### Yizhou Dai<sup>1</sup> Miao Qiao<sup>1</sup> Lijun Chang<sup>2</sup>

<sup>1</sup>The University of Auckland

<sup>2</sup>The University of Sydney

June 16, 2022

э

## Densest Subgraph Search

Given an undirected graph G(V, E),

- Density (average-degree) of G:  $\rho(G) = \frac{|E|}{|V|}$
- Induced subgraph on  $S \subseteq V$
- Densest subgraph  $DS(G) = \operatorname{argmax}_{S \subseteq V(G)} \rho(S)$
- Algorithm: Goldberg [Gol84], recent survey [GT15]

Used for detecting

- Communities in social networks
- Biomarkers in bioinformatics and brain networks
- Spam link farms on web graphs

### Report only ONE subgraph



 $\frac{18}{12}$ 

 $\frac{9}{5}$ 

**Given** a graph G(V, E) and a reference node set  $R \subseteq V$ **Report** the "densest" subgraph that is "local" to R.

**Given** a graph G(V, E) and a reference node set  $R \subseteq V$ **Report** the "densest" subgraph that is "local" to R.

#### Existing work under average-degree density

Diversify global densest subgraph search

- Find top-k "locally densest" subgraphs [Qin et al. 2015]
  - A subgraph S is locally densest if

Report the one that is closest to R

- 1) S is the densest among all its subgraphs and is 2)  $\rho(S)$ -compact: a notion related to k-core
- Find top-k densest subgraphs [Galbrun et al. 2016]
- All the densest subgraphs [Chang and Qiao, 2020]

• • = • • = •

**Given** a graph G(V, E) and a reference node set  $R \subseteq V$ **Report** the "densest" subgraph that is "local" to R.

#### Existing work under average-degree density

Diversify global densest subgraph search Report the one that is closest to R

- Find top-k "locally densest" subgraphs [Qin et al. 2015]
  - A subgraph S is locally densest if 1) S is the densest among all its subgraphs and is 2)  $\rho(S)$ -compact: a notion related to k-core
- Find top-k densest subgraphs [Galbrun et al. 2016]
- All the densest subgraphs [Chang and Qiao, 2020]

Global Computation & Possible Degeneration

**Given** a graph G(V, E) and a reference node set  $R \subseteq V$ **Report** the "densest" subgraph that is "local" to R.

An ideal localized densest subgraph search should

- Average-degree density defined bias to R to avoid degeneration
- Have wide real-world applications
- Scalable to billion-scale graphs

**Global computation** 

#### R-subgraph density

Given a graph G(V, E), a reference node set R, the *R*-subgraph density of an arbitrary set S of nodes

$$\rho_R(S) = \frac{2|E(S)| - \sum_{v \in S \text{ and } v \notin R} degree(v)}{|S|}$$

#### R-subgraph density

Given a graph G(V, E), a reference node set R, the *R*-subgraph density of an arbitrary set S of nodes

$$ho_R(S) = rac{2|E(S)| - \sum_{v \in S ext{ and } v 
otin R} degree(v)}{|S|}$$

#### Anchored Densest Subgraph

Given a set  $R \subseteq V$  and an optional set  $A \subseteq R$ , ADS reports the *supergraph* of A that maximizes the R-subgraph density  $\operatorname{argmax}_{S: A \subseteq S \subseteq V} \rho_R(S)$ .

#### R-subgraph density

Given a graph G(V, E), a reference node set R, the *R*-subgraph density of an arbitrary set S of nodes

$$ho_R(S) = rac{2|E(S)| - \sum_{v \in S \text{ and } v 
otin R} degree(v)}{|S|}$$

#### Anchored Densest Subgraph

Given a set  $R \subseteq V$  and an optional set  $A \subseteq R$ , ADS reports the *supergraph* of A that maximizes the R-subgraph density  $\operatorname{argmax}_{S: A \subseteq S \subseteq V} \rho_R(S)$ .

Event organization & product recommendation Locality in node inclusion and node centrality

**Given** a graph G(V, E) and a reference node set  $R \subseteq V$ **Report** the "densest" subgraph that is "local" to R.

Diversify global densest subgraph search

Report the one that is closest to R

An ideal localized densest subgraph search should

- Define the localized density based on R to avoid degeneration
- Have wide real-world applications
- Scalable to billion-scale graphs

**Global computation** 

## **Global Algorithm**



Figure: Augmented graph  $G_{\alpha}$ :  $A = \{v_1\}$ ,  $R = \{v_1, v_3\}$  vertices of R are shadowed

#### Lemma 3.2 (Informal)

The smallest  $\alpha$  such that the max-flow of the above network is  $\sum_{v \in R} degree(v)$  is the R-subgraph density of the ADS. The nodes reachable with unsaturated edges from the source are the ADS.

