𝑆 |
⇐⇒ vol(𝑅) − vol(𝑆 ∩ 𝑅) − |𝐸 (𝑆, 𝑆) | > 𝛼 |𝑆 |
⇐⇒ vol(𝑅) > vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 |

The case of equality can be obtained by replacing “>” with “=” in

the above inference. □

Note that, the above lemma holds for any non-empty 𝑆 ⊆ 𝑉 , and
thus it also holds for those 𝑆 that contain the anchor vertex set 𝐴.

According to the definition of 𝜌∗
𝑅
(in Section 2), for any fixed 𝛼 , we

have 𝛼 < 𝜌∗
𝑅
if and only if there exists a non-empty vertex subset

𝑆 ⊆ 𝑉 satisfying 𝐴 ⊆ 𝑆 and 𝛼 < 𝜌𝑅 (𝑆). Thus, from Lemma 3.1 and

the definition of 𝜌∗
𝑅
, we have the following lemma.

Lemma 3.2. For any fixed 𝛼 , 𝛼 < 𝜌∗
𝑅
if and only if there exists a

non-empty set 𝑆 ⊆ 𝑉 satisfying 𝐴 ⊆ 𝑆 and vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | +
𝛼 |𝑆 | < vol(𝑅).

Similarly, it also holds that 𝛼 = 𝜌∗
𝑅
if and only if

(1) there exists a non-empty vertex subset 𝑆 with 𝐴 ⊆ 𝑆 ⊆ 𝑉
satisfying vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 | = vol(𝑅), and

(2) every non-empty vertex subset 𝑆 ′ with 𝐴 ⊆ 𝑆 ′ ⊆ 𝑉 satisfies

vol( ¯𝑆 ′ ∩ 𝑅) + |𝐸 (𝑆 ′, ¯𝑆 ′) | + 𝛼 |𝑆 ′ | ≥ vol(𝑅).
Here, condition (1) is equivalent to 𝜌∗

𝑅
≥ 𝛼 , and condition (2) is

equivalent to 𝜌∗
𝑅
≤ 𝛼 .

For a specific 𝛼 , to efficiently find such an 𝑆 satisfying𝐴 ⊆ 𝑆 and
vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 | < vol(𝑅) (this corresponds to the case

𝛼 < 𝜌∗
𝑅
) or prove that there is no such an 𝑆 (this corresponds to the

case 𝛼 ≥ 𝜌∗
𝑅
), we construct an edge-weighted and undirected graph,



called the augmented graph and denoted as 𝐺𝛼 , by augmenting

𝐺 = (𝑉 , 𝐸) as follows.
• Add a source vertex 𝑠 and a sink vertex 𝑡 to 𝑉 (𝐺𝛼 ), where
𝑠, 𝑡 ∉ 𝑉 , i.e., 𝑉 (𝐺𝛼 ) = 𝑉 ∪ {𝑠, 𝑡}.
• Each edge of 𝐸 bears a weight of 1.

• Add an edge between the source vertex 𝑠 and each vertex

𝑢 ∈ 𝐴 with weight +∞.
• Add an edge between the source vertex 𝑠 and each vertex

𝑢 ∈ 𝑅 \𝐴 with weight 𝑑𝐺 (𝑢).
• Add an edge between each vertex 𝑣 ∈ 𝑉 and the sink vertex

𝑡 with weight 𝛼 .

An example 𝐺𝛼 is shown in Figure 2, where 𝐴 = {𝑣1} and 𝑅 =

{𝑣1, 𝑣3}. There are two things worth emphasizing for the augmented

graph. Firstly, 𝑠 is connected only to vertices of 𝑅. Secondly, the

edges between 𝑠 and vertices of 𝐴 all have infinity weight, e.g., see
the edge between 𝑠 and 𝑣1 in Figure 2.

𝑣3

𝑣1

𝑣4

𝑣2 =⇒

𝑣1

𝑣2

𝑣3

𝑣4

1

1
1

1

𝑠

∞

𝑑 (𝑣3)
𝑡

𝛼

𝛼

cut

Toy graph 𝐺
𝐴 = {𝑣1}, 𝑅 = {𝑣1, 𝑣3} Augmented Graph 𝐺𝛼

𝑆

𝑆

𝛼

𝛼

Figure 2: Augmented graph 𝐺𝛼 (vertices of 𝑅 are shadowed)

The main benefit of constructing 𝐺𝛼 is that it bridges the 𝑅-

subgraph density of a vertex subset in 𝐺 to the value of an 𝑠–𝑡 cut

in𝐺𝛼 . For any 𝑆 ⊆ 𝑉 , we let ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) denote the 𝑠–𝑡 cut in
𝐺𝛼 that consists of all the cross edges between vertices of {𝑠} ∪ 𝑆
and vertices of {𝑡} ∪ 𝑆 ; recall that 𝐺𝛼 is undirected, and thus a cut

consists of undirected edges. We denote the total weight of all edges

in ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) by cut({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆); this is also known as

the value of the cut ({𝑠} ∪𝑆, {𝑡} ∪𝑆). We have the following lemma

regarding the value of an 𝑠–𝑡 cut in 𝐺𝛼 .

Lemma 3.3. For any vertex subset 𝑆 ⊆ 𝑉 that contains the anchor
vertex set 𝐴, the value of the cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) in 𝐺𝛼 is equal to
vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 |.

Proof. The edges of cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) can be divided into

three parts, as demonstrated in Figure 2: (1) the edges between 𝑠

and 𝑆 whose total weight is vol(𝑆 ∩𝑅) as there is no edge between 𝑠
and 𝑅, (2) the edges between 𝑆 and 𝑆 whose total weight is |𝐸 (𝑆, 𝑆) |,
and (3) the edges between 𝑆 and 𝑡 whose total weight is 𝛼 |𝑆 |. Note
that, there is no edge between 𝑠 and 𝑡 . □

Example 3.4. The five green edges in 𝐺𝛼 in Figure 2 are the

edges in the cut ({𝑠, 𝑣1, 𝑣2}, {𝑡, 𝑣3, 𝑣4}), and the value of the cut is

𝑑 (𝑣3) + 2 + 2𝛼 = vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 | where 𝑆 = {𝑣1, 𝑣2}.

Combining Lemma 3.2 and Lemma 3.3, we have that 𝛼 < 𝜌∗
𝑅
if

and only if there exists a non-empty vertex subset 𝑆 ⊆ 𝑉 satisfying

𝐴 ⊆ 𝑆 and the value of the cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) in the augmented

graph 𝐺𝛼 is less than vol(𝑅). Moreover, the way that the edge

weights are assigned in𝐺𝛼 makes it trivial to enforce the condition

𝐴 ⊆ 𝑆 via minimum 𝑠–𝑡 cut — the 𝑠–𝑡 cut with the lowest total

weight. That is, for any minimum 𝑠–𝑡 cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆), we
have 𝐴 ⊆ 𝑆 ; this is because all edges between 𝑠 and 𝐴 have infinity

weight. Combining Lemmas 3.2 and 3.3, we have the following

lemma that compares 𝛼 with 𝜌∗
𝑅
via the minimum 𝑠–𝑡 cut in 𝐺𝛼 .

Lemma 3.5. 𝛼 < 𝜌∗
𝑅
if and only if the minimum 𝑠–𝑡 cut value of

the augmented graph 𝐺𝛼 is strictly smaller than vol(𝑅).

As we will only utilize minimum 𝑠–𝑡 cut of 𝐺𝛼 , in the following

discussions, we will not explicitly mention the fact that 𝐴 ⊆ 𝑆

constantly holds on the minimum cut.
Lemma 3.5 only utilizes the value of the minimum 𝑠–𝑡 cut of𝐺𝛼 .

We can also characterize the actual minimum 𝑠–𝑡 cut of 𝐺𝛼 for the

special case 𝛼 = 𝜌∗
𝑅
by the lemma below.

Lemma 3.6. For 𝛼 = 𝜌∗
𝑅
, 𝐺𝛼 has at least one minimum 𝑠–𝑡 cut

({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) with 𝑆 ≠ ∅, and moreover, for every such minimum
𝑠–𝑡 cut ({𝑠}∪𝑆, {𝑡}∪𝑆) with 𝑆 ≠ ∅, 𝑆 is an anchored densest subgraph
(i.e., 𝜌𝑅 (𝑆) = 𝜌∗𝑅).

