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ABSTRACT
Given a graph, eccentricity measures the distance from each node

to its farthest node. Eccentricity indicates the centrality of each

node and collectively encodes fundamental graph properties: the

radius and the diameter — the minimum and maximum eccentric-

ity, respectively, over all the nodes in the graph. Computing the

eccentricities for all the graph nodes, however, is challenging in

theory: any approach shall either complete in quadratic time or

introduce a ≥ 1

3
relative error under certain hypotheses. In practice,

the state-of-the-art approach PLLECC in computing exact eccen-

tricities relies heavily on a precomputed all-pair-shortest-distance

index whose expensive construction refrains PLLECC from scaling

up. This paper provides insights to enable scalable exact eccentricity

computation that does not rely on any index. The proposed algo-

rithm IFECC handles billion-scale graphs that no existing approach

can process and achieves up to two orders of magnitude speedup over
PLLECC. As a by-product, IFECC can be terminated at any time

during execution to produce approximate eccentricities, which is

empirically more stable and reliable than kBFS, the state-of-the-art
algorithm for approximately computing eccentricities.

CCS CONCEPTS
• Mathematics of computing→ Graph algorithms.

KEYWORDS
eccentricity, diameter, radius, graph, algorithm, approximate

ACM Reference Format:
Wentao Li, Miao Qiao, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2022. On Scalable Computation of Graph Eccentricities. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22), June
12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3514221.3517874

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517874

1 INTRODUCTION
Graph is widely used to model interconnected objects: a graph

𝐺 (𝑉 , 𝐸) uses node set 𝑉 to represent the collection of objects and

the edge set 𝐸 the interconnections among the objects. To analyze

the proliferated graphs such as social networks, biological networks

and web graphs, the measure of eccentricity plays a vital role.

Denote by 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) the distance between two nodes 𝑢 and 𝑣

in the graph. The eccentricity of a node 𝑣 is the longest distance

from 𝑣 to the other nodes in the graph: 𝑒𝑐𝑐 (𝑣) = max𝑢∈𝑉 𝑑𝑖𝑠𝑡 (𝑣,𝑢).
Eccentricity not only reflects the centrality of each node – a node’s

small eccentricity denotes its central location in the graph – but

also collectively encodes fundamental global properties of a graph:

the radius of the graph is the minimum eccentricity over all the

nodes while the diameter the maximum. Therefore, the eccentrici-

ties {𝑒𝑐𝑐 (𝑣) |𝑣 ∈ 𝑉 } over all the nodes in the graph, called the ec-
centricity distribution, becomes an important descriptor of the

graph. In fact, eccentricity distribution has been used in character-

izing routing networks [23], describing functional roles of proteins

in biological networks [27], verifying formal hardwares [24], and

boosting an individual’s performance in social networks [21].

To further illustrate the significance of the exact and scalable

eccentricity distribution computation, we provide the following

real applications.

• Location Optimization. Define the vertices with the min-

imum eccentricity values as network center [14]. Network

center has a very important role in location analysis. In

placing time-critical facilities such as hospitals or fire sta-

tions, network center that minimizes service delays [15] is

preferred. In improving the service quality by reducing the

maximum delay over the network, storage centers will be

placed based on network center [11].

• Prediction Optimization. The eccentricity distribution is

used as a critical feature for various prediction tasks. It

has been used in predicting missing edges in biological net-

works [36], identifying churners for telecom networks [31],

finding spam users in social networks [20], and identifying

infection sources of harmful information such as rumors or

diseases [5]. Moreover, the eccentricities of all vertices can

create the topological index [37, 38], which is a single number

that servers as a reliable prediction of the physical, chemical,

and biological properties for chemical compounds [39].

Unfortunately, the computation of eccentricity distribution has

a quadratic barrier that cannot be solved by approximation in the-

ory. It has been proved [28] that any approach of computing the

https://doi.org/10.1145/3514221.3517874
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eccentricity distribution shall either complete in quadratic time or

introduce a ≥ 1

3
relative error under strong exponential hypotheses.

This implies that the attempt of finding a sub-quadratic approximate

algorithm with a reasonably small error bound
1
would be in vain.

Driven by this negative result and the high demand of analyzing the

emerging massive small-world networks, e.g., social networks and

web graphs, whose small eccentricities are less tolerant to errors,

this paper aims at scaling up the computation of exact eccentricity

distribution.

The straightforward computation of the eccentricity distribution

is to perform |𝑉 | Breadth-First-Searches (BFS), one BFS sourced

from 𝑤 , for each node 𝑤 in the graph, in determining 𝑒𝑐𝑐 (𝑤). To
reduce the number of BFSs in computing the eccentricity distri-

bution, a line of research [13, 33, 34], called BFS-based methods,

associates, for the eccentricity of each node 𝑣 , a lower bound and an

upper bound which initially form a trivial range of [0, +∞). After
performing a BFS from a source node 𝑡 , one can reduce the gap

between the eccentricity bounds of 𝑣 using triangle inequalities

(Section 3). If the gap becomes 0 on 𝑣 after the update, then the

𝑣-sourced BFS can be avoided. Heuristics [13, 33, 34] have been

explored to decide a priority order of the source node 𝑡 of the BFSs

such that 𝑣-sourced BFSs can be avoided for more graph nodes 𝑣 . In

using these heuristics, it is unclear how many BFSs can be avoided.

Compared to BFS-based methods, the state-of-the-art approach

PLLECC [19] optimizes the exact eccentricity distribution compu-

tation in an orthogonal direction. Instead of reducing the number

of BFSs in computing eccentricity distribution, PLLECC aims at

reducing the cost of computing 𝑒𝑐𝑐 (𝑣) for each node 𝑣 . Note that

performing a BFS from 𝑣 cannot determine 𝑒𝑐𝑐 (𝑣) until all the nodes
in𝑉 have been visited, due to its "from-near-to-far" (w.r.t. 𝑣) order in

visiting nodes in the graph. PLLECC adopts a reverse-BFS order of

𝑣 , called the Farthest-First Node Order (FFO), in visiting each node

𝑡 in the graph. PLLECC probes 𝑑𝑖𝑠𝑡 (𝑡, 𝑣), for each node 𝑡 , to update

the eccentricity bounds of 𝑣 until the gap of 𝑣 is closed. The FFO

tightens the upper and lower bounds of 𝑒𝑐𝑐 (𝑣) faster: i) the farthest
node 𝑡 from 𝑣 can update the lower bound to 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) = 𝑒𝑐𝑐 (𝑣) and
thus makes the lower bound tight and ii) the FFO derives an extra

upper bound on the distances from unvisited nodes to 𝑣 (Section 3).

The effectiveness of PLLECC comes with a strong dependency

on a precomputed all-pair-shortest-distance index whose construc-

tion becomes the bottleneck of PLLECC on massive graphs. The

dependency is hard to remove. Specifically, seeing that computing

the FFOs for all the graph nodes takes quadratic time and is thus

unaffordable, PLLECC creates an “approximate” FFO for each node

𝑣 . These approximate FFOs are computed by selecting a set 𝑍 of

reference nodes and then letting each node 𝑣 borrow the FFO of

its closest reference node in 𝑍 . This way, it suffices to compute

and store the exact FFOs of nodes in 𝑍 . The approximate FFOs

work since 1) near-by nodes tend to share similar FFOs and 2) in

small-world networks, it is easy to select a small number of refer-

ence nodes that are close to most of the other nodes in the graph.

However, to follow these approximate FFOs and then handle the

scattered distance probing queries, PLLECC has to construct an

all-pair-shortest-distance index which becomes the bottleneck on

big graphs. For graph SK (see Table 3 for dataset’s details) with 1.9

1
Note that an error bound is different from the empirical statistics on the error.

billion edges, the index size exceeds 190 GB; for graph IT with 1.2

billion edges, the index size goes beyond 400 GB.

Existing BFS-based methods lay their efficiency on a heuristi-

cally selected priority order while the state-of-the-art approach

PLLECC depends on an expensive all-pair-shortest-distance index;

none of them can compute the exact eccentricity distribution with

reasonable spatial-temporal resources for the billion-scale graphs

emerging nowadays. To solve this problem, we propose an ap-

proach IFECC with explainable superiority on computing the exact

eccentricity distribution. Our contributions are summarized below.

(1) We abstract the general BFS-framework which captures var-

ious approaches for computing both exact and approximate

eccentricity distributions. We analyze the state-of-the-art

approach PLLECC in-depth to show the tight connection

between its efficiency and the employed all-pair-shortest-

distance index.

(2) We propose an approach IFECC which i) conforms to the

BFS-framework and ii) non-trivially decouples PLLECC from

the distance index and thus improves the efficiency and

scalability.

(3) We introduce new parameters with statistical significance

for analyzing the complexity of IFECC to achieve better

theoretical results under the quadratic barrier of the exact

computation of the eccentricity distribution. We are the first

in conducting such an analysis which unveils the nature of

the problem.We also provide statistics of the new parameters

on large graphs.

(4) We verify the superiority of IFECC with extensive empirical

results. IFECC is more than one order of magnitude faster

than the state-of-the-art exact approach on average andmore

importantly, can process billion-scale graphs that cannot be

processed by any existing approach.

