
215

Modularity-based Hypergraph Clustering: Random
Hypergraph Model, Hyperedge-cluster Relation, and
Computation
ZIJIN FENG, Department of Systems Engineering and Engineering Management, and Shun Hing Institute

of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong

MIAO QIAO, University of Auckland, New Zealand

HONG CHENG, Department of Systems Engineering and Engineering Management, and Shun Hing

Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong

A graph models the connections among objects. One important graph analytical task is clustering which

partitions a data graph into clusters with dense innercluster connections. A line of clustering maximizes a

function calledmodularity. Modularity-based clustering is widely adopted on dyadic graphs due to its scalability

and clustering quality which depends highly on its selection of a random graph model. The random graph model

decides not only which clustering is preferred – modularity measures the quality of a clustering based on its

alignment to the edges of a random graph, but also the cost of computing such an alignment. Existing random

hypergraph models either measure the hyperedge-cluster alignment in an All-Or-Nothing (AON) manner,

losing important group-wise information, or introduce expensive alignment computation, refraining the

clustering from scaling up. This paper proposes a new random hypergraph model called Hyperedge Expansion

Model (HEM), a non-AON hypergraph modularity function called Partial Innerclusteredge modularity (PI)
based on HEM, a clustering algorithm called Partial Innerclusteredge Clustering (PIC) that optimizes PI,
and novel computation optimizations. PIC is a scalable modularity-based hypergraph clustering that can

effectively capture the non-AON hyperedge-cluster relation. Our experiments show that PIC outperforms

eight state-of-the-art methods on real-world hypergraphs in terms of both clustering quality and scalability

and is up to five orders of magnitude faster than the baseline methods.

CCS Concepts: • Information systems→ Clustering; • Mathematics of computing→ Hypergraphs; •
Computing methodologies→ Cluster analysis.

Additional Key Words and Phrases: Modularity; Cardinality; Random graph

ACM Reference Format:
Zijin Feng, Miao Qiao, and Hong Cheng. 2023. Modularity-based Hypergraph Clustering: Random Hypergraph

Model, Hyperedge-cluster Relation, and Computation. Proc. ACM Manag. Data 1, 3 (SIGMOD), Article 215

(September 2023), 25 pages. https://doi.org/10.1145/3617335

1 INTRODUCTION
A graph models the interconnections among real-world objects using a set of edges on a set of

nodes. Typically, a graph captures pairwise relations among objects, i.e., each edge connects exactly

Authors’ addresses: Zijin Feng, Department of Systems Engineering and Engineering Management, and Shun Hing Institute

of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong, zjfeng@se.cuhk.edu.hk; Miao Qiao, University

of Auckland, New Zealand, miao.qiao@auckland.ac.nz; Hong Cheng, Department of Systems Engineering and Engineering

Management, and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong,

hcheng@se.cuhk.edu.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/9-ART215 $15.00

https://doi.org/10.1145/3617335

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

HTTPS://ORCID.ORG/0000-0002-9746-8253
HTTPS://ORCID.ORG/0000-0001-8374-140X
HTTPS://ORCID.ORG/0000-0002-4673-2587
https://doi.org/10.1145/3617335
https://orcid.org/0000-0002-9746-8253
https://orcid.org/0000-0001-8374-140X
https://orcid.org/0000-0002-4673-2587
https://doi.org/10.1145/3617335

215:2 Zijin Feng, Miao Qiao, & Hong Cheng

Fig. 1. A running example to illustrate the concepts of hypergraph, clique reduction (details in Section 2.2.1),
bipartite reduction (details in Section 2.2.2), and random graph models (Section 2.1, Section 2.2, and Section 3).

two nodes; a more general graph models groupwise relations among objects, where each edge

connects a group of two or more nodes. The former type of graph is often called a dyadic graph
where each edge is a dyadic edge; the latter is called a hypergraph where each edge is a hyperedge.

Extensive high-order connections in graph-based applications [13] have triggered the study and

analysis of hypergraphs. For example, in a coauthor network, a node represents an author and a

hyperedge represents the author team who published a paper in a joint effort. In contrast, a dyadic

graph can only capture the pairwise co-authorship, losing the information of the author team of

each paper. In a protein complex network [53], a node denotes a protein and a hyperedge represents

a group of proteins that form a multi-protein complex. In contrast, a dyadic graph can only indicate

if two proteins co-exist in forming a complex but cannot represent the complex itself (such a dyadic

network is known as a protein-protein interaction network). A hypergraph preserves high-order

connections of the applications, thus allowing finer graph analysis. Figure 1(a) is a hypergraph

with 3 hyperedges 𝑒0, 𝑒1, 𝑒2. As an example, hyperedge 𝑒0 = {𝑣0, 𝑣1, 𝑣2, 𝑣3} has 4 nodes. |𝑒0 | = 4 is

called the hyperedge cardinality of 𝑒0.