Proof. From the above discussions, we know that there must

exist a non-empty vertex subset 𝑆 ⊆ 𝑉 satisfying vol(𝑆∩𝑅)+cut(𝑆)+
𝛼 |𝑆 | = vol(𝑅); that is, the value of the 𝑠–𝑡 cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) is
vol(𝑅). Lemma 3.5 implies that the minimum 𝑠–𝑡 cut of 𝐺𝛼 is of

value at least vol(𝑅) as 𝛼 = 𝜌∗
𝑅
. Thus,𝐺𝛼 has at least one minimum

𝑠–𝑡 cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) with 𝑆 ≠ ∅. Next, let’s consider any
minimum 𝑠–𝑡 cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) with 𝑆 ≠ ∅. The value of the
cut must be vol(𝑅). Thus, vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 | = vol(𝑅)
by following Lemma 3.3, and then, 𝜌𝑅 (𝑆) = 𝛼 = 𝜌∗

𝑅
by following

Lemma 3.1. □

3.2 Binary Search
Following Section 3.1, we conduct a binary search on 𝜌∗

𝑅
to first find

the anchored densest subgraph 𝑆∗, and then obtain the exact value

of 𝜌∗
𝑅
; note that, the binary search itself will not directly compute

the exact value of 𝜌∗
𝑅
, as float numbers cannot be represented exactly

in a computer. There are three more questions to be answered in

this subsection: what is the initial range of the binary search, when

to stop the binary search, and for what values of 𝛼 that are not

exactly 𝜌∗
𝑅
we are able to find the anchored densest subgraph?

Recall that, we assumed 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅. We first prove

that the maximum 𝑅-subgraph density 𝜌∗
𝑅
is in the range between

2

min{ |𝐴 |+2, |𝑅 | } and 𝑑max (𝑅), where 𝑑max (𝑅) denotes the maximum

degree among vertices of 𝑅 (i.e., 𝑑max (𝑅) = max𝑢∈𝑅 𝑑𝐺 (𝑢)).

Lemma 3.7.
2

min{ |𝐴 |+2, |𝑅 | } ≤ 𝜌
∗
𝑅
≤ 𝑑max (𝑅).

Proof. Firstly, for any two vertices 𝑢, 𝑣 ∈ 𝑅 that are connected

by an edge, we have 𝜌𝑅 (𝐴∪{𝑢, 𝑣}) ≥ 2

min{ |𝐴 |+2, |𝑅 | } . Consequently,

𝜌∗
𝑅
= max𝑆 :𝐴⊆𝑆⊆𝑉 ,𝑆≠∅ 𝜌𝑅 (𝑆) ≥ 𝜌𝑅 (𝐴 ∪ {𝑢, 𝑣}) ≥ 2

min{ |𝐴 |+2, |𝑅 | } .

Secondly, from the proof of Lemma 3.1, we have that for any

non-empty vertex subset 𝑆 ⊆ 𝑉 ,

𝜌𝑅 (𝑆) = 2 |𝐸 (𝑆 ) |−vol(𝑆∩𝑅)
|𝑆 | =

vol(𝑆∩𝑅)− |𝐸 (𝑆,𝑆 ) |
|𝑆 |

≤ vol(𝑆∩𝑅)
|𝑆 | ≤ |𝑆∩𝑅 | ·𝑑max (𝑅)

|𝑆 | ≤ 𝑑max (𝑅)

Thus, 𝜌∗
𝑅
≤ 𝑑max (𝑅). □



Next, we prove that the gap between any two distinct𝑅-subgraph

densities is at least
1

𝑛 (𝑛−1) .

Lemma 3.8. For any two non-empty vertex subsets 𝑆 and 𝑆 ′ that
have different 𝑅-subgraph densities (i.e., 𝜌𝑅 (𝑆) ≠ 𝜌𝑅 (𝑆 ′)), it holds
that |𝜌𝑅 (𝑆) − 𝜌𝑅 (𝑆 ′) | ≥ 1

𝑛 (𝑛−1) .

Proof. From the definition of 𝑅-subgraph density, we have

|𝜌𝑅 (𝑆) − 𝜌𝑅 (𝑆 ′) | =
��� 2 |𝐸 (𝑆 ) |−vol(𝑆∩𝑅)

|𝑆 | − 2 |𝐸 (𝑆 ′ ) |−vol(𝑆 ′∩𝑅)
|𝑆 ′ |

���
=
| |𝑆 ′ | (2 |𝐸 (𝑆 ) |−vol(𝑆∩𝑅) )− |𝑆 | (2 |𝐸 (𝑆 ′ ) |−vol(𝑆 ′∩𝑅) ) |

|𝑆 | · |𝑆 ′ | ≥ 1

𝑛 (𝑛−1)
The last inequality follows from the facts that | |𝑆 ′ | (2|𝐸 (𝑆) |−vol(𝑆∩
𝑅)) − |𝑆 | (2|𝐸 (𝑆 ′) | − vol(𝑆 ′ ∩ 𝑅)) | ≥ 1 and |𝑆 | · |𝑆 ′ | ≤ 𝑛(𝑛 − 1). □

Thus, we can terminate the binary search once the range is

smaller than
1

𝑛 (𝑛−1) . Moreover, we have the following corollary.

Corollary 3.9. For any 𝛼 ∈ [𝜌∗
𝑅
− 1

𝑛 (𝑛−1) , 𝜌
∗
𝑅
), any minimum

𝑠–𝑡 cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) of 𝐺𝛼 corresponds to an anchored densest
subgraph, i.e., 𝑆 is an anchored densest subgraph.

Proof. Firstly, from Lemma 3.5 we know that as 𝛼 < 𝜌∗
𝑅
, the

cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) is of value strictly smaller than vol(𝑅) and is

thus not trivial (i.e., 𝐴 ⊆ 𝑆 and 𝑆 ≠ ∅). Secondly, from Lemma 3.3

we know that vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 | < vol(𝑅). Thirdly, from
Lemma 3.1 we know that 𝜌𝑅 (𝑆) > 𝛼 . Lastly, as 𝛼 ≥ 𝜌∗

𝑅
− 1

𝑛 (𝑛−1) ,
we know from Lemma 3.8 that 𝜌𝑅 (𝑆) must be exactly 𝜌∗

𝑅
and thus

𝑆 is an anchored densest subgraph. □

3.3 Putting All Together
Based on the ideas in Sections 3.1 and 3.2, our global algorithm

for the anchored densest subgraph search problem is shown in

Algorithm 1. We first initialize the lower bound 𝑙𝑏 and the upper

bound𝑢𝑏 of 𝜌∗
𝑅
as 0 and 𝑑max (𝑅) (Line 2), respectively, by following

Lemma 3.7; note that, althoughwe proved in Lemma 3.7 that 𝜌∗
𝑅
> 0,

we set 𝑙𝑏 = 0 for the sake of easily handling degenerate cases.

Then, we conduct binary search to narrow down the range [𝑙𝑏,𝑢𝑏].
Specifically, let 𝛼 = 𝑙𝑏+𝑢𝑏

2
be the middle point of [𝑙𝑏,𝑢𝑏] (Line 4).

We check whether 𝛼 < 𝜌∗
𝑅
or not. To do that, we construct the

augmented graph 𝐺𝛼 (Line 5), and compute a minimum 𝑠–𝑡 cut for

𝐺𝛼 (Line 6). If the minimum cut value is at least vol(𝑅), then we

know from Lemma 3.5 that 𝛼 ≥ 𝜌∗
𝑅
and we thus narrow down the

range to [𝑙𝑏, 𝛼] (Line 7). Otherwise, 𝛼 < 𝜌∗
𝑅
and we narrow down

the range to [𝛼,𝑢𝑏] (Line 8). The last non-trivial cut 𝑆 is returned
as the anchored densest subgraph (Line 9).