(5) As a by-product, IFECC can be terminated at any time dur-

ing execution to produce approximate eccentricities, which

can provide a competitive approximation in comparison

with the state-of-the-art approximate approach kBFS [32].

Specifically, under the same temporal-spatial resource, our

approach provides a more stable and reliable eccentricity

distribution estimation on real-world graphs.

Section 2 defines the problem. Section 3 introduces the BFS-

framework and the state-of-the-art method for eccentricity com-

putation. Section 4 proposes IFECC and Section 5 analyzes the

efficiency of IFECC. Section 6 shows the related work. Section 7

exhibits the experimentations and Section 8 concludes the paper.

2 PROBLEM DEFINITION
This section formally defines the concepts that will be used in the

paper. Some of the concepts may been mentioned in Section 1.

Let𝐺 (𝑉 , 𝐸) be an unweighted and undirected graph with a set𝑉

of 𝑛 = |𝑉 | vertices and a set 𝐸 of𝑚 = |𝐸 | edges. An edge 𝑒 (𝑢, 𝑣) ∈ 𝐸
connects two vertices 𝑢, 𝑣 ∈ 𝑉 . For a vertex 𝑣 ∈ 𝑉 , its degree 𝑑𝑒𝑔(𝑣)
is the number of neighbors adjacent to 𝑣 , i.e., 𝑑𝑒𝑔(𝑣) = |{𝑢 |𝑒 (𝑢, 𝑣) ∈
𝐸}|. A path 𝑝 (𝑠, 𝑡) from a node 𝑠 to a node 𝑡 in the graph is a sequence

of edges 𝑒1 (𝑠, 𝑣1), 𝑒2 (𝑣1, 𝑣2), · · · , 𝑒𝑙−1 (𝑣𝑙−2, 𝑣𝑙−1), 𝑒𝑙 (𝑣𝑙−1,𝑡) ∈ 𝐸. The
length of the path |𝑝 (𝑠, 𝑡) | = 𝑙 is the number of edges on the path.

The distance 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) between 𝑠 and 𝑡 is the length of the shortest



Table 1: Frequently Used Notations

Notation Description

𝐺 (𝑉 , 𝐸) graph 𝐺 with vertices 𝑉 and edges 𝐸

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) distance between 𝑠 and 𝑡

𝑒𝑐𝑐 (𝑣) eccentricity of vertex 𝑣 ∈ 𝑉
𝑒𝑐𝑐 (𝑣), 𝑒𝑐𝑐 (𝑣) lower bound and upper bound of 𝑒𝑐𝑐 (𝑣)
𝐿𝑧 FFO of the reference node 𝑧

PN𝑧 (𝑣𝑧
𝑖
) probe number of 𝑣𝑧

𝑖
∈ 𝐿𝑧

𝑟 number of reference nodes

𝑘 sample size used for approximate algorithms

path from 𝑠 to 𝑡 . The distances from a node to all the other nodes

can be computed in a Breadth-First-Search (BFS) whose complexity

is 𝑂 (𝑚 + 𝑛).
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Figure 1: The Example Graph 𝐺

Example 2.1. Figure 1 presents graph 𝐺 of the running example.

It has 13 nodes and 15 edges. 𝑑𝑒𝑔(𝑣10) = 2 and 𝑑𝑖𝑠𝑡 (𝑣10, 𝑣12) = 2.

Definition 2.2. Given a vertex 𝑣 of a graph 𝐺 (𝑉 , 𝐸), the eccen-
tricity of 𝑣 is 𝑒𝑐𝑐 (𝑣) = max𝑢∈𝑉 𝑑𝑖𝑠𝑡 (𝑣,𝑢). The farthest node to 𝑣
is 𝑓𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝑉𝑑𝑖𝑠𝑡 (𝑣,𝑢). If the farthest node of 𝑣 is not unique,
𝑓𝑣 can be any of the farthest nodes. The eccentricity distribution
ED of 𝐺 is ED(𝐺) = {𝑒𝑐𝑐 (𝑣) |𝑣 ∈ 𝑉 }.

The eccentricity distribution can derive the radius 𝑟𝑎𝑑 and

diameter 𝑑𝑖𝑎 in linear time, that is, 𝑟𝑎𝑑 = min𝑣∈𝑉 𝑒𝑐𝑐 (𝑣) and
𝑑𝑖𝑎 = max𝑣∈𝑉 𝑒𝑐𝑐 (𝑣).

Example 2.3. Figure 1 labels the eccentricity of each node in 𝐺 .

𝑒𝑐𝑐 (𝑣10) = 4while the farthest node 𝑓𝑣10 = 𝑣1 since𝑑𝑖𝑠𝑡 (𝑣1, 𝑣10) = 4.

The radius 𝑟𝑎𝑑 is 3 and the diameter 𝑑𝑖𝑎 is 5.

We assume that 𝐺 is a connected graph in the paper while the

results can be extended to disconnected graphs easily
2
. For the sake

of clarity, we summarize the commonly used symbols in Table 1.

3 PROBLEM ANALYSIS
This section first abstracts BFS-framework from recent studies [2,

10, 12, 13, 28, 32–34] on exact and approximate computations of the

eccentricity distribution and then introduces the state-of-the-art

approach for computing exact eccentricity distribution.

3.1 BFS-Framework
The eccentricity distribution can be computed by performing |𝑉 |
BFSs, one BFS from each node 𝑡 to determine 𝑒𝑐𝑐 (𝑡). To reduce the

number of BFSs, a common practice is to attach a lower bound

2
If one defines the eccentricity as +∞ when the graph is disconnected, computing the

eccentricity distribution becomes trivial; otherwise, one can process each connected

component of the graph respectively with our solution.

𝑒𝑐𝑐 (𝑣) and an upper bound 𝑒𝑐𝑐 (𝑣) to each node 𝑣 ∈ 𝑉 . When the

eccentricity of a node 𝑡 is obtained by performing a 𝑡-sourced BFS,

other nodes can update their bounds using Lemma 3.1.

Lemma 3.1 (BoundUpdate [34]). Let 𝑡 be a node of graph𝐺 (𝑉 , 𝐸)
with eccentricity 𝑒𝑐𝑐 (𝑡). Given a node 𝑣 and its distance 𝑑𝑖𝑠𝑡 (𝑣, 𝑡),

𝑒𝑐𝑐 (𝑣) ≤ 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) + 𝑒𝑐𝑐 (𝑡) (1)

𝑒𝑐𝑐 (𝑣) ≥ max{𝑑𝑖𝑠𝑡 (𝑣, 𝑡), 𝑒𝑐𝑐 (𝑡) − 𝑑𝑖𝑠𝑡 (𝑣, 𝑡)}. (2)

Proof. See Appendix. □

Upon computing 𝑒𝑐𝑐 (𝑡), one can update the upper bound

𝑒𝑐𝑐 (𝑣) of 𝑣 with 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) + 𝑒𝑐𝑐 (𝑡), the lower bound 𝑒𝑐𝑐 (𝑣) with
max{𝑑𝑖𝑠𝑡 (𝑣, 𝑡), 𝑒𝑐𝑐 (𝑡) − 𝑑𝑖𝑠𝑡 (𝑣, 𝑡)}; if one only knows 𝑑𝑖𝑠𝑡 (𝑣, 𝑡), he
can also update 𝑒𝑐𝑐 (𝑣). When the lower bound on 𝑣 meets the upper

bound, 𝑒𝑐𝑐 (𝑣) is determined without performing a 𝑣-sourced BFS.

BFS-framework. We abstract the BFS-framework which captures

existing approaches [2, 10, 12, 13, 28, 32–34] in computing the

eccentricity distribution either exactly or approximately.

(1) Initialize the eccentricity upper bound 𝑒𝑐𝑐 (𝑣) = +∞ and

lower bound 𝑒𝑐𝑐 (𝑣) = 0 for each node 𝑣 in the graph;

(2) Determine the source node set 𝑆 ⊆ 𝑉 . 𝑆 is selected either

collectively or gradually from an initially empty set along a

predefined priority order;

(3) For each node 𝑡 in 𝑆 , compute the BFS from 𝑡 , and update

the eccentricity bounds of other nodes 𝑣 using Lemma 3.1.

Limitation. The performance of the methods under the BFS-

framework is heavily impacted [19] by the priority order/node se-

lection strategy of 𝑆 in Step 2; none of these heuristics (e.g., [33, 34])

can provide an analysis on the number of BFSs needed. It remains

open to set a desirable priority order/node selection strategy of 𝑆 .

3.2 The State-of-the-Art Exact ED Computation
Compared to the approaches under the BFS-framework, the state-

of-the-art approach PLLECC [19] optimizes the exact computation

of the eccentricity distribution in an orthogonal direction. Instead of

reducing the number of BFSs, PLLECC aims at determining 𝑒𝑐𝑐 (𝑣)
with less effort than a linear search of BFS, for each node 𝑣 ∈ 𝑉 .