One important graph analytical task is graph clustering. It aims at partitioning the nodes of a

graph into a collection of node sets called clusters. Nodes in each cluster should be more closely

connected to the other nodes in the same cluster than to the nodes in other clusters. Graph clustering

is widely applied in various commercial and scientific scenarios such as community detection [26],

link prediction [57], group-oriented marketing [63], brain parcellations [59], etc., and thus has

been extensively studied on dyadic graphs. A highly scalable line of clustering is modularity-based

which, as the name suggests, maximizes a function called modularity. Modularity-based clustering

such as Louvain [14] has been widely used in industry applications due to its scalability and

clustering quality [65]. The key to its success is the selection of a random graph model. Specifically,
the modularity function evaluates a clustering 𝒞 based on the difference in its “alignment” to the

data graph 𝐺 and its expected “alignment” to a random graph 𝐺 ′. Here 𝐺 ′ is generated by the

chosen random graph model while the “alignment” indicates the portion of edges that fall in the

same cluster in 𝒞. The selection of the random graph model not only decides which clustering

will be preferred, but also the cost required in computing the alignment. An ideal random graph

model should preserve essential statistics of the data graph 𝐺 – enough for quality clustering

without overburdening the computation. Such a model is found on dyadic graphs: the configuration
model [10] (depicted in Figure 1(c)) generates random graphs that preserve the degree distribution

of 𝐺 and allow the efficient computation of the expected alignment.

When it comes to hypergraphs, Modularity-based Hypergraph Clustering (MBHC) is worth
studying for three reasons. Firstly, hypergraph clustering has drawn an increasing attention re-

cently [20, 34, 38, 39, 44, 58, 60] due to its wide applications in social community detection [20],

VLSI placement [47], metabolic reactions analysis [37], image segmentation [36], multi-relational

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:3

data analysis including clustering [11, 29, 60] and recommendation [18, 43]. Secondly, as discussed

in [48, 58], existing hypergraph clustering with objective functions often struggles with scalability

and efficiency. Hypergraph clustering methods based on measures such as normalized cut [30], con-

ductance [58], and correlation [61] were tested only on small graphs with approximately 10
2
to 10

4

edges. Modularity-based clustering which allows the clustering of dyadic graphs of large size [65]

is more likely to be scaled up on hypergraphs. Thirdly, existing MBHC methods [7, 20, 34, 38, 39]

lack a random hypergraph model that can capture the hyperedge-cluster alignment effectively in

their modularity without overloading the computation. To speed up the computation, they lose

either entire or partial groupwise information, jeopardizing the cluster quality.

A line of existingMBHC [7, 38, 39] transforms the hypergraph to a dyadic graph using clique
reductionwhich converts a hyperedge 𝑒 into a clique of dyadic edges among all nodes in 𝑒 . Figure 1(b)

is a dyadic graph by clique reduction from the hypergraph in Figure 1(a). It then applies existing

dyadic graph clustering. The main downside is the loss of the groupwise information in the

hypergraph. Another line [19, 34, 41] transforms the hypergraph into a bipartite graph using

bipartite reduction and then generates a random hypergraph. Figure 1(d) is a bipartite graph by

bipartite reduction from the hypergraph in Figure 1(a). We thus call their random hypergraph model

Bipartite Matching Model (BMM) (depicted in Figure 1(e)). BMM generates a random hypergraph

that preserves not only the degree distribution, but also the cardinality distribution: each hyperedge

of the given hypergraph has a counterpart in the random hypergraph with the same cardinality.

The downside is that the computation of the expected alignment between the hyperedges
and the clustering on the random hypergraph generated by BMM is expensive. Specifically,
for a hyperedge 𝑒 , the expected alignment of its counterpart hyperedge in the random graph to a

cluster 𝐶 is computed in 𝑂 (|𝑒 |) time. This needs to be calculated between every hyperedge and

every cluster, as long as they have nodes in common, leading to at least quadratic complexity

for clustering computation (see analysis in Section 2.2.2). To avoid such a heavy computation,

most existingMBHC [20, 34] consider only the hyperedge 𝑒 and cluster 𝐶 in the computation of

modularity when all the nodes in 𝑒 fall in 𝐶 . Otherwise, 𝑒 is ignored. This All-Or-Nothing (AON)

constraint loses partial groupwise information and thus leads to degenerated clustering quality: a

hyperedge cannot be reflected in the clustering result at all even if most of its nodes are aligned

with a cluster.