It is easy to verify by induction that Algorithm 1 maintains the

invariant that 𝑙𝑏 < 𝜌∗
𝑅
≤ 𝑢𝑏. As the algorithm terminates only

when 𝑢𝑏 − 𝑙𝑏 ≤ 1

𝑛 (𝑛−1) (Line 3), the following holds when the

algorithm terminates:

𝑙𝑏 ≥ 𝑢𝑏 − 1

𝑛 (𝑛−1) ≥ 𝜌
∗
𝑅
− 1

𝑛 (𝑛−1) > 0

From the above inequalities we conclude two things: (1) 𝑙𝑏 has

changed from its initialization which is 0, and (2) the last change of

𝑙𝑏 is by 𝛼 ∈ [𝜌∗
𝑅
− 1

𝑛 (𝑛−1) , 𝜌
∗
𝑅
). Thus, following Corollary 3.9, the

last non-trivial cut is the anchored densest subgraph.

Algorithm 1 generates O(log𝑛) instances of minimum 𝑠–𝑡 cut

computation (Line 6). Thus, its time complexity is O(log𝑛) times

Algorithm 1: Global(𝐺,𝐴, 𝑅)
Input: A graph𝐺 = (𝑉 , 𝐸 ) , an anchor vertex set 𝐴 ⊆ 𝑉 and a

reference vertex set 𝑅 ⊆ 𝑉 satisfying 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅
Output: An anchored densest subgraph 𝑆∗

1 𝑆∗ ← ∅;
2 𝑙𝑏 ← 0; 𝑢𝑏 ← 𝑑max (𝑅) ;
3 while 𝑢𝑏 − 𝑙𝑏 > 1

𝑛 (𝑛−1) do
4 𝛼 ← 𝑙𝑏+𝑢𝑏

2
;

5 𝐺𝛼 ← construct augmented graph;

6 Compute a minimum 𝑠–𝑡 cut of𝐺𝛼 , and denote it by(
{𝑠 } ∪ 𝑆, {𝑡 } ∪ 𝑆

)
;

7 if cut({𝑠 } ∪ 𝑆, {𝑡 } ∪ 𝑆 ) ≥ vol(𝑅) then 𝑢𝑏 ← 𝛼 ;

8 else 𝑙𝑏 ← 𝛼 ; 𝑆∗ ← 𝑆 ;

9 return 𝑆∗;

the best time complexity of minimum 𝑠–𝑡 cut computation algo-

rithms; note that, any minimum 𝑠–𝑡 cut computation algorithm

can be invoked here. By leveraging the push-relabel technique [25]

which does not need to conduct binary search, the time complexity

of Algorithm 1 is O(𝑛𝑚 log
𝑛2

𝑚 ).

4 A LOCAL ALGORITHM
Although the global algorithm proposed in Algorithm 1 runs in

polynomial time, it is not scalable for massive graphs. This section

proposes a local algorithm for exact anchored densest subgraph

computation. Its running time is bounded by a polynomial of vol(𝑅)
and is independent of the size of the graph𝐺 .We first propose a local

algorithm to compute a minimum 𝑠–𝑡 cut in𝐺𝛼 in time polynomial

to vol(𝑅) in Section 4.1, and then bound the number of minimum

𝑠–𝑡 cut instances by logarithm of vol(𝑅) in Section 4.2.

4.1 Locally Computing Minimum 𝑠–𝑡 Cut in 𝐺𝛼

In this subsection, we adopt maximum flow computation algorithms

for computing the minimum 𝑠–𝑡 cut; different from Algorithm 1,

we look into the maximum flow algorithms such that we can design

a strategy to compute the maximum flow from 𝑠 to 𝑡 locally around

𝑅 without visiting (as well as constructing) the entire augmented

graph 𝐺𝛼 . That is, we aim to compute a maximum flow from 𝑠 to 𝑡

in 𝐺𝛼 in time independent of the size of 𝐺𝛼 .

We first review the concepts of flow and residual graph. For max-

imum flow computation, we will consider the augmented graph𝐺𝛼

as a directed graph; specifically, each undirected edge is represented

as two directed edges, one in each direction. A directed edge from

𝑢 to 𝑣 is denoted by ⟨𝑢, 𝑣⟩, and is different from the directed edge

⟨𝑣,𝑢⟩ from 𝑣 to 𝑢. Each edge 𝑒 ∈ 𝐸 (𝐺𝛼 ) has a capacity, denoted

𝑐 (𝑒), which is equal to its weight as defined in Section 3.1.

Definition 4.1 (Flow). An 𝑠–𝑡 flow of 𝐺𝛼 is a mapping 𝑓 from

each edge 𝑒 ∈ 𝐸 (𝐺𝛼 ) to a real value 𝑓 (𝑒) ∈ R that satisfies the

following three properties:

Capacity: 𝑓 (𝑒) ≤ 𝑐 (𝑒) for each edge 𝑒 ∈ 𝐸 (𝐺𝛼 );
Antisymmetry: 𝑓 (⟨𝑢, 𝑣⟩) = −𝑓 (⟨𝑣,𝑢⟩) for ∀⟨𝑢, 𝑣⟩ ∈ 𝐸 (𝐺𝛼 );
Conservation:

∑
𝑒∈𝐸 (𝐺𝛼 ) into 𝑢 𝑓 (𝑒) =

∑
𝑒∈𝐸 (𝐺𝛼 ) out 𝑢 𝑓 (𝑒) = 0

for each vertex 𝑢 ∈ 𝑉 (𝐺𝛼 ) \ {𝑠, 𝑡}.
The value of the flow 𝑓 is defined as

𝑣𝑎𝑙 (𝑓 ) = ∑
𝑒∈𝐸 (𝐺𝛼 ) out 𝑠 𝑓 (𝑒) =

∑
𝑒∈𝐸 (𝐺𝛼 ) into 𝑡 𝑓 (𝑒)



A maximum 𝑠–𝑡 flow of 𝐺𝛼 is the 𝑠–𝑡 flow 𝑓 that maximizes

𝑣𝑎𝑙 (𝑓 ). The famous max-flow min-cut theorem states that the value

of a minimum 𝑠–𝑡 cut is equal to the value of a maximum 𝑠–𝑡

flow [16]. Moreover, a minimum 𝑠–𝑡 cut can be obtained from a

maximum 𝑠–𝑡 flow [16], based on the concept of residual graph. In

the following, for simplicity, we will refer to an 𝑠–𝑡 flow as a flow.

Definition 4.2 (Residual Graph). Given any flow 𝑓 of 𝐺𝛼 , the

residual graph, denoted by 𝐺𝛼 ⊕ 𝑓 , has the same set of vertices

and edges as 𝐺𝛼 . The capacity of an edge 𝑒 in 𝐺𝛼 ⊕ 𝑓 is denoted
as 𝑐 𝑓 (𝑒) and is defined as 𝑐 (𝑒) − 𝑓 (𝑒). An edge is called saturated
if 𝑐 𝑓 (𝑒) = 0 or equivalently 𝑓 (𝑒) = 𝑐 (𝑒). A flow 𝑓 is maximum if

and only if there is no path from 𝑠 to 𝑡 in 𝐺𝛼 ⊕ 𝑓 by visiting only

non-saturated edges.

Our main idea is to utilize the fact that 𝑠 is adjacent to only

vertices of 𝑅 in 𝐺𝛼 as shown in Figure 2. Thus, it is expected that

the maximum flow only visits vertices around 𝑅 in 𝐺𝛼 . Obviously,

it is not affordable to materialize the entire graph 𝐺𝛼 , as otherwise

the running time would depend on the size of 𝐺𝛼 and thus also

the size of𝐺 . Motivated by this, we propose to compute maximum

flows from 𝑠 to 𝑡 in a series of iteratively growing subgraphs of

𝐺𝛼 . For any vertex subset 𝑆 ⊂ 𝑉 , recall that 𝜕𝑆 denotes the set of
neighbors of 𝑆 that are not in 𝑆 , i.e., 𝜕𝑆 = (∪𝑢∈𝑆𝑁𝐺 (𝑢)) \ 𝑆 . Then,
for any vertex subset 𝐵 ⊆ 𝑉 \ 𝑅, we extract a subgraph of 𝐺𝛼 for

vertices {𝑠, 𝑡} ∪ (𝑅 ∪ 𝐵) ∪ 𝜕(𝑅 ∪ 𝐵), and denote the subgraph as

𝑔𝛼,𝐵 . Specifically, 𝑔𝛼,𝐵 consists of

• vertices {𝑠, 𝑡} ∪ 𝑅 ∪ 𝐵 ∪ 𝜕(𝑅 ∪ 𝐵),
• all adjacent edges of 𝑅 ∪ 𝐵 in 𝐺𝛼 ,

• all edges between 𝜕(𝑅 ∪ 𝐵) and 𝑡 ,
A schematic example of 𝑔𝛼,𝐵 is shown in Figure 3, where the entire

graph is 𝐺𝛼 . Note that

• 𝑠 is adjacent only to vertices of 𝑅,

• there is no edge between {𝑠}∪𝑅∪𝐵 and𝑉 \ (𝑅∪𝐵∪𝜕(𝑅∪𝐵)),
• edges between vertices of 𝜕(𝑅 ∪ 𝐵) are not included in 𝑔𝛼,𝐵 .