Farthest-First Node Order (FFO). PLLECC notices that the com-

plexity of computing 𝑒𝑐𝑐 (𝑣) cannot be improved using 𝑣-sourced

BFS: the BFS from 𝑣 visits nodes in a near-to-far order and thus

𝑒𝑐𝑐 (𝑣) cannot be determined until all the nodes in 𝑉 have been

visited. To enable an early stop, PLLECC traverses nodes 𝑡 ∈ 𝑉

following a reverse-BFS (of 𝑣) order, called the Farthest-First Node

Order (FFO). It probes distance 𝑑𝑖𝑠𝑡 (𝑡, 𝑣) to update the eccentricity

bounds of 𝑣 until the gap of 𝑣 becomes 0. Note that the quadratic

time of computing the FFO for each node 𝑣 is unaffordable, PLLECC
thus adopts, for each node 𝑣 , an approximate FFO generated below.

(1) Select a few high-degree nodes to form a set 𝑍 of reference
nodes — high-degree nodes are usually located at the center

of a graph and near other nodes [9, 19].

(2) Compute, for each node 𝑧 in𝑍 , 𝑧’s FFO 𝐿𝑧 = ⟨𝑣𝑧
1
, 𝑣𝑧

2
, · · · , 𝑣𝑧𝑛 =

𝑧⟩ such that 𝑑𝑖𝑠𝑡 (𝑧, 𝑣𝑧
1
) ≥ 𝑑𝑖𝑠𝑡 (𝑧, 𝑣𝑧

2
) ≥ · · · ≥ 𝑑𝑖𝑠𝑡 (𝑧, 𝑣𝑧𝑛).

(3) For node 𝑣 ∈ 𝑉 , let the reference node 𝑧 of 𝑣 be the node
in 𝑍 closest to 𝑣 . Let the approximate FFO of 𝑣 be the FFO of

𝑧.
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Figure 2: Farthest-First Node Order

Example 3.2. For the graph in Figure 1, the reference nodes

𝑍 include two nodes 𝑣13, 𝑣7 with the highest degrees. For each

node in 𝑍 , the farthest-first node order is given in Figure 2. For

example, 𝐿𝑣13 = {𝑣1, 𝑣2, 𝑣3, · · · , 𝑣13} — all nodes are arranged in a

non-increasing order of their distances to 𝑣13.

Early-stop in Computing the Eccentricity of a Node. For a
node 𝑣 , PLLECC probes the distances based on the FFO of 𝑣 ’s ref-

erence node 𝑧, which enables an early-stop in computing 𝑒𝑐𝑐 (𝑣).
Specifically, the distance from nodes in 𝐿𝑧 to 𝑣 is sequentially

probed while the upper bound 𝑒𝑐𝑐 (𝑣) and lower bound 𝑒𝑐𝑐 (𝑣) of
𝑣 updated along the probing. The lower bound can be updated by

Lemma 3.1 and the upper bound by Lemma 3.3. The probing stops

when 𝑒𝑐𝑐 (𝑣) = 𝑒𝑐𝑐 (𝑣).

Lemma 3.3 (Upper Bound [19]). Given 𝑣 and its reference node
𝑧, consider the moment when the distances from all nodes in 𝑇 =

{𝑣𝑧
1
, 𝑣𝑧

2
, · · · , 𝑣𝑧

𝑖
} ⊆ 𝐿𝑧 have been probed.

𝑒𝑐𝑐 (𝑣) ≤ max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣𝑧𝑖 , 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑣)}, (3)

where 𝑒𝑐𝑐 (𝑣) = max𝑢∈𝑇 𝑑𝑖𝑠𝑡 (𝑢, 𝑣).

Proof. See Appendix. □

In Equation 3, term 𝑒𝑐𝑐 (𝑣) never decreases along the probing

but never exceeds 𝑒𝑐𝑐 (𝑣), and term 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑣𝑧
𝑖
, 𝑧) never

increases along the probing under FFO 𝐿𝑧 . Thus, the gap between

the lower and upper bounds can decrease in a fast pace along the

probing. Therefore, the effectiveness in closing the gap between the

eccentricity bounds in PLLECC heavily relies on the distance prob-

ing under FFO. Since the benefit of the early-stop can be easily can-

celled out if the distance of𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧
𝑖
) cannot be efficiently probed, a

precomputed all-pair-shortest-distance index for pair-wise distance

queries is essential to the efficiency of PLLECC. PLLECC adopts

the cutting-edge method PLL [3] to create the distance index [19].

Algorithm. Algorithm 1 shows the two stages of PLLECC. In the

first stage, denoted as PLLECC-PLL, the distance index is created
with PLL (Line 1). In the second stage, denoted as PLLECC-ECC,
PLLECC initializes a small set of 𝑟 (𝑟 is a parameter) reference

nodes 𝑍 ⊆ 𝑉 (Line 2), then computes, for each node 𝑧 in 𝑍 , 𝑒𝑐𝑐 (𝑧)
and the FFO 𝐿𝑧 = ⟨𝑣𝑧

1
, 𝑣𝑧

2
, · · · , 𝑣𝑧𝑛⟩ of 𝑧 by performing a 𝑧-sourced

BFS (Line 4-5). After that, in computing the eccentricity of a node

𝑣 (Line 6-14), PLLECC picks the node 𝑧 in 𝑍 that is closest to 𝑣

(Line 7). The upper bound and lower bound of 𝑣 are updated by

Lemma 3.1 (Line 8-9). Then, nodes in 𝐿𝑧 are probed sequentially

to update the eccentricity bounds of 𝑣 (Line 10). Specifically, for

each probed node 𝑣𝑧
𝑖
, the distance between 𝑣 and 𝑣𝑧

𝑖
is obtained by

exploiting the distance index (Line 11). The node order 𝐿𝑧 (Line 4)

derives a new upper bound (Line 12-13) of 𝑒𝑐𝑐 (𝑣) (Lemma 3.3). The

probe for 𝑣 terminates when the bounds of 𝑣 match (Line 14).

Algorithm 1: PLLECC
Input: Graph 𝐺 (𝑉 , 𝐸), reference number 𝑟

Output: Eccentricity distribution ED(𝐺)
// PLLECC-PLL stage

1 Create the distance index by PLL;
// PLLECC-ECC stage

2 Select a small set 𝑍 of 𝑟 high degree nodes;

3 for each node 𝑧 ∈ 𝑍 do
4 𝑒𝑐𝑐 (𝑧) ← a BFS from 𝑧;

5 Generates 𝐿𝑧 = ⟨𝑣𝑧
1
, 𝑣𝑧

2
, · · · , 𝑣𝑧𝑛⟩ for 𝑧;

6 for each node 𝑣 ∈ {𝑉 \ 𝑍 } do
7 𝑧 ← the node in 𝑍 that is closet to 𝑣 ;

// Apply Lemma 3.1

8 𝑒𝑐𝑐 (𝑣) ← max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣, 𝑧), 𝑒𝑐𝑐 (𝑧) − 𝑑𝑖𝑠𝑡 (𝑣, 𝑧)};
9 𝑒𝑐𝑐 (𝑣) ← min{𝑒𝑐𝑐 (𝑣), 𝑒𝑐𝑐 (𝑧) + 𝑑𝑖𝑠𝑡 (𝑣, 𝑧)};

10 for sequentially each node 𝑣𝑧
𝑖
∈ 𝐿𝑧 do

11 Compute 𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧
𝑖
) from the index;

// Apply Lemma 3.1 and 3.3

12 𝑒𝑐𝑐 (𝑣) ← max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧
𝑖
)};

13 𝑒𝑐𝑐 (𝑣) ←
min{𝑒𝑐𝑐 (𝑣),max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣𝑧

𝑖
, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑣)}};

14 if 𝑒𝑐𝑐 (𝑣) = 𝑒𝑐𝑐 (𝑣) then break;

15 return ED(𝐺)
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Figure 3: The Illustration of PLLECC

Example 3.4. Given two reference nodes 𝑍 = {𝑣13, 𝑣7} and their

farthest-first node orders in Figure 2. Figure 3 demonstrates the

computation of 𝑒𝑐𝑐 (𝑣) with 𝑣 = 𝑣9. First, 𝑣9 selects the closest node

𝑣13 from 𝑍 as the reference node 𝑧. Then, the lower bound of 𝑣9
is updated to 𝑒𝑐𝑐 (𝑧) − 1 = 3 and the upper bound is updated to

𝑒𝑐𝑐 (𝑧) + 1 = 5 by Lemma 3.1. Then, 𝑣9 probes the nodes in 𝐿𝑣13

sequentially to update the bounds. When 𝑣1 is visited, the lower

bound remains 3 as 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣9) = 3 and the upper bound will be

𝑑𝑖𝑠𝑡 (𝑣2, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑣9, 𝑧) = 4. Then, 𝑣2 is visited to update the upper

bound to 𝑑𝑖𝑠𝑡 (𝑣3, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑣9, 𝑧) = 3. This determines 𝑒𝑐𝑐 (𝑣9) = 3.

Limitation. The distance index is crucial for the efficiency of Al-

gorithm 1 whose construction becomes the spatial-temporal bottle-

neck of PLLECC. As our experiments shall show, the construction

of the index dominates the total time of PLLECC [19]. Moreover,

for graph SK with 1.9 billion edges, the index size is larger than 190

GB; for graph IT with 1.2 billion edges, the index is > 400 GB.