< 回 > < 回 > < 回 >

## Local Algorithm

Binary search on  $\alpha$ , for each  $\alpha$  value

- B: Initially  $\emptyset$
- $\partial(R \cup B)$ : the neighbors of  $R \cup B$
- $g_{\alpha,B}$ : working graph for network flow
- $B \leftarrow B \cup$  the nodes with satuated edges to t
- Terminate when *B* stops growing.



Figure: Illustration of  $g_{\alpha,B}$ 

## Local Algorithm

Binary search on  $\alpha$ , for each  $\alpha$  value

- B: Initially  $\emptyset$
- $\partial(R \cup B)$ : the neighbors of  $R \cup B$
- $g_{\alpha,B}$ : working graph for network flow
- $B \leftarrow B \cup$  the nodes with satuated edges to t
- Terminate when *B* stops growing.



Figure: Illustration of  $g_{\alpha,B}$ 

#### Lemma 4.7

The number of vertices and edges in  $g_{\alpha,B^*}$  is  $\mathcal{O}((\sum_{v \in R} degree(v))^2)$ .

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

## Local Algorithm



◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

# Graph Data

| Name        | n           | т             | Density | Туре             |
|-------------|-------------|---------------|---------|------------------|
| amazon      | 334,863     | 925,872       | 2.76    | Product network  |
| notredame   | 325,730     | 1,090,108     | 3.35    | Web graph        |
| digg        | 279,631     | 1,548,126     | 5.54    | Social network   |
| citeseer    | 384,414     | 1,736,145     | 4.52    | Citation network |
| livemocha   | 104,103     | 2,193,083     | 21.07   | Social network   |
| flickr      | 105,939     | 2,316,948     | 21.87   | Image network    |
| hyves       | 1,402,674   | 2,777,419     | 1.98    | Social network   |
| youtube     | 1,134,890   | 2,987,624     | 2.63    | Social network   |
| google      | 875,714     | 4,322,051     | 4.94    | Web graph        |
| trec        | 1,601,788   | 6,679,248     | 4.17    | Web graph        |
| flixster    | 2,523,387   | 7,918,801     | 3.14    | Social network   |
| dblp        | 1,653,767   | 8,159,739     | 4.93    | Citation network |
| skitter     | 1,696,416   | 11,095,299    | 6.54    | Computer network |
| indian      | 1,382,868   | 13,591,473    | 9.83    | Web graph        |
| pokec       | 1,632,804   | 22,301,964    | 13.66   | Social network   |
| usaroad     | 23,947,347  | 28,854,312    | 1.20    | Road network     |
| livejournal | 3,997,962   | 34,681,189    | 8.67    | Social network   |
| orkut       | 3,072,441   | 117,185,083   | 38.14   | Social network   |
| wikipedia   | 13,593,033  | 334,591,525   | 24.61   | Web graph        |
| friendster  | 68,349,466  | 1,811,849,342 | 26.51   | Social network   |
| uk2007      | 105,153,952 | 3,301,876,564 | 31.40   | Web graph        |
|             |             |               |         | < □ ▶            |

Yizhou Dai, Miao Qiao, Lijun Chang

June 16, 2022

### Experiments



LA vs GA:  $283 \times$  speedup and 1/425 space consumption. LA: time and memory costs does not increase with the graph size.

Yizhou Dai, Miao Qiao, Lijun Chang

June 16, 2022

< ∃

### Experiments



LA vs GA:  $283 \times$  speedup and 1/425 space consumption. LA: time and memory costs does not increase with the graph size. Case study, video recording (starting from min 7:01).

Yizhou Dai, Miao Qiao, Lijun Chang

Anchored Densest Subgraph

June 16, 2022

### Conclusions

- Propose anchored densest subgraph search (ADS) which penalizes non-*R* nodes proportional to their degree centralities.
- Propose, for ADS, a local (search) algorithm whose complexity is related to R as opposed to the entire graph G.
- Extensive experiments verified the efficiency and effectiveness of the proposed algorithm.
- Provide use cases which apply the techniques to real-life scenarios.

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

A. V. Goldberg.

#### Finding a maximum density subgraph.

Technical Report UCB/CSD-84-171, EECS Department, University of California, Berkeley, 1984.

#### Aristides Gionis and Charalampos E. Tsourakakis. Dense subgraph discovery: KDD 2015 tutorial.

In Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015*, pages 2313–2314. ACM, 2015.

Lemma 4.6

For any vertex u that is in an anchored densest subgraph, it must satisfy  $d_G(u) < \operatorname{vol}(R)$ .