s t

gα,BR

V \ (R ∪ B ∪ ∂(R ∪ B))

∂(R ∪ B)

B

Figure 3: Illustration of 𝑔𝛼,𝐵 in 𝐺𝛼

The main result is that if none of the edges from 𝜕(𝑅 ∪ 𝐵) to 𝑡 is
saturated in a maximum flow 𝑓 from 𝑠 to 𝑡 in 𝑔𝛼,𝐵 , then this flow 𝑓

is also a maximum flow in 𝐺𝛼 . Note that, here we assume 𝑓 (𝑒) = 0

for all 𝑒 ∈ 𝐸 (𝐺𝛼 ) \ 𝐸 (𝑔𝛼,𝐵), as they are not defined in 𝑔𝛼,𝐵 .

Lemma 4.3. If none of the edges from 𝜕(𝑅 ∪ 𝐵) to 𝑡 is saturated
in a maximum flow 𝑓 from 𝑠 to 𝑡 in 𝑔𝛼,𝐵 , then this flow 𝑓 is also a
maximum flow in 𝐺𝛼 .

Proof. This can be seen by contradiction. Suppose 𝑓 is not a

maximum flow in𝐺𝛼 . As 𝑓 is a flow in𝐺𝛼 but not maximum, there

must be a simple path 𝑃 from 𝑠 to 𝑡 consisting of only non-saturated

edges in the residual graph𝐺𝛼 ⊕ 𝑓 . Furthermore, the path 𝑃 must

have a vertex not in 𝑅∪𝐵∪ {𝑠, 𝑡}, as otherwise 𝑓 is not a maximum

flow in 𝑔𝛼,𝐵 . Let 𝑢 be the first vertex of 𝑃 that is not in 𝑅∪𝐵∪ {𝑠, 𝑡}.
Then,𝑢 must be in 𝜕(𝑅∪𝐵), as there is no edge between {𝑠}∪𝑅∪𝐵
and𝑉 \ (𝑅 ∪ 𝐵 ∪ 𝜕(𝑅 ∪ 𝐵)). As the edge from 𝑢 to 𝑡 is not saturated

in 𝑔𝛼,𝐵 ⊕ 𝑓 (by the assumption of the lemma), there must also exist

a path consisting of only non-saturated edges in the residual graph

𝑔𝛼,𝐵 ⊕ 𝑓 ; this contradicts that 𝑓 is a maximum flow in 𝑔𝛼,𝐵 . □

Based on the above ideas, we iteratively grow 𝐵 to find the appro-

priate𝑔𝛼,𝐵 , until the condition in Lemma 4.3 is satisfied. Specifically,

initially 𝐵 is ∅, and the flow 𝑓 is 0 for all edges. Then, we iteratively

do the following

(1) Compute a maximum flow
ˆ𝑓 in the residual graph 𝑔𝛼,𝐵 ⊕ 𝑓 .

(2) If there is no flow from 𝑠 to 𝑡 in 𝑔𝛼,𝐵 ⊕ 𝑓 , then we stop.

(3) Otherwise, we add
ˆ𝑓 to 𝑓 , and let 𝐵 be the set of vertices

of 𝑅 whose edges to 𝑡 are saturated in 𝑔𝛼,𝐵 ⊕ 𝑓 . Then, we
continue for the next iteration.

Note that, we always compute maximum flow in residual graphs

𝑔𝛼,𝐵⊕𝑓 . Thus, once the edge from a vertex𝑢 ∈ 𝑅 to 𝑡 is saturated in a

round of maximum flow computation, it will remain saturated in all

following rounds of maximum flow computations; here, we assume

that we never push flows along the edges going out of 𝑡 , which is

the case for all maximum flow algorithms. Thus, let 𝐵𝑖 be the value

of 𝐵 after the 𝑖-th iteration, then we have ∅ = 𝐵0 ⊂ 𝐵1 ⊂ 𝐵2 ⊂ · · · ,
except that the last two values of 𝐵 may be the same.

Figure 4: An example graph for our local algorithm

Example 4.4. Consider the graph in Figure 4 with 𝐴 = ∅, 𝑅 =

{𝑣1, 𝑣2} and 𝛼 = 2. For the first iteration, 𝐵0 = ∅, 𝜕(𝑅 ∪ 𝐵0) =
{𝑣3, 𝑣4, 𝑣5}, the value of the maximum flow is 8 and all the three

edges between 𝜕(𝑅 ∪ 𝐵0) and 𝑡 are saturated. Thus, we update

𝐵1 = {𝑣3, 𝑣4, 𝑣5}. In the second iteration, 𝜕(𝑅 ∪ 𝐵1) = {𝑣6}, the
value of the maximum flow remains 8 and the edge between 𝑣6 and

𝑡 is not saturated. Thus, 𝐵2 = 𝐵1 and the algorithm terminates.

Theoretical Analysis. Let 𝐵∗ be the value of 𝐵 when the algorithm

terminates. Then, the size of each of the subgraphs 𝑔𝛼,𝐵0
, 𝑔𝛼,𝐵1

, . . .

is bounded by the size of 𝑔𝛼,𝐵∗ . We first bound |𝐵∗ |.

Lemma 4.5. |𝐵∗ | ≤ vol(𝑅)
𝛼 + |𝑅 |.

Proof. Let 𝑓 ∗ be the maximum flow when the algorithm termi-

nates. Firstly, for each edge from 𝐵∗ to 𝑡 , its capacity is 𝛼 and it is

saturated in 𝑓 ∗ according to the algorithm; thus, 𝑣𝑎𝑙 (𝑓 ∗) ≥ 𝛼 |𝐵∗ |.
Secondly, the value of the trivial cut ({𝑠} ∪ 𝑅, {𝑡} ∪ 𝑅) is at most

vol(𝑅) + 𝛼 |𝑅 |; thus, 𝑣𝑎𝑙 (𝑓 ∗) ≤ vol(𝑅) + 𝛼 |𝑅 | according to the max-

flow min-cut theorem. Therefore, 𝛼 |𝐵∗ | ≤ 𝑣𝑎𝑙 (𝑓 ∗) ≤ vol(𝑅) + 𝛼 |𝑅 |
and the lemma follows. □

We will show later that 𝛼 is no less than the lower bound of 𝜌∗
𝑅

during the execution of our algorithm. Recall that we proved in

Lemma 3.7 that 𝜌∗
𝑅
is at least

2

min{ |𝐴 |+2, |𝑅 | } which equals 1 when



𝐴 = ∅. It is also intuitive that the result for a query is not quite

useful if 𝜌∗
𝑅
is too small, e.g., smaller than 1. Thus, for the sake of

presentation simplicity, we assume 𝜌∗
𝑅
≥ 1 and thus 𝛼 ≥ 1 for our

theoretical analysis; note that, the locality property of our algorithm

still holds, but with a different polynomial degree, if 𝜌∗
𝑅
< 1. Thus,

|𝐵∗ | ≤ vol(𝑅) + |𝑅 |. To bound the number of edges in 𝑔𝛼,𝐵∗ , we

further need the following lemma.

Lemma 4.6. For any vertex 𝑢 that is in an anchored densest sub-
graph, it must satisfy 𝑑𝐺 (𝑢) < vol(𝑅).