4 INDEX-FREE ED COMPUTATION
This section proposes an index-free approach called IFECC that

scales up the eccentricity distribution computation of PLLECC.

4.1 PLLECC Revisit
The distance index that encodes all-pair shortest distances can

be an overkill for PLLECC. Recall that the index is only used to

probe the distance 𝑑𝑖𝑠𝑡 (𝑣𝑧
𝑖
, 𝑣) when computing 𝑒𝑐𝑐 (𝑣) for a node

𝑣 . Here 𝑧 is the reference node of 𝑣 and 𝑣𝑧
𝑖
∈ 𝐿𝑧 . We now take an

alternative perspective. Let 𝑧 be a node in 𝑍 , for each node 𝑣𝑧
𝑖
∈ 𝐿𝑧 ,

we consider the nodes 𝑣 ∈ 𝑉 whose i) reference node is 𝑧 and ii)

distance 𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧
𝑖
) to 𝑣𝑧

𝑖
have been probed by PLLECC. The shift

in perspective derives a new measure – the frequency that 𝑣𝑧
𝑖
is

engaged in the distance probing – that reflects the importance of

each node 𝑣𝑧
𝑖
in 𝐿𝑧 .

Definition 4.1 (Probe Number). For any 𝑧 ∈ 𝑍 , consider 𝑣𝑧
𝑖
∈ 𝐿𝑧 ,

define the probe number PN𝑧 (𝑣𝑧
𝑖
) as the total number of distance

queries posed by PLLECC in the form of 𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧
𝑖
) such that 𝑧 is

the reference node of 𝑣 .

Table 2: The Probe Number

𝐿𝑣13 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13

PN𝑣13
7 3 1 0 0 0 0 0 0 0 0 0 0

𝐿𝑣7 𝑣1 𝑣2 𝑣3 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣4 𝑣5 𝑣6 𝑣13 𝑣7

PN𝑣7
3 1 1 0 0 0 0 0 0 0 0 0 0

Example 4.2. In Figure 3, to determine the eccentricity of 𝑣9, 𝑣9
selects 𝑣13 as the reference node and then visits nodes sequentially

in 𝐿𝑣13 . During this process, nodes {𝑣1, 𝑣2} have been probed by 𝑣9,

and we increase their probe number regarding 𝑣13 by one. When

all nodes using 𝑣13 as the reference node find the eccentricity, we

obtain the final probe number regarding 𝑣13 in Table 2.

Property of Probe Number. Each node 𝑣 visits nodes in 𝐿𝑧 from

𝑣𝑧
1
to 𝑣𝑧𝑛 sequentially, thus, PN𝑧 (𝑣𝑧

1
) is the max among nodes in

𝐿𝑧 — other nodes cannot be probed if 𝑣𝑧
1
has not been visited. We

generalize this observation and provide the relation between the

probe number regarding 𝑧 and the location of a node in 𝐿𝑧 in

Lemma 4.3.

Lemma 4.3. For a reference node 𝑧 and two nodes 𝑣𝑧
𝑖
and 𝑣𝑧

𝑗
in 𝐿𝑧 ,

PN𝑧 (𝑣𝑧
𝑖
) > PN𝑧 (𝑣𝑧

𝑗
) only if 𝑖 < 𝑗 .

Proof. Suppose PN𝑧 (𝑣𝑧
𝑖
) > PN𝑧 (𝑣𝑧

𝑗
), but 𝑖 ≥ 𝑗 . The fact 𝑖 ≥ 𝑗

means any node 𝑣 ∈ 𝑉 that visits 𝑣𝑧
𝑖
must have visited 𝑣𝑧

𝑗
, which

implies PN𝑧 (𝑣𝑧
𝑖
) ≤ PN𝑧 (𝑣𝑧

𝑗
), contradiction. □

Lemma 4.3 indicates that nodes at the front of 𝐿𝑧 of each 𝑧 ∈ 𝑍
have large probe numbers while the nodes at the tail of 𝐿𝑧 might

have not been probed under 𝑧 at all. If we can remove the nodes

whose probe number is 0 from the index, then the index size may

be significantly reduced.

Example 4.4. In Table 2, for both 𝑣13 and 𝑣7, we find that nodes

with small subscripts in the farthest-first order 𝐿𝑧 have probe num-

bers no smaller than nodes with large subscripts. Moreover, nodes

with large subscripts are likely to have zero probe number.

Algorithm 2: IFECC
Input: Graph 𝐺 (𝑉 , 𝐸), reference number 𝑟

Output: Eccentricity distribution ED(𝐺)
1 Select a small set 𝑍 of 𝑟 high degree nodes;

2 for each node 𝑧 ∈ 𝑍 do
3 𝑉 𝑧 ← ∅;
4 Compute 𝑒𝑐𝑐 (𝑧) and FFO 𝐿𝑧 = ⟨𝑣𝑧

1
, 𝑣𝑧

2
, · · · , 𝑣𝑧

𝑛−1⟩ of 𝑧 by
performing a BFS from 𝑧;

5 for each node 𝑣 ∈ {𝑉 \ 𝑍 } do
6 𝑧 ← the node in 𝑍 that is closet to 𝑣 ;

7 Insert 𝑣 to 𝑉 𝑧
;

// Apply Lemma 3.1

8 𝑒𝑐𝑐 (𝑣) ← max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣, 𝑧), 𝑒𝑐𝑐 (𝑧) − 𝑑𝑖𝑠𝑡 (𝑣, 𝑧)};
9 𝑒𝑐𝑐 (𝑣) ← min{𝑒𝑐𝑐 (𝑣), 𝑒𝑐𝑐 (𝑧) + 𝑑𝑖𝑠𝑡 (𝑣, 𝑧)};

10 for each node 𝑧 ∈ 𝑍 do
11 𝑛𝑧 ← |𝑉 𝑧 |;
12 for each node 𝑣𝑧

𝑖
∈ 𝐿𝑧 , sequentially, do

13 Perform BFS from 𝑣𝑧
𝑖
;

14 for each node 𝑣 ∈ 𝑉 𝑧 with 𝑒𝑐𝑐 (𝑣) ≠ 𝑒𝑐𝑐 (𝑣) do
15 𝑒𝑐𝑐 (𝑣) ← max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧

𝑖
)};

// Apply Lemma 3.1 and 3.3

16 𝑒𝑐𝑐 (𝑣) ← min{𝑒𝑐𝑐 (𝑣),max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣𝑧
𝑖
, 𝑧) +

𝑑𝑖𝑠𝑡 (𝑧, 𝑣)}};
17 if 𝑒𝑐𝑐 (𝑣) = 𝑒𝑐𝑐 (𝑣) then 𝑛𝑧 ← 𝑛𝑧 − 1;
18 if 𝑛𝑧 = 0 then break;

19 return ED(𝐺)

4.2 Space-Efficient Computation
The index size can be reduced by removing the nodes whose probe

number is zero under all 𝑧 ∈ 𝑍 . However, how can we know whose

probe number is zero without carrying out PLLECC? To answer this
question, we revisit the BFS-framework (introduced in Section 3).

Farthest-First Node Order. Recall that the methods under BFS-

framework struggle to find a priority order. Lemma 4.3 indicates

that nodes at the beginning of 𝐿𝑧 are important in PLLECC. In this

sense, shall we set the priority order based on 𝐿𝑧?

Algorithm. We plug the farthest-first node order of 𝑧 into the

BFS-framework and obtain the index-free solution IFECC, see Al-
gorithm 2, for computing the exact eccentricity distribution. Similar

to PLLECC, IFECC selects 𝑟 highest degree nodes𝑍 as the reference

nodes and generates the FFO 𝐿𝑧 , for ∀𝑧 ∈ 𝑍 (Line 1-4). Each node

𝑣 ∈ 𝑉 finds its reference node and inserts itself into the territory

𝑉 𝑧
of 𝑧. The lower and upper bound of 𝑣 is updated by 𝑧 using

Lemma 3.1 (Line 5-9). After that, each reference node 𝑧 is responsi-

ble to decide the eccentricities for all the nodes in the territory 𝑉 𝑧

of 𝑧 (Line 10-18). Specifically, we visit nodes 𝑣𝑧
𝑖
in 𝐿𝑧 sequentially

to obtain the distances from 𝑣𝑧
𝑖
to all nodes in𝑉 (Line 12-13). In this

way, the bounds of each node 𝑣 ∈ 𝑉 𝑧
can be updated by Lemma 1-2,

which is similar to Algorithm 1 since we replace the distance in-

dex probing with explicit distance computation of 𝑣𝑧
𝑖
. The loop for



𝑧 ∈ 𝑍 ends when all the nodes in 𝑉 𝑧
have found their eccentricity

(Line 17-18).

Theorem 4.5. The space complexity of Algorithm 2 is 𝑂 (𝑚 + 𝑛).

Proof. Algorithm 2 requires: i)𝑂 (𝑚+𝑛) space to load the entire
graph; ii) 𝑂 (𝑛) space to store 𝑒𝑐𝑐 (𝑣), 𝑒𝑐𝑐 (𝑣), 𝑒𝑐𝑐 (𝑣) for all vertices
𝑣 ∈ 𝑉 . Therefore, the total space cost is 𝑂 (𝑚 + 𝑛). □
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Figure 4: The Illustration of IFECC

Example 4.6. Figure 4 presents the process of IFECC on the

graph in Figure 1. IFECC selects 2 reference nodes 𝑣13 and 𝑣7
and divides nodes into two groups based on their reference nodes.