Proof. Let 𝑢 be any vertex in an anchored densest subgraph

𝑆 . From Section 3.1, we know that ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) must be a

minimum 𝑠–𝑡 cut of𝐺𝛼 for 𝛼 = 𝜌∗
𝑅
≥ 1, and moreover, the value of

the cut ({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) is vol(𝑅). Thus, we have
vol(𝑅) = vol(𝑆 ∩ 𝑅) + |𝐸 (𝑆, 𝑆) | + 𝛼 |𝑆 |
≥|𝐸 (𝑆, 𝑆) | + |𝑆 | ⊲ as vol(𝑆 ∩ 𝑅) ≥ 0 and 𝛼 ≥ 1

≥|𝐸 (𝑢, 𝑆) | + |𝑆 | = 𝑑𝐺 (𝑢) − |𝐸 (𝑢, 𝑆) | + |𝑆 | ≥ 𝑑𝐺 (𝑢) + 1

Consequently, 𝑑𝐺 (𝑢) + 1 ≤ vol(𝑅). □

Following Lemma 4.6, in each 𝑔𝛼,𝐵 we can contract all vertices

— whose degrees in 𝐺 are at least vol(𝑅) — with the sink vertex 𝑡

into a single (super) sink vertex, without affecting the minimum

cut computation. Thus, we can assume that all vertices in 𝐺 have

degree smaller than vol(𝑅). Thus, the number of vertices in 𝑔𝛼,𝐵∗ is

|𝑉 (𝑔𝛼,𝐵∗ ) | = 2 + |𝑅 | + |𝐵∗ | + |𝜕(𝑅 ∪ 𝐵∗) |

≤ 2 + |𝑅 | + |𝐵∗ | + vol(𝑅) +
∑︁
𝑢∈𝐵∗

𝑑𝐺 (𝑢) ≤ 2 + 2vol(𝑅) + 2vol
2 (𝑅) .

The last inequality follows from the facts that (1) |𝑅 | ≤ vol(𝑅), and
(2) |𝐵∗ | +∑𝑢∈𝐵∗ 𝑑𝐺 (𝑢) ≤ |𝐵∗ |vol(𝑅) ≤ 2vol

2 (𝑅); we assume there

is no isolated vertex in 𝐺 , as they can be simply removed from 𝐺 .

Similarly, the number of edges of 𝑔𝛼,𝐵∗ is

|𝐸 (𝑔𝛼,𝐵∗ ) | = 2

(
|𝐸 (𝑅) | + |𝐸 (𝑅, {𝑠, 𝑡} ∪ 𝐵∗ ∪ 𝜕(𝑅 ∪ 𝐵∗)) | + |𝐸 (𝐵∗) |+
|𝐸 (𝐵∗, {𝑡} ∪ 𝜕(𝑅 ∪ 𝐵∗)) | + |𝐸 (𝜕(𝑅 ∪ 𝐵∗), {𝑡}) |

)
≤ 2

(
2|𝑅 | + vol(𝑅) + |𝐵∗ | +∑𝑢∈𝐵∗ 𝑑𝐺 (𝑢) + |𝜕(𝑅 ∪ 𝐵∗) |

)
≤ 2

(
4vol(𝑅) + 4vol

2 (𝑅)
)
.

The above discussions derive Lemma 4.7, bounding the size of 𝑔𝛼,𝐵∗ .

Lemma 4.7. The number of vertices in 𝑔𝛼,𝐵∗ is O(vol
2 (𝑅)), and

the number of edges in 𝑔𝛼,𝐵∗ is O(vol
2 (𝑅)).

Thus, in each iteration (i.e., for a specific 𝐵), computing a maxi-

mum flow
ˆ𝑓 in the residual graph 𝑔𝛼,𝐵 ⊕ 𝑓 takes time polynomial to

vol(𝑅). Furthermore, as the cardinality of 𝐵 strictly increases after

each iteration, the number of iterations is at most |𝐵∗ | ≤ vol(𝑅)+|𝑅 |.
Consequently, we have the following theorem regarding the time

complexity of computing a maximum flow in 𝐺𝛼 .

Theorem 4.8. The total time complexity of computing amaximum
flow in𝐺𝛼 is bounded by a polynomial of vol(𝑅), and is independent
of the size of 𝐺 .

Proof. This directly follows from the above discussions that

bound the number of vertices and the number of edges in 𝑔𝛼,𝐵∗ . □

Note that, our analysis here is loose, as our main purpose is to

show that the time complexity is independent of the size of 𝐺 .

Algorithm 2: Local(𝐺,𝐴, 𝑅)
Input: A graph𝐺 = (𝑉 , 𝐸 ) , an anchor vertex set 𝐴 ⊆ 𝑉 and a

reference vertex set 𝑅 ⊆ 𝑉 satisfying 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅
Output: An anchored densest subgraph 𝑆∗

1 𝑆∗ ← {any two adjacent vertices of 𝑅};
2 𝑙𝑏 ← 0; 𝑢𝑏 ← 𝑑max (𝑅) ;
3 while 𝑢𝑏 − 𝑙𝑏 ≥ 1

(3vol(𝑅) )2 do
4 𝛼 ← max{ 𝑙𝑏+𝑢𝑏

2
, 1};

5 Compute a minimum 𝑠–𝑡 cut of𝐺𝛼 using the local algorithm

described in Section 4.1, and denote it by

(
{𝑠 } ∪ 𝑆, {𝑡 } ∪ 𝑆

)
;

6 if cut({𝑠 } ∪ 𝑆, {𝑡 } ∪ 𝑆 ) ≥ vol(𝑅) then 𝑢𝑏 ← 𝛼 ;

7 else 𝑙𝑏 ← 𝛼 ; 𝑆∗ ← 𝑆 ;

8 return 𝑆∗;

4.2 Bounding the Binary Search
Section 4.1 demonstrates that we can compute a minimum 𝑠–𝑡

cut of 𝐺𝛼 locally around 𝑅 without visiting the entire graph 𝐺𝛼 .

Nevertheless, Lemma 3.8 suggests that the number of graphs 𝐺𝛼

that we need to work on still depends on 𝑛 (i.e., O(log𝑛)). In this

subsection, we prove that we can also bound the number of graphs

𝐺𝛼 by logarithm of vol(𝑅).
The main idea is that we are not interested in all of the vertex

subsets as proved in Lemma 3.8, instead we are only interested in

the vertex subsets 𝑆 that are obtained from the minimum 𝑠–𝑡 cut

({𝑠} ∪ 𝑆, {𝑡} ∪ 𝑆) of 𝐺𝛼 for 𝛼 ∈ [1, 𝑑max (𝑅)]. Thus, we prove the
following lemma.

Lemma 4.9. For any two non-empty vertex subsets 𝑆 and 𝑆 ′ that
have different 𝑅-subgraph densities and are obtained from the mini-
mum 𝑠–𝑡 cuts of different augmented graphs, it holds that |𝜌𝑅 (𝑆) −
𝜌𝑅 (𝑆 ′) | ≥ 1

(3vol(𝑅) )2 .

Proof. The general idea of the proof is the same as that in

Lemma 3.8, except that we now have |𝑆 | ≤ |𝑅 | + |𝐵∗ | ≤ 3vol(𝑅) and
similarly |𝑆 ′ | ≤ 3vol(𝑅). This is because 𝑆 in the minimum 𝑠–𝑡 cut

can only be a subset of 𝑅 ∪ 𝐵∗; that is, it cannot include any vertex

in 𝜕(𝑅 ∪ 𝐵∗), as none of the edges from 𝜕(𝑅 ∪ 𝐵∗) to 𝑡 is saturated
in a maximum flow from 𝑠 to 𝑡 in 𝐺𝛼 . □

Following Lemma 4.9, we can terminate the binary search, once

the range is less than
1

(3vol(𝑅) )2 .

4.3 Putting All Together
Based on the ideas in Sections 4.1 and 4.2, we are now ready to

present our local algorithm for anchored densest subgraph com-

putation. The pseudocode of our local algorithm, denoted Local,
is shown in Algorithm 2. It is mostly similar to Algorithm 1 but

with the following differences. Firstly, we compute the minimum

𝑠–𝑡 cut in 𝐺𝛼 using a local algorithm as discussed in Section 4.1

(Line 5). Secondly, we only work on augmented graphs 𝐺𝛼 with

𝛼 ≥ 1 (Line 4), by initializing 𝑆∗ with any two adjacent vertices of

𝑅. Thus, the 𝑅-subgraph density of the initial 𝑆∗ is 1, despite that

𝑆∗ may not contain 𝐴. This is because we are only interested in

subgraphs whose 𝑅-subgraph densities are at least 1. Thirdly, we

change the stop condition at Line 3 by following Lemma 4.9. Note

that, in implementation, we change the stop condition to be the

same as that in Algorithm 1 if (3vol(𝑅))2 > 𝑛(𝑛 − 1).



The discussions in Sections 4.1 and 4.2 show that the time com-

plexity of Algorithm 2 is bounded by a polynomial of vol(𝑅), in-
dependent to the size of 𝐺 . Thus, Algorithm 2 is a strongly local

algorithm for computing the anchored densest subgraph.

5 RELATEDWORKS
Densest Subgraph. Densest subgraph problem has been exten-

sively studied in the literature (see survey [33]). The densest sub-

graph can be exactly computed in O(𝑛𝑚 log
𝑛2

𝑚 ) time with para-

metric maximum flow [25, 28], its 2-factor approximation can be

computed in linear time [14]. The collection of all the densest sub-

graphs can be efficiently retrieved from an index structure [12].

Dense subgraph identification has also been studied on streaming

and dynamic graphs [5, 8, 20].

Finding multiple dense subgraphs has also been studied [6, 18,

39, 44, 47]. For example, computing all locally densest subgraphs,
which form a nested structure, is studied in [18, 44] — the nested

subgraphs have different densities, called locally densest subgraphs,

and only the inner-most subgraph is globally densest. The problem

of computing top-𝑘 dense subgraphs with limited overlap is studied

in [6], which iteratively computes minimal densest subgraphs and

removes a certain proportion of its nodes from the input graph.

Densest subgraph definition has been generalized to higher order.

The density of a subgraph in [45] is defined as the fraction of the

number of ℎ-cliques (ℎ is a parameter) over the number of nodes

in the subgraph, which degenerates to the average degree based

density when ℎ = 2. Fang et al. [22] further replaces the ℎ-clique of

the density defined in [45] with an arbitrary pattern graph. Sun et

al. [41] improve the efficiency of finding 𝑘-clique densest subgraph

by combining the idea of [18] with new insights. Dense subgraph

identification based on other notions of density is surveyed in [13].

On directed graph, the densest subgraph search was formulated

in [31]. Apart from an exact algorithm based on O(𝑛2) maximum

flow computations [31], Ma et al. [36] proposed an algorithm to

compute a 2-approximation of the subgraph in O(𝑚3/2) time.

Density, together with other metrics [11] such as modularity,

conductance, normalized cut, etc., serves as the optimization objec-

tives / measurements in community detection [4].

Local Community Detection. Local community detection has

been studied in literature which bisects based on whether a query

(node or node set) is required for the detection. Without a query

(see [4]), the locality is reflected in narrowing, in computing the

correlation between a community 𝐶 to the graph, the context from

the entire graph to a portion of the graph that is more important to

𝐶 , e.g., the local modularity proposed by Muff et al. [37].

Given a query (node or node set), existing local community de-

tection has three categories, metric optimization, random walk and

motif-based search. Metric optimization [15, 38, 48, 49] has two

lines of research, one line uses global metric and starts the search

from the query node(s). For example, Greedy-L [15] searches, from

the seed node, a community that optimizes a newly proposed met-

ric 𝐿 while two algorithms (Emc, PGDc) proposed in [48] search

the graph from the query node to optimize the 𝜎-conductance, a

conductance measure that uses 𝜎 to control the size of the pre-

ferred community. Since the measure is still global, the complexity

of the search is polynomial to the graph size. The other line of

research optimizes the measurement that is defined based on the

Table 2: The Description of the Datasets

Name 𝑛 𝑚 Density Type
amazon 5

334,863 925,872 2.76 Product network

notredame 6
325,730 1,090,108 3.35 Hyperlink network

digg 6
279,631 1,548,126 5.54 Social network

citeseer 6 384,414 1,736,145 4.52 Citation network

livemocha 6
104,103 2,193,083 21.07 Social network

flickr 5 105,939 2,316,948 21.87 Image network

hyves 6
1,402,674 2,777,419 1.98 Social network

youtube 5
1,134,890 2,987,624 2.63 Social network

google 6
875,714 4,322,051 4.94 Hyperlink network

trec 6
1,601,788 6,679,248 4.17 Hyperlink network

flixster 6 2,523,387 7,918,801 3.14 Social network

dblp 6
1,653,767 8,159,739 4.93 Citation network

skitter 6 1,696,416 11,095,299 6.54 Computer network

indian 6
1,382,868 13,591,473 9.83 Hyperlink network

pokec 6
1,632,804 22,301,964 13.66 Social network

usaroad 6
23,947,347 28,854,312 1.20 Road network

livejournal 5 3,997,962 34,681,189 8.67 Social network

orkut 5 3,072,441 117,185,083 38.14 Social network

wikipedia 6
13,593,033 334,591,525 24.61 Hyperlink network

friendster 6 68,349,466 1,811,849,342 26.51 Social network

uk2007 6
105,153,952 3,301,876,564 31.40 Hyperlink network

query (node or node set). For example, [38] introduces the notion

of local conductance which penalizes the inclusion of nodes outside

the query node set. The state of the art of this line of research [49]

reports a community that optimizes the local conductance, report-

ing a community that substantially overlaps with the input seed

nodes, moreover, the complexity is polynomial to the total degree

of the query nodes as opposed to the entire node set of the graph

(local algorithm). The local density proposed in this paper falls in

this line of research, our local algorithm optimizes the local density,

reporting a community that is both local and dense.

Random walk [2, 3, 9, 10, 50–52] based clustering ranks nodes

by performing random walks (with restart) from the query nodes.

One can produce one [3, 51] or possibly multiple [2, 9] communi-

ties around the given query nodes. The random walk also records

partial [50, 52] or complete [10] visiting history to improve the

result quality. The state-of-the-art methodMRW [10] can option-

ally engage multiple walkers if more than one community shall be

detected and engages a complete visiting history for better quality.

Motif-based approaches (see survey [21]) are drastically different

from the above two categories in a sense that they rely heavily on

indexing and perform no optimization/online search. The index

focuses on predefined subgraphs on which the frequencies of motifs

such as edges [7], triangles [1, 29], cliques [17] and their variations

[40] satisfy certain constraints. The relation between the motif-

based constraints and metrics such as density and conductance is

loose (2-approximated density [7]), and the reported community

can include a large number of nodes irrelevant to the query.

6 EXPERIMENT
6.1 Compare ADS Algorithms: Local vs Global
Algorithms. This subsection compares three algorithms proposed

in the paper. The input of the algorithms is a query𝑄 (𝐺,𝐴, 𝑅) where
𝐺 is an undirected and unweighted graph while 𝑅 ⊆ 𝑉 is a subset of

nodes of𝐺 and𝐴 ⊆ 𝑅.All algorithms return the𝑅-densest subgraph

of 𝐺 and compute max 𝑠-𝑡 flow with the push-relabel algorithm

and were implemented in Julia.
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Figure 5: The Comparison of the Computation Time
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Figure 6: The Comparison of the Consumed Space
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Figure 7: The Performance Gain of LA over GA on Different Data Graphs
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Figure 8: Sensitivity Test of Time on Graph Density

(1) Global Algorithm (GA): Algorithm 1 from Section 3.

(2) Improved Global Algorithm (IGA): merge all nodes in𝐺 with

degree ≥ vol(𝑅) to the target node 𝑡 before applying GA. The
correctness is based on Lemma 4.6.

(3) Local Algorithm (LA): Algorithm 2 in Section 4. It performs a

series of max 𝑠-𝑡 flows on subgraphs of 𝐺 grown around 𝑅.

Datasets. The experiments were carried out on 21 real graphs, all

with more than 1 million edges. Table 2 describes these graphs. The

largest graph, uk2007, contains over 100 million nodes and 3.3 bil-

lion edges. The data graphs were downloaded from Stanford Large

Network Dataset Collection
5
[35] and KONECT Project

6
[32]. The

graphs were preprocessed to be undirected, unweighted, selfloops-

free and connected (we keep the largest connected component).

Query Generation. In real applications, the anchored node set 𝐴

and the reference node set 𝑅 should be provided by the user or the

system (see use cases UC1 and UC2 in the introduction). To imitate

the formation of 𝐴 and 𝑅 in generating a query, we choose a “user”

𝑣 uniformly at random from 𝑉 and then decide 𝐴 and 𝑅.