𝑉 𝑣13 = {𝑣1, 𝑣2, 𝑣3, 𝑣8, 𝑣9, 𝑣10, 𝑣11, 𝑣12} finds 𝑣13 as the reference node
and 𝑉 𝑣17 = {𝑣4, 𝑣5, 𝑣6}. For 𝑣13, 𝑣1 ∈ 𝐿13 conducts BFS to update

the bounds of other vertices. This determines the eccentricities of

{𝑣1, 𝑣8, 𝑣11, 𝑣12}. This process continues when 𝑣3 performs BFS and

all vertices have exact eccentricities. The process for 𝑣7 is the same.

The number of BFSs performed for 𝑣13 is 4, for 𝑣7 is 4, and 8 in total.

Remark. In Algorithm 2, the distances from the reference nodes
𝑍 to the other nodes need to be stored (Line 2-4). In practice, we can
make 𝑍 contain only one node, as described in Section 4.2. Therefore,
these additional space requirements are negligible. Instead, PLLECC
needs to store the distance index, which encodes the distances between
all node pairs. We further compare the space consumption of our
approach and PLLECC in Section 7.2.

4.3 Time-Efficient Computation
This section shows an insight uniquely given by IFECC that cannot

be observed from PLLECC: one reference node is sufficient for an

efficient computation; the novel bounds derived under 1 reference

node shall be elaborated in Section 5. This section ends with an

approximation adaptation to further accelerate the computation.

Reference Node Number. The number of reference nodes, de-

noted by 𝑟 , is a parameter of PLLECC. Choosing multiple reference

nodes enables PLLECC to exploit Lemma 3.3 for an effective bound

update [19]. By contrast, in IFECC, multiple reference nodes lead

to redundant BFS computations: a node in the outskirt of the graph

may simultaneously locate at the beginning of the FFOs of multiple

reference nodes.

We examine two representative networks: web graph IT-2004

(denoted by IT) and social network Twitter (denoted by TWIT). Let
the number of reference nodes be 16 — the default reference node

number in PLLECC. Denote by 𝐷𝑧 the set of the first 𝑛𝑢𝑚 nodes in

the FFO of each reference node ∀𝑧 ∈ 𝑍 where 𝑛𝑢𝑚 is an experiment

Algorithm 3: kIFECC
Input: Graph 𝐺 (𝑉 , 𝐸), sample size 𝑘

Output: Approximate Eccentricity Distribution
˜ED(𝐺)

1 Let 𝑍 include the highest-degree node 𝑧 in the graph;

2 Line 2-9 of Algorithm 2;

3 for 𝑖 from 1 to 𝑘 and 𝑣𝑧
𝑖
∈ 𝐿𝑧 do Line 13-16 of Algorithm 2;

4 return ẼD(𝐺) ← {𝑒𝑐𝑐 (𝑣) |𝑣 ∈ 𝑉 }
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Figure 5: Number of Common Nodes

parameter. Figure 5 shows the repetition ratio
|⋂𝑧∈𝑍 𝐷𝑧 |
|⋃𝑧∈𝑍 𝐷𝑧 | when 𝑛𝑢𝑚

takes 5, 10, · · · , 50, respectively. On average, more than 94.5% of

high-probe-number nodes are shared by all reference nodes.

To reduce the redundancy in computing the BFSs, one may mem-

orize the computed results to avoid re-computation; however, this

imposes additional space cost for IFECC.

One Reference Node is Enough. The redundancy can be thor-

oughly removed by setting the reference node number 𝑟 to 1. Setting

𝑟 = 1 not only works efficiently in practice (Section 7) but also sheds

light on theoretical analysis which will be illustrated in Section 5.
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Figure 6: Setting One Reference Node for IFECC

Example 4.7. Figure 4 shows that 8 BFSs are needed when the

reference node number is 2. Redundant BFSs are performed since
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𝑣1, 𝑣2, 𝑣3 are the common distant nodes shared by 𝑣13 and 𝑣7. Fig-

ure 6 presents IFECC under 1 reference node. The total number of

BFSs is reduced to 4+ 1 = 5, smaller than 8 under 2 reference nodes.

Approximation Adaptation. Using only one reference node, one
can make a trade-off between the computation time and precision.

Rather than waiting until the bounds match on all the nodes, we

can control the time with the sample size 𝑘 , a parameter of the

number of BFSs to perform. Algorithm 3 adapts IFECC to an ap-

proximation algorithm kIFECC by terminating immediately after 𝑘

nodes in 𝐿𝑧 have conducted BFSs. The effectiveness of kIFECC will

be theoretically analyzed in Section 5 and empirically evaluated in

Section 7.

5 THEORETICAL ANALYSIS
This section introduces two important theorems in proving the

effectiveness of IFECCwith only one reference node 𝑧 (i.e.,𝑍 = {𝑧}).
Under the BFS-framework, the performance of IFECC is reflected

by the matching efficiency of the eccentricity bounds — the only

way that one can improve the efficiency of the exact eccentricity

computation due to the negative results in [28]. The result can be

shared by both exact and approximate versions of IFECC.

Stratified Graph. To simplify the analysis, we first stratify the

graph in Definition 5.1 (see Fig. 7). Our analysis holds for any

reference node 𝑧, in other words, no property of node 𝑧 is used.

Definition 5.1. Given a node 𝑧 ∈ 𝑉 , define the 𝑖-th layer, 𝑆𝑧
𝑖
=

{𝑣 |𝑑𝑖𝑠𝑡 (𝑣, 𝑧) = 𝑖}, as the set of nodes whose distances to 𝑧 equal to
𝑖 .

Example 5.2. The nodes in V are partitioned according to their

distances to 𝑧 = 𝑣13. 𝑒𝑐𝑐 (𝑧) = 4. Five layers of 𝑧: 𝑆𝑧
0
= {𝑣13}, 𝑆𝑧

1
=

{𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11, 𝑣12}; 𝑆𝑧
2
= {𝑣3, 𝑣4, 𝑣5, 𝑣6}; 𝑆𝑧

3
= {𝑣2}; 𝑆𝑧

4
= {𝑣1}.

The layer division of a graph𝐺 under the reference node 𝑧 groups

nodes according to their distances to 𝑧. We focus on the nodes who

lie at least
1

3
𝑒𝑐𝑐 (𝑧) (and 2

3
𝑒𝑐𝑐 (𝑧), respectively) far away from 𝑧.

Definition 5.3. Tripartite the layers to define two sets:

Farthest (2/3) set: 𝐹1 = {𝑣 ∈ 𝑉 |𝑑𝑖𝑠𝑡 (𝑣, 𝑧) > (1/3)𝑒𝑐𝑐 (𝑧)},
Farthest (1/3) set: 𝐹2 = {𝑣 ∈ 𝑉 |𝑑𝑖𝑠𝑡 (𝑣, 𝑧) > (2/3)𝑒𝑐𝑐 (𝑧)}.

For a set 𝑆 and a node 𝑣 , denote by 𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝑆) =

max𝑢∈𝑆 {𝑑𝑖𝑠𝑡 (𝑢, 𝑣)} the maximum set distance from 𝑣 to 𝑆 .

Example 5.4. 𝐹1 has the nodes in last
2

3
𝑒𝑐𝑐 (𝑧) = 3 layers and

thus 𝐹1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and 𝐹2 = 𝑆𝑧
3
∪ 𝑆𝑧

4
= {𝑣1, 𝑣2}.

Analysis of Exact Algorithm. Rather than obtaining an 𝑂 (𝑛𝑚)
worse-case complexity as the general methods under the BFS-

framework, we prove that the proposed IFECC derives a better

complexity.

Theorem 5.5. Performing BFSs from nodes in 𝐹1 in𝑂 ( |𝐹1 | (𝑚+𝑛))
time computes the eccentricity distribution of the graph.

Proof. The eccentricities of nodes in 𝐹1 can be directly obtained.

Next, we prove that for ∀𝑣 ∉ 𝐹1, 𝑒𝑐𝑐 (𝑣) = max𝑢∈𝐹1 {𝑑𝑖𝑠𝑡 (𝑢, 𝑣)};
in other words, for ∀𝑣 ∉ 𝐹1, there is a node 𝑢 ∈ 𝐹1 such that

𝑑𝑖𝑠𝑡 (𝑢, 𝑣) = 𝑒𝑐𝑐 (𝑣), by contradiction. Assume that none of the

farthest nodes of 𝑣 is in 𝐹1. Let 𝑤 be a farthest node of 𝑣 . Since

𝑤 ∉ 𝐹1, 𝑑𝑖𝑠𝑡 (𝑤, 𝑧) ≤ 1

3
𝑒𝑐𝑐 (𝑧). 𝑑𝑖𝑠𝑡 (𝑣,𝑤) ≤ 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧,𝑤) ≤

2

3
𝑒𝑐𝑐 (𝑧). Let 𝑓𝑧 be the farthest node of 𝑧, that is, 𝑒𝑐𝑐 (𝑧) = 𝑑𝑖𝑠𝑡 (𝑧, 𝑓𝑧).