5
http://snap.stanford.edu/data/

6
http://konect.cc/
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Figure 9: Sensitivity Test of Space on Graph Density
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Figure 10: Sensitivity Test of Time on the Size of Anchored Node Set
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Figure 11: Sensitivity Test of Space on the Size of Anchored Node Set

𝐴 Select a fixed number of nodes from 𝑣 ’s 1-hop and 2-hop neigh-

bors uniformly at random to form𝐴. Let 𝑣 ∈ 𝐴. By default |𝐴| = 8.

𝑅 From each node 𝑢 in𝐴, perform a fixed number (default 3) of ran-

dom walks each of a fixed length (default 2). If the random walk

visits a node 𝑢′, 𝑅 ← 𝑅 ∪ {𝑢′} if 𝑢′ passes the locality test on cen-
trality, that is, the degree of 𝑢′ is no higher than 𝑐𝑎𝑝 (𝐴). 𝑐𝑎𝑝 (𝐴)
is a function of the highest degree 𝑑max (𝐴) = max𝑣∈𝐴{𝑑𝐺 (𝑣)}
of 𝐴, i.e., 𝑐𝑎𝑝 (𝐴) = dc · 𝑑max (𝐴). The multiplier dc is set so that

when 𝑑max (𝐴) is very small, the random walk can be relaxed in

taking the multihop neighbors of 𝐴. Specifically, when 𝑑max (𝐴)
is small, e.g., < |𝑉 |/𝑒10

, then we set dc = 10; otherwise, we set

dc based on 𝑑max (𝐴) and |𝑉 |, i.e., let dc = ⌈log( |𝑉 |/𝑑max (𝐴))⌉.
The above query expansion process ensures that 𝐴 ⊆ 𝑅. For each
data graph, we generate a set of 100 queries. It turns out that the

average size of 𝑅 generated for all the real graphs is 42.

Environment. All experiments were conducted on a server with

Intel Xeon Gold 6230 CPU 2.10GHz and 376 GB RAM running

Ubuntu 5.8.0-38-Generic. Before testing on a data graph, we loaded

the data graph into the main memory using a build-in function of

Julia to support the processing of all the queries related to the graph.

Then each algorithm was run over all the queries of the graph and

reported the consumed time (allocated space resp.) for processing

each query. The cutoff time was 1000 seconds for each query.

Exp-1: Performance on Different Data Graphs.We ran Algo-

rithms GA, IGA, LA on the 21 real word graphs.

Figure 5 shows the running time and Figure 6 the memory usage.

LA completed the computation on all the data graphs; GA and

IGA failed on pokec, trec, usaroad and wikipedia by exceeding

the cutoff time. GA and IGA failed on friendster and uk2007 with
out-of-memory error. This means that for the large graph such as

friendster and uk2007, the server can afford the memory for storing

the graph but not the overhead of runningmax 𝑠-𝑡 flow on the graph

since the flow algorithm is known to have a high constant factor.

Over all the data graphs that all the three algorithms completed,

LA outperforms the other two by up to three orders of magnitude on

both time consumption and memory usage. On average, LA reduces

the running time of GA by a factor 283 and the space consumption

by a factor of 425. GA and IGA has a similar performance, because

IGA will only merge an average of 0.0046% of the graph nodes,

leading to marginal performance gain of IGA over GA.
Unlike GA and IGA, the local algorithm LA does not have its

time and memory costs increase with the graph size. Its costs are

more related to the graph density. For example, pokec and usaroad
have a similar number of edges and drastically different densities,

13.66 and 1.2, resp., the costs of LA on usaroad are significantly

smaller than that on pokec. Exp-2 further explains this correlation.



Figure 7(a) and Figure 7(b) show the performance gain (time and

space) of LA overGA. The x-axis marks the percentage of the nodes

explored by LA, i.e., (the # of nodes in 𝐺𝛼 )/(the # of nodes in 𝐺).
Each square represents the average performance gain (speedup

in running time and space reduction ratio) over the queries of

a data graph. The squares of large graphs, i.e., with ≥ 5 × 10
6

nodes (flixster, indian, livejournal and orkut) are filled in black. The
result shows that the performance gain of LA over GA is inversely

proportional to the percentage of nodes explored by LA. Besides,
the larger the graph is the higher the performance gain becomes.

Moreover, without exception on large graphs (see the black squares),

the speedups are all above 317 and the space reduction ratio above

296. This showcases the scalability of LA.
Exp-2: Sensitivity of LA on Graph Density. For each graph, we

controlled the graph density in the following way. Denote by 𝐺0

the original graph. Generate 𝐺1, · · · ,𝐺5 where 𝐺𝑖 is the largest

connected component of the graph generated by including each

edge in 𝐺0 with probability 0.5𝑖 . The query set including 1000

queries was generated under default parameters. If 𝐺𝑖 is too small

to include more than 128 nodes, we skip the graph. We ran LA for

each query on each graph to record the time and memory.

Figure 8 and Figure 9 show the performance of LA in terms

of time and memory usage. The results show that the time and

space costs increase with the density. On average, when the density

doubles, the time is increased by a factor of 2.037, and the space

cost is increased by a factor of 2.13.

Exp-3: Sensitivity of LA on Reference Node Set Size.We gener-

ated one query set for each 𝑘 , for 𝑘 = 8, 16, 32, 64, 128, respectively,

by repeating the following process 100 times. Firstly, we gener-

ated 𝐴 with default procedure except that the size of 𝐴 takes
𝑘
4
.

After that, we generated 𝑅 by random walking (of length 2) from a

random node in 𝐴 until |𝑅 | becomes 𝑘 . Still, a locality test on node

centrality applied. 5 query sets were generated for 5 different values

of 𝑘 . Figures 10-11 show that the time and space taken increase

with |𝑅 |. On average, when |𝑅 | doubles, the time cost is increased

by a factor of 1.637 and the space is increased by a factor of 1.613.
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Figure 12: Query Time on Large Anchored Node Sets

Exp-4: Query Time on Larger Reference Node Sets. Varying
the size of 𝑅 from 128, we generated a sequence of reference node

sets with exponentially increasing size, i.e., 256, 512, · · · , using the

same query expansion process on orkut and ran the three algo-

rithms GA, IGA and LA. We use 6 minutes as the cut off time for

query processing. Figure 12 shows the query time. Note that when

|𝑅 | becomes 65536, none of the algorithms can complete query

processing before the cut off. Along with the doubling of |𝑅 |, the

time cost of GA, IGA and LA increase by a factor of 1.113, 1.111 and

2.305, respectively, on average. LA is outperformed by GA and IGA
when |𝑅 | ≥ 32768. When |𝑅 | > 10

4
, none of the proposed methods

could efficiently process the query; however, in the use cases in

Section 1 and Section 6.3, the 𝑅 provided by the user or the system

(based on a user’s behavior) should reasonable stay within 10
3
.

6.2 Compare to other Local Community Search
This section compares anchored densest subgraph search with ex-

isting local community detection problems in the literature in result

quality and computation efficiency on all the graphs in Table 2.

Problems and Algorithms. We compare our proposed approach

with the state-of-the-art local community detection algorithms (Sec-

tion 5): one [49] optimizes the local conductance and the other [10]

is based on random walk. All the algorithms were implemented in

Julia in the environment described in Section 6.1.

(1) LA: Our proposed anchored densest subgraph search.

(2) FS: The flowseed algorithm [49] is the state-of-the-art metric op-

timization local community search algorithm. It optimizes the lo-
cal conductance 𝜋𝑅 (𝑆) = |𝐸 (𝑆,𝑆 ) |

vol(𝑅∩𝑆 )−𝜖vol(𝑆∩𝑅)−∑𝑢∈𝑅,𝑢∉𝑆 𝑝𝑢𝑑 (𝑢 )
for

a given reference node set𝑅. Unlike 𝜌𝑅 (𝑆), the term
∑
𝑢∈𝑅,𝑢∈𝑆 𝑝𝑢𝑑 (𝑢)

penalizes the nodes in 𝑅 that are not included in 𝑆 which 𝜌𝑅 (𝑆)
does not penalize. Therefore, for a fair comparison, we set pa-

rameter 𝑝𝑢 = 0, for ∀𝑢 ∈ 𝑉 , and set 𝜖 = 1 to be parameter free.

We used the code
7
provided by the authors of [49] in Julia.

(3) MRW: The MRW algorithm [10] is the state-of-the-art random

walk based local community detection algorithm. As our objec-

tive is to find a single community, we used the single random

walker version ofMRW. We translated the code to Julia using

their default parameters 𝛼 = 0.1, 𝛽 = 0.6 and 𝐾 = 5. The ran-

dom walk restarts from a node sampled uniformly at random

from 𝑅. We report the nodes ranked top-15 by MRW to form

the resulting subgraph. The size is set to 15 to be comparable to

the results of the other two approaches (Figure 13(f)).

Query Generation. For each data graph, we generate a set of 100

queries. AsMRW does not support anchored node set, we set the

anchored node set 𝐴 = ∅. Similar to the query expansion described

in Section 6.1, we select a “user” 𝑥 uniformly at random from 𝑉

and then generate the reference node set 𝑅 by applying 15 random

walks from 𝑥 up to 4 hops each.

Evaluation.We measure each reported subgraph 𝑆 with

• Two local community metrics: 𝑅-subgraph density from our

paper and local conductance proposed by [49],

• Two baseline community metrics: density and conductance,
• The size |𝑆 | of the subgraph,
• Measure of locality: use 𝑅 as the ground truth to compute the

𝐹1-score (2|𝑆 ∩ 𝑅 |)/(|𝑆 | + |𝑅 |) of 𝑆 .
Figure 13 shows the results of LA, FS andMRW on the 21 graphs.

Density. Figures 13(a)–13(b) show that the average 𝑅-subgraph

density of LA is higher than that of FS by 113%.MRW is not visible

on the majority of the data graphs due to its negative 𝑅-subgraph

densities. The average density of the results of LA is higher than

that of FS andMRW by 92% and 48%, respectively.

7
https://github.com/nveldt/FlowSeed
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(a) R-Subgraph Density
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(b) Density
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(c) Local Conductance
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(d) Conductance
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(e) 𝐹1 Score to 𝑅
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(f) Output Set Size
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Figure 13: Comparison with Other Local Community Search

Conductance. Figures 13(c)–13(d) show that FS has the lowest

(local) conductance among the three, which is expected since FS is

an optimization algorithm of the local conductance. LA outperforms

MRW: the local conductance of LA is lower than MRW by 15.3%

and the conductance of LA is lower than MRW by 3.3%.

Locality. Figure 13(e) shows that LA has the highest locality among

the three algorithms: the 𝐹1-score of LA is 71% higher than FS and

4% higher thanMRW on average.

Output Size. Figure 13(f) shows that the average output size of
LA is 17.0, the output size of MRW is fixed at 15. Apart from the

two graphs notredame and indian where FS has significantly large

output size, the average output size of FS is 18.8.

Computation Time. Figure 13(g) shows that LA outperforms the

baselines: LA is 12.5× faster than FS and is 66.7× faster thanMRW.

Memory Consumption. Figure 13(h) shows that LA uses up to

one order of magnitude less memory than the baseline: the memory

consumption of LA is
1

20
that of FS and is

1

4.3 that ofMRW.

6.3 Case Study
This section compares the effectiveness of LA, FS and MRW in

two real-world applications described in Section 1, i.e., UC1 event

organization and UC2 product recommendation.

UC1. Consider collaboration network dblp (Table 2) where each

node represents an author and each undirected edge denotes that

two authors have co-authored at least one article. The case study

adopted dblp for its availability of people’s names; similar applica-

tions can be deployed on social or professional networks.

Let 𝑥 be a person. Let 𝑅 be the set of people whom 𝑥 may have

known well. 𝑥 can know a person by, in addition to co-authoring



Figure 14: Local Communities Near Sun Yidan

Figure 15: Local Communities Near Oh My Goddess!

an article, attending the same conference, joining the same lab, etc..

The reference node set 𝑅 should be provided by the user 𝑥 ; in our

case study, we generated 𝑅 from 𝑥 in the same way as Section 6.2.

With 𝑅, we ran the three local community detection algorithms, LA,
FS andMRW (following Section 6.2,MRW reports top-15 ranked

nodes). The detected community can be used for organizing a social

event which may help 𝑥 expand his/her collaboration network.

Figure 14 shows the results when 𝑥 takes an ordinary node, an

author named Yidan Sun (black color), who has 13 co-authors on

dblp. The reference node set 𝑅 generated is colored in grey and the

communities returned by LA, FS and MRW are in rectangles with

labels 𝑆LA, 𝑆FS, and 𝑆MRW, respectively. Each node is labeled with

its degree while edges to non-displayed nodes are not manifested.

It can be observed that 𝑆LA includes 10 nodes from 𝑅 which i)

have strong relations with the nodes in 𝑅∩𝑆LA and ii) have not been

identified by 𝑆FS and 𝑆MRW. The node degree within the subgraph

𝑆LA is high, indicating potential connections to be established to 𝑥 ,

thus 𝑆LA forms an ideal list of attendees if 𝑥 would like to host a

social event. 𝑆FS reports the smallest subgraph among the three. All

the nodes in 𝑆MRW are from 𝑅, including the nodes who do not have

a strong connection to the other nodes in 𝑆MRW, e.g., Hongkun Yu,

and nodes who have significantly stronger connection (144/145) to

𝑉 \𝑆MRW, e.g., Malú Castellanos, these peoplemight find themselves

hard to fit in a social event with people in 𝑆MRW.

UC2. Amazon co-purchase network [34], or amazon for short, is

a network that is based on Customers Who Bought This Item Also
Bought feature of the Amazon website. Each node represents a

product, and each undirected edge represents two products that

have been bought together. The data set was downloaded from

The KONECT Project (http://konect.cc/networks/com-amazon/).

The data was collected in 2006 on products including books, DVDs,

musics and videos. This study considers the largest connected com-

ponent of the data graph of 334, 863 nodes and 925, 872 edges.

Let 𝑥 be an item that a user put into the shopping cart and 𝑅

the user’s visiting history which should be provided by the system.

Here we generated 𝑅 following the same method of Section 6.2, ran

the three algorithms with 𝑅. The results can be used for product

recommendation or other marketing strategies.

Figure 15 shows the output of the three algorithms with rect-

angles labeled 𝑆LA, 𝑆FS and 𝑆MRW, respectively, when 𝑥 is Oh My
Goddess!: Final Exam (Book), one of a Japanese comic book series

Oh My Goddess!. By the time the data was collected, the comic

series has more than 20 volumes available on Amazon, there are

also DVDs available on Amazon under the same franchise. We

use square nodes to denote books, round nodes DVDs and videos.

Nodes with thick borders are products of Oh My Goddess! franchise,
and nodes with thin border belong to other comic series. 𝑥 is in

black filling, nodes in 𝑅 grey filling and other nodes no filling.

It can be observed that LA produces the densest community

among the three, FS produces the largest subgraphwith the smallest

number of cut edges (between 𝑆FS and 𝑆FS). This can be explained by

the different objectives optimized by the two algorithms. Content-

wise, 𝑆LA contains only the comic books of Oh My Goddess! series.
𝑆FS, in addition to items in 𝑆LA, contains DVDs and Videos of Oh
My Goddess! series and some other comic book titles. 𝑆MRW is a

hybrid of the other two: of Oh My Goddess!, it misses some comic

books but includes some DVDs. The LA can be used for product

recommendation according to the result since people who have

bought a comic book are likely to have interest in other volumes of

the same comic book series.

Remarks. The case studies show that for local community detec-

tion, our algorithm LA produces a community that is biased towards

a reference node set and is more coherent than that of FS andMRW,

attributing to the optimized density of the resulting subgraph.

7 CONCLUSION
Given a graph 𝐺 and a reference node set 𝑅, this paper proposes

anchored densest subgraph search (ADS) which penalizes non-𝑅

nodes proportional to their centralities. The paper also proposes,

for ADS, a local (search) algorithm whose complexity is related to

𝑅 as opposed to the entire graph 𝐺 . Extensive experiments have

verified the efficiency and effectiveness of the proposed algorithm.

Use cases are provided to apply the techniques to real-life scenarios.

Approximation algorithms for efficient ADS will be investigated as

future work.
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