We have 𝑓𝑧 ∈ 𝐹1. Besides, 𝑑𝑖𝑠𝑡 (𝑓𝑧 , 𝑣) ≥ 𝑑𝑖𝑠𝑡 (𝑓𝑧 , 𝑧) − 𝑑𝑖𝑠𝑡 (𝑧, 𝑣) ≥
2

3
𝑒𝑐𝑐 (𝑧) ≥ 𝑑𝑖𝑠𝑡 (𝑤, 𝑣). Thus, when 𝑑𝑖𝑠𝑡 (𝑓𝑧 , 𝑣) = 𝑑𝑖𝑠𝑡 (𝑤, 𝑣), 𝑓𝑧 is a

farthest node of 𝑣 , contradiction; otherwise, 𝑑𝑖𝑠𝑡 (𝑓𝑧 , 𝑣) > 𝑑𝑖𝑠𝑡 (𝑤, 𝑣),
𝑤 is not the farthest node of 𝑣 , contradiction. □

Analysis of Approximate Algorithm. Theorem 5.5 shows that

after having BFSs performed |𝐹1 | times in IFECC, one can compute

the exact eccentricity distribution. Note that |𝐹1 | can be smaller

than 𝑛 but still can be large. The following theorem shows that by

performing |𝐹2 |, note that |𝐹2 | can be dramatically smaller than

|𝐹1 |, BFSs in IFECC, one can obtain a reasonably good estimation

for the eccentricity of each node.

Theorem 5.6. Performing BFSs from nodes in 𝐹2 in𝑂 ( |𝐹2 | (𝑚+𝑛))
time computes i) 𝑒𝑐𝑐 (𝑣) for each node 𝑣 in 𝐹2 and ii) an estimation
𝑒𝑐𝑐 (𝑣) = max{𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2), 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4
𝑒𝑐𝑐 (𝑧)} for each node

𝑣 ∉ 𝐹2 such that 7

12
≤ 𝑒𝑐𝑐 (𝑣)

𝑒𝑐𝑐 (𝑣) ≤
3

2
.

Proof. Consider node 𝑣 ∉ 𝐹2.

• If 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) ≤ 1

3
𝑒𝑐𝑐 (𝑧), we have 𝑑𝑖𝑠𝑡 (𝑣, 𝐹2) ≥ 2

3
𝑒𝑐𝑐 (𝑧)

while 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4
𝑒𝑐𝑐 (𝑧) < 2

3
𝑒𝑐𝑐 (𝑧). Therefore, 𝑒𝑐𝑐 (𝑣) =

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2) ≤ 𝑒𝑐𝑐 (𝑣) ≤ max{𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) +
2

3
𝑒𝑐𝑐 (𝑧)} ≤ max{𝑒𝑐𝑐 (𝑣), 𝑒𝑐𝑐 (𝑧)}. If 𝑒𝑐𝑐 (𝑣) ≥ 𝑒𝑐𝑐 (𝑧) then

𝑒𝑐𝑐 (𝑣) = 𝑒𝑐𝑐 (𝑣); otherwise, 𝑒𝑐𝑐 (𝑣) ≤ 𝑒𝑐𝑐 (𝑣) ≤ 𝑒𝑐𝑐 (𝑧) ≤
3

2
𝑒𝑐𝑐 (𝑣).

• If 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) ≥ 1

3
𝑒𝑐𝑐 (𝑧), then: 7

12
max𝑢∈𝑉 \𝐹2 𝑑𝑖𝑠𝑡 (𝑣,𝑢)

≤ 7

12

(𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 2

3

𝑒𝑐𝑐 (𝑧)) = 7

12

𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 5

36

𝑒𝑐𝑐 (𝑧) + 1

4

𝑒𝑐𝑐 (𝑧)

≤ 7

12

𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 5

12

𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4

𝑒𝑐𝑐 (𝑧)

= 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4

𝑒𝑐𝑐 (𝑧) ≤ 𝑒𝑐𝑐 (𝑣) + 1

4

𝑒𝑐𝑐 (𝑧)

≤ 𝑒𝑐𝑐 (𝑣) + 1

2

𝑒𝑐𝑐 (𝑣) = 3

2

𝑒𝑐𝑐 (𝑣) . ∵ 𝑒𝑐𝑐 (𝑧) ≤ 2𝑒𝑐𝑐 (𝑣)

Since 𝑒𝑐𝑐 (𝑣) = max{max𝑢∈𝑉 \𝐹2 𝑑𝑖𝑠𝑡 (𝑣,𝑢), 𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2)}
while 𝑒𝑐𝑐 (𝑣) = max{𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4
𝑒𝑐𝑐 (𝑧), 𝑑𝑖𝑠𝑡 (𝑣, 𝐹2)}, we



have:
7

12
𝑒𝑐𝑐 (𝑣)

= max{ 7
12

max

𝑢∈𝑉 \𝐹2
𝑑𝑖𝑠𝑡 (𝑣,𝑢), 7

12

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2)}

≤ max{𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4

𝑒𝑐𝑐 (𝑧), 7

12

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2)}

≤ max{𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 1

4

𝑒𝑐𝑐 (𝑧), 𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2)} = 𝑒𝑐𝑐 (𝑣)

≤ max{ 3
2

𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡𝑚𝑎𝑥 (𝑣, 𝐹2)} =
3

2

𝑒𝑐𝑐 (𝑣) .

□

The bound given by Theorem 5.6 is considerable given the neg-

ative results [28] on approximate solutions; in practice, we have

seen a superior performance of kIFECC: on 19 out of 20 real graphs

in our experiments, kIFECC can compute the exact eccentricities

for all nodes in |𝐹2 | BFS-computations.

Remark. The above theorems that hold for an arbitrary reference
node 𝑧 show the matching efficiency of our index-free solution in both
exact and approximate computations. Note that the size |𝐹1 | and |𝐹2 |
is dependent on the reference node 𝑧. We will provide a clear view
of these parameters on real massive graphs in Section 7 when the
highest-degree node is selected as the reference node 𝑧.

6 RELATEDWORK

Exact Eccentricity. The straightforward All-Pairs-Shortest-

Distance (APSD) algorithms compute the exact eccentricity dis-

tribution in quadratic time. APSD-based algorithms cannot scale to

large real-world graphs even under optimizations [6, 35]. Negative

results show that on an unweighted and undirected sparse graph

with 𝑛 vertices and𝑚 = 𝑂 (𝑛) edges, the diameter (let along the

eccentricity distribution) can never be reported in 𝑂 (𝑚2−𝜖 ) time,

for any constant 𝜖 > 0, unless the strong exponential time hypnosis

can be refuted [28].

In the line of research on practically optimizing exact eccentricity,

Henderson [12] applies articulation points and eccentricity bounds;

Takes et al. [34] sets priorities on vertices with node degree and

pops one vertex a time to update the eccentricity bounds of other

nodes until all nodes’ eccentricities are determined; PLLECC [19]

improves the update rule of [34]. Section 3.2 introduced PLLECC
in detail.

Computing the diameter of a graph, which is closely related to

the eccentricity computation, can also be hard: Takes el al. [33]

proposed a pruning based approach to compute the diameter while

Akiba et al. [2] further improve this approach through eccentricity

bounds propagation.

Approximate Eccentricity. To alleviate the burden in exact ec-

centricity computation, approximate eccentricity computation ap-

proaches were proposed. We categorize these approaches based on

the existence of error bounds.

For the algorithms with error bounds, one may use approxi-

mate APSD [1] directly. Roditty et al. [28] presents an algorithm

to estimate eccentricity 𝑒𝑐𝑐 (𝑣) with time complexity𝑂 (𝑚
√
𝑛 log𝑛).

The eccentricity 𝑒𝑐𝑐 (𝑣) is bounded by [ 2
3
𝑒𝑐𝑐 (𝑣), 3

2
𝑒𝑐𝑐 (𝑣)], for each

node 𝑣 in an undirected and unweighted graph. Chechik et al.

[10] further improves the method by transforming the graph to a

Table 3: The Data Set Description
Name Dataset 𝑛 𝑚 𝑟 𝑑 Type

DBLP DBLP 317,080 1,049,866 12 23 Social

GP GPlus 201,949 1,133,956 35 70 Social

YOUT Youtube 1,134,890 2,987,624 12 24 Social

DIGG Digg 770,799 5,907,132 9 18 social

SKIT Skitter 1,694,616 11,094,209 16 31 Internet

DBPE Dbpedia 3,915,921 12,577,253 34 67 Web

HUDO Hudong 1,962,418 14,419,760 8 16 Web

TPD UK-Tpd 1,766,010 15,283,718 9 18 Web

FLIC Flickr 1,624,992 15,476,835 12 24 Social

BAID Baidu 2,107,689 16,996,139 11 20 Web

TOPC Topcats 1,791,489 25,444,207 6 11 Web

STAC Stackoverflow 2,572,345 28,177,464 6 11 Contact

UK02 UK02 18,459,128 261,556,721 23 45 Web

ABRA Arabic 22,634,275 552,231,867 24 47 Web

IT IT-2004 41,290,577 1,027,474,895 23 45 Web

TWIT Twitter 41,652,230 1,202,513,046 13 23 Social

FRIE Friendster 65,608,366 1,806,067,135 19 37 Social

SK SK 50,634,118 1,810,050,743 20 40 Web

UK07 UK07 104,288,749 3,293,805,080 56 112 Web

UKUN UKUN 130,831,972 4,653,174,411 129 257 Web

bounded-degree graph and obtains an algorithm with time com-

plexity 𝑂 ((𝑚 log𝑚)
3

2 ) with 𝑒𝑐𝑐 (𝑣) bounded by [𝑒𝑐𝑐 (𝑣), 5
3
𝑒𝑐𝑐 (𝑣)].

For approximate algorithms without error bounds, the computa-

tion of approximate eccentricities can be more efficient. Takes et

al. [34] adjust their exact eccentricity algorithm to terminated early

once the diameter and radius can be correctly estimated. Shun [32]

adopts a two-stage sampling method to estimate the eccentrici-

ties of all nodes. As indicated by their experiments, this sampling

algorithm is efficient and provides a high-quality estimation.

Priority Order under BFS-framework. The selection of the

source node set 𝑆 by a priority order plays a vital role under BFS-

framework. Henderson [12] iteratively appends 𝑆 with the node

with the largest gap between the upper and lower bounds. Based on

[12], various heuristics have been exploited in [33], e.g., appending

to 𝑆 i) the node with the smallest lower bound and the largest upper

bound alternatively or ii) the node with the farthest distance to

the previously appended node. Akiba, et al. [2] explores the order

in appending nodes to 𝑆 according to in-degree, out-degree, the

product of in-degree and out-degree, etc.. The source node set can

also be determined based on random-samples [28, 32]. Specifically,
a set 𝑆 ′ of nodes selected from 𝑉 uniformly at random. 𝑆 ′ is used
to elect

3
nodes 𝑆 ′′ in 𝑉 that are likely to be far from other nodes in

the graph. By letting the source node set 𝑆 = 𝑆 ′ ∪ 𝑆 ′′, it is possible
to reach

2

3
-approximation if |𝑆 | = Ω(

√
𝑛 log𝑛).

Other Graph CentralityMeasures. There are multiple centrality

measures apart from eccentricity centrality. Closeness centrality,

the inverse of the sum of shortest distances from a node to all other

nodes [26], and betweenness centrality, the fraction of shortest

paths between node pairs that pass through the target node [25],

indicate the efficiency of a vertex in spreading information to other

parts of the graph.[22] summarizedmany commonly used centrality

measures and their applications in various domains.

3
Different settings were used in [28] and [32] in facilitating this election.



7 EXPERIMENT
This section first introduces the experimental settings and then

compares our solution with the competitors. Our statistical analysis

on real-world graphs shall echo the theoretical analysis in Section 5.

Algorithms.We compare the following approaches:

• IFECC-16, proposed Algorithm 2 with 16 reference nodes;

• IFECC-1, proposed Algorithm 2 with 1 reference node;

• kIFECC, our proposed approximate Algorithm 3.

• BoundECC [34], the state-of-the-art algorithm for computing

exact ED under BFS-framework;

• PLLECC [19], the state-of-the-art algorithm for computing exact

ED, parameters were set based on [19];

• kBFS [32], the state-of-the-art algorithm for computing approxi-

mate ED. It returns approximate ED given a sample size 𝑘 .

All algorithms were implemented in C++ and compiled with

GNN GCC 4.8.5 with -O3 level optimization. All experiments were

conducted on a machine with Intel Xeon 2.4 GHz CPU and 512 GB

memory running Linux (Red Hat Linux 4.8.5, 64 bit). We set the

cut-off time as 24 hours.

Since both kIFECC and kBFS are under BFS-framework, the

quality of the estimation of the eccentricity distribution will be

compared under the same number of BFSs that an algorithm can

perform. The effectiveness of an approach is evaluated with

Accuracy =
| {𝑣 |𝑣∈𝑉 ,𝑒𝑐𝑐 (𝑣)=𝑒𝑐𝑐 (𝑣) } |

|𝑉 | × 100%.

Datasets.The experimentswere conducted on 20 real-world graphs

with various properties, as shown in Table 3. The datasets are from

various types of massive networks, including social networks, web

graphs, internet topology graphs, and contact networks. The largest

graph has more than 4.6 billion edges. All graphs were downloaded

from Network Repository
4
[30], Stanford Large Network Dataset

Collection
5
[17], Laboratory for Web Algorithms

6
[7, 8], and the

Koblenz Network Collection
7
[16].

7.1 Comparison of Time Consumption
We begin by comparing exact ED computation algorithms regarding

time costs. We would like to answer the following questions:

Q1 What is the advantage of IFECC over other algorithms in

terms of computation time?

Q2 What is the effect of the reference node number 𝑟 on IFECC?

Exact EDComputation Efficiency.We compare the proposed ex-

act method IFECC to the state-of-the-art exact approach PLLECC.
PLLECC contains twomain costs: the cost in constructing the index,

denoted as PLLECC-PLL, and the cost in computing the eccentric-

ity, denoted as PLLECC-ECC. PLLECC uses 16 reference nodes, as

suggested by the settings in [19]. For our method, we denote IFECC
with one reference node as IFECC-1 and with 16 reference nodes

as IFECC-16. Figure 8 shows the runtime for PLLECC, consists of
the time of PLLECC-PLL and PLLECC-ECC, and the time used by

our methods IFECC-1 and IFECC-16.

4
http://networkrepository.com/index.php

5
http://snap.stanford.edu/data/

6
http://law.di.unimi.it

7
http://konect.cc/networks/

Figure 8 shows the superiority of our index-free solution: on the

first 12 graphs where PLLECC can complete before the cut-off (24

hours), IFECC-16 is 15 times faster than PLLECC on average. With

1 reference node, IFECC-1 is over 69.8 times faster than PLLECC
on the first 12 graphs where PLLECC can compute. On the 12

small graphs, BoundECC completes the computation on the first 11

graphs while it cannot finish the computation on STAC within one

day. Moreover, on the graphs where it can finish the computation,

BoundECC is 51.6, 558.5, and 2675.3 times slower (on average)

than PLLECC, IFECC-16, and IFECC-1, respectively. On the other 8

graphs, IFECC-16 computes the eccentricities for all graphs within

7 hours; IFECC-1 finished all computations within 2 hours. This

validates the superior of using only one reference node for IFECC.
Moreover, the index construction time dominates the cost of

PLLECC: on the first 12 graphs where PLLECC can complete before

the cut-off, the index construction time PLLECC-PLL is more than

41.3× longer than the time PLLECC-ECC to compute the eccentric-

ities. This explains the motivation to eliminate the dependence of

the eccentricity calculation on the index.

The Effect of Reference Node Number 𝑟 . To examine the effect

of the reference node number 𝑟 on the running time of IFECC, 𝑟
ranges from 1, 2, 4, 8, 16. We denote IFECC under each number 𝑟

as IFECC-𝑟 to report the running time. Figure 9 shows the results.

Figure 9 indicates that the running time of IFECC normally

increases with the growth of the reference node number: on all the

test graphs, compared with IFECC using one reference node, the

running time is more than 1.3, 1.8, 2.8, 4.5 times longer on average

when 2, 4, 8, 16 reference nodes are used, respectively. Although on

some graphs such as SKIT, the running time of IFECC-2 is a little
better than that of IFECC-1, the gap is pretty small: IFECC-1 is

less than 1.1 slower than IFECC-2. These results mean that setting

reference node number as 1 removes the inconvenient parameter

setting process and achieves a superior running time than IFECC
with multiple reference nodes at most of the time.

7.2 Comparison of Space Consumption
Then, we compare the space cost of different exact ED calculation

algorithms. We would like to answer the following question.

Q3 What is the advantage of IFECC over the state-of-the-art

PLLECC as far as space cost is concerned?

To further verify the superiority of the proposed IFECC, we com-

pare the space cost between PLLECC and IFECC (under a reference

node). The space required for IFECC is primarily determined by the

graph size, whereas the space required for PLLECC is determined

by the graph size plus the index size. We report the memory size

consumed by both algorithms at runtime in Figure 10.

On the first twelve graphs where PLLECC can complete the

computation, PLLECC requires on average more than 36.6 times

more memory space than IFECC, with a maximum of more than

65.4 times (on DBLP). On the eight graphs where PLLECC cannot

complete the computation, IFECC consumes less than 40 GB of

memory space. Recall that PLLECC requires extra space to load

the vast indexes. Conversely, IFECC requires memory space that is

linearly related to the graph’s size. This further explains why we

need to propose new techniques to address PLLECC’s dependence
on indexes: oversized indexes make PLLECC extremely demanding
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on memory, while our algorithm IFECC does not require much

additional memory cost and thus can handle large-scale graphs.

7.3 Approximate ED Computation Efficiency
This experiment compares kIFECC, the approximate version of

IFECC, with the state-of-the-art approximate algorithm kBFS. Since
both kIFECC and kBFS are under BFS-framework, the cost lies in

the number of BFSs performed. Moreover, since both IFECC and

kBFS work on the same sample size (i.e., perform BFS), we did

not compare the two in terms of time cost, since they have the

same time cost. We focus on the accuracy of the two approximation

algorithms and try to answer the following question:

Q4 What is the advantage of kIFECC over kBFS in terms of

approximation accuracy?

We vary the number 𝑘 of BFSs from 2
1 = 2 to 2

7 = 128. We show

the accuracy of each method in Figure 11. On all the tested graphs,

the accuracy of kIFECC steadily increases with the increasing of 𝑘

while that of kBFS does not. For example, when changing 𝑘 from

2 to 16 on TOPC, kBFS has the accuracy from 27.2% to 8.9%, and

then to 99.2%, and finally to 40.2%. This shows an additional insta-

bility of kBFS. As the increase of 𝑘 , kIFECC, adapted from an exact

eccentricity computation, will finally report exact eccentricities; in

contrast, kBFS, adapted from an approximate approach, may not

converge to the exact eccentricities.

7.4 Statistics Analysis
Section 5 analyzed the complexity of IFECC and the effectiveness

of kIFECC based on |𝐹1 | and |𝐹2 |: |𝐹1 | is enough for exact ED com-

putation and |𝐹2 | is sufficient for approximation ED computation.

Note that the analysis in Section 5 does not depend on a par-

ticular choice of the reference node. In practice, however, we find

the highest-degree node is a good choice. This is due to the core-

periphery structure identified in various networks, especially small-

world networks such as social networks and web graphs (see [29]

as an entrance). In general, a graph with this property consists

of a closely and densely connected core and a sparsely connected

periphery. In other words, the periphery is a small set of nodes that

are remotely surrounding the core. If one can use the center – the

node with the minimum eccentricity – of the graph as the reference

node, the corresponding farthest
1

3
set 𝐹2 would largely overlap the

periphery, which leads to a small cardinality |𝐹2 |. Since the core is
densely connected, the node in the graph with the highest degree
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tends to be close to the center of the graph [9]. In other words,

by using the highest-degree node as the reference node, one can

achieve a small |𝐹2 | and thus efficiency in the bound matching in

IFECC. To support this intuition, we ask the following question:

Q5 What is the size of 𝐹1 and 𝐹2 when the highest-degree node

is selected for reference on the graphs used in the paper?

In order to answer this question, we show, in Figure 12, |𝐹1 | and
|𝐹2 | on 20 real graphs with the highest-degree node the reference

node 𝑧. Denote by 𝑛 the number of nodes in the graph. |𝐹1 | is on
average 0.1𝑛 while |𝐹2 | is on average 3.4 × 10−4𝑛. The average size
of |𝐹2 | is 857.7. In practice, 𝐹2 can do much better approximation

than Theorem 5.6; it can compute the eccentricities of an average of

99.999% of nodes in the graph. Besides, on 19 out of 20 data graphs,

all nodes’ eccentricities are precisely computed.

7.5 Case Study
Stanford Network Analysis Platform (SNAP) [18] is a general-

purpose system that provides easy-to-use operations for large graph

analysis. One of the important features provided by SNAP is diam-

eter. Diameter 𝑑𝑖𝑎 is a fundamental property of graphs [4]. SNAP

estimates the diameter of a graph based on sampling [18]. Specifi-

cally, SNAP samples 𝑘 vertices uniformly at random from 𝑉 as the

sources of BFSs; the maximum eccentricity of the sampled nodes is

used as an estimator 𝑑𝑖𝑎 of the diameter. This study evaluates the

effectiveness of SNAP diameter estimation, justifying our effort in

replacing the diameter calculation of SNAP with our IFECC.

Exp-1. Effect of Sampling Size on Accuracy. Given 𝑑𝑖𝑎 and

the actual diameter 𝑑𝑖𝑎, the accuracy of an estimate is defined

as
𝑑𝑖𝑎−𝑑𝑖𝑎

𝑑𝑖𝑎
× 100%. To evaluate the performance of SNAP, we varied

the sample size used for SNAP from 200, 400, 600, 800, to 1000 (1000

is the number used by SNAP in its code). We calculate the accuracy

of the estimated diameter of SNAP for each sample size. Due to

space limitations, we only report the results on the four graphs

HUDO, TPD, FLIC, and BAID in Fig. 13. Fig. 13 suggests that the

average accuracy of SNAP on all graphs is 77.4% which is not satis-

factory. Surprisingly, increasing the sample size does not increase

the accuracy value: as the sample size varies from 200 to 800, the ac-

curacy on the graph HUDO varies from 75%, 87.5%, 81.3%, and 75%.

This implies that the sampling estimator for diameter estimation

used by SNAP is unstable.

Exp-2. Comparison with IFECC. To compare IFECC with SNAP,

assuming that IFECC requires 𝑘 BFSs, we control the sample size of

SNAP at 20%, 40%, 60%, 80%, and 100% of the number of BFSs used
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by IFECC, and calculate the accuracy of SNAP. We counted the

number of BFSs required by our method IFECC to obtain the exact

eccentricities: 83 required for HUDO, 26 for TPD, 32 for FLIC, and
61 for BAID. The results are shown in Fig. 14. Fig. 14 suggests that

the accuracy of SNAP does not increase with the increase of sample

size. Moreover, even when SNAP uses the same sample size as

IFECC (i.e., using the same computation time), SNAP has accuracy

constantly ≤ 85%, while IFECC can obtain the exact diameter. These

results strongly suggest that our method can replace the diameter

estimation feature of SNAP.

Exp-3. Eccentricity Distribution Plot. This experiment explains

why SNAP (random sampling) performs poorly when estimating

the diameter. Fig. 15 plots the eccentricity distribution for each

graph: the x-axis represents the eccentricity value which is between

the radius (minimum eccentricity) and the diameter (maximum

eccentricity); the y-axis the number of nodes with that value. It

can be observed that the number of nodes whose eccentricity value

equals to the diameter is 9 onHUDO, 4 on TPD, 3 on FLIC, and 9 on
BAID. The average percentage of these nodes in the whole vertex

set is 3.2×10−6 which is the probability a random sample can reach

the exact diameter. Therefore, it is difficult for SNAP to obtain an

accurate estimate of the diameter by sampling. On the contrary,

IFECC obtains an accurate diameter (with the exact eccentricity

distribution as a by-product) efficiently with an average of 50.5

BFSs on the four graphs. Integrating IFECC into SNAP as a module

for diameter and eccentricity distribution computation is a must.

8 CONCLUSIONS
This paper proposes a concise exact eccentricity distribution com-

putation algorithm IFECC. IFECC is up to two orders of magnitude

faster than the state-of-the-art algorithm PLLECC and can scale up

to billion-scale networks that cannot be handled by PLLECC. Such
a performance is, more importantly, theoretically justified. IFECC
also derives, as a by-product, a cutting-edge approximate solution

for computing the eccentricity distribution.
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APPENDIX

Proof of Lemma 3.1. Given 𝑡 and its farthest node 𝑓𝑡 , 𝑣 and its

farthest node 𝑓𝑣 , by the triangular inequality, in Figure 16, from

△(𝑡, 𝑣, 𝑓𝑣), we have 𝑒𝑐𝑐 (𝑣) ≤ 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) + 𝑒𝑐𝑐 (𝑡); from △(𝑡, 𝑣, 𝑓𝑡 ), we
have 𝑒𝑐𝑐 (𝑡) − 𝑑𝑖𝑠𝑡 (𝑣, 𝑡) ≤ 𝑒𝑐𝑐 (𝑣).
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Figure 16: Proof of Lemma 3.1
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Figure 17: Proof of Lemma 3.3

Proof of Lemma 3.3. By definition, 𝑒𝑐𝑐 (𝑣) =

max𝑢∈𝑉 (𝑑𝑖𝑠𝑡 (𝑣,𝑢)) = max𝑢∈𝑇∪{𝑉 \𝑇 } (𝑑𝑖𝑠𝑡 (𝑣,𝑢)) =

max𝑢∈𝑇 (𝑑𝑖𝑠𝑡 (𝑣,𝑢)) + max𝑢∈{𝑉 \𝑇 } (𝑑𝑖𝑠𝑡 (𝑣,𝑢)). i) 𝑒𝑐𝑐 (𝑣) =

max𝑢∈𝑇 𝑑𝑖𝑠𝑡 (𝑣,𝑢). ii) for ∀𝑣𝑧
𝑗
∈ {𝑉 \ 𝑇 }, as given in Figure 17,

𝑑𝑖𝑠𝑡 (𝑣, 𝑣𝑧
𝑗
) ≤ 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑣𝑧

𝑗
) ≤ 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑣𝑧

𝑖
),

and thus max𝑢∈{𝑉 \𝑇 } (𝑑𝑖𝑠𝑡 (𝑣,𝑢)) ≤ 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑧, 𝑣𝑧
𝑖
).

Putting these two parts together derives 𝑒𝑐𝑐 (𝑣) ≤
max(𝑒𝑐𝑐 (𝑣), 𝑑𝑖𝑠𝑡 (𝑣, 𝑧) + 𝑑𝑖𝑠𝑡 (𝑣𝑧

𝑖
, 𝑧)).
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