The drawbacks of existing random hypergraph models in the context of modularity-based

clustering motivate us to explore real-world hypergraphs, which leads to an observation that their

cardinality distributions can be well-captured by an exponential function. Based on this observation,

the paper proposes a suite of new techniques including Hyperedge Expansion Model (HEM), a

random hypergraph model, Partial Innerclusteredge (PI) modularity, a modularity function under

HEM, and a clustering algorithm PI clustering (PIC). The merits of our solution are summarized

below.

(1) HEM simplifies the existing random hypergraph model while preserving the essential features

of real hypergraphs including the hyperedge number, the degree sequence, and a highly fitted

cardinality distribution. The simplification paves the way to an efficient modularity computation

for quality clustering.

(2) PI modularity function collects partial (non-AON) contributions from hyperedges to clusters

which can be efficiently computed.

(3) PIC optimizes the PI modularity iteratively; to further scale PIC to massive graphs, we propose

two non-trivial optimization techniques to prune the search space in the iterative adjustment

of clustering for maximizing the PI modularity.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:4 Zijin Feng, Miao Qiao, & Hong Cheng

(4) Empirically, PIC outperforms the state-of-the-art methods in both effectiveness and scalability.

When averaged over all hypergraphs we tested, PIC obtained 15 times higher F-measure [49], 4

times higher purity [49], 10 times higher ARI [33], and 75% higher NMI [35]. PIC is also quite

scalable to large hypergraphs and faster than all baseline methods by an average of four orders

of magnitude and up to five orders of magnitude.

We show that the slight relaxation of the exact preservation of the cardinality distribution allows

PIC to achieve scalability on hypergraphs without compromising the clustering quality. Surprisingly,

the clustering quality of PIC turned out to be empirically better than that of [20, 34] that preserves

the exact cardinality distribution
1
.

The paper is organized as follows. Section 2 formally defines the problem. Section 3 proposes

the random hypergraph model HEM, Section 4 describes the PI modularity, and Section 5 proposes

the PI Clustering algorithm (PIC) with two optimizations. Section 6 discusses the related work,

Section 7 shows the empirical results, and Section 8 concludes the paper.

2 PRELIMINARY CONCEPTS
A dyadic graph 𝐺 (𝑉 , 𝐸) has a node set 𝑉 and an edge set 𝐸 where an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 connects

two nodes𝑢, 𝑣 ∈ 𝑉 . A hypergraph𝐻 (𝑉 , 𝐸) is a generalization of a dyadic graph where an edge 𝑒 ∈ 𝐸,
called a hyperedge, connects multiple nodes in 𝑉 and is denoted as 𝑒 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } ⊆ 𝑉 . Both
dyadic graphs and hypergraphs are called graphs. Define the cardinality of 𝑒 , |𝑒 |, as the number of

nodes in 𝑒 . A hyperedge 𝑒 is trivial if |𝑒 | < 2 as it does not describe any relation among nodes in 𝑉 .

Given a hypergraph 𝐻 (𝑉 , 𝐸), denote by 𝑛(𝐻) = |𝑉 | the number of nodes, and𝑚(𝐻) = |𝐸 | the
number of edges. Let 𝑆 =

⊎
𝑒∈𝐸 𝑒 be a multi-set of nodes (where a node can appear multiple times

in 𝑆). For each node 𝑣 ∈ 𝑉 , define the degree of 𝑣 , denoted as 𝑑𝑣 (𝐻), as the number of duplications

of 𝑣 in 𝑆 . 𝑑𝑣 (𝐻) equals the number of hyperedges in 𝐻 that contain node 𝑣 . For a set 𝐶 ⊆ 𝑉 ,

denote by vol(𝐶,𝐻) = ∑
𝑣∈𝐶 𝑑𝑣 (𝐻) the volume of set𝐶 in the graph. Denote by vol(𝐻) = vol(𝑉 ,𝐻)

the volume of hypergraph 𝐻 , and by vol2 (𝐻) =
∑

𝑒∈𝐸
(|𝑒 |
2

)
the pairwise volume of hypergraph 𝐻 .

When the hypergraph 𝐻 is clear in the context, we use simplified notations of 𝑛,𝑚,𝑑𝑣 and vol(𝐶),
respectively.

Example 1. Consider the hypergraph 𝐻 (𝑉 , 𝐸) in Figure 1(a) with 𝑉 = {𝑣0, 𝑣1, · · · , 𝑣6} and 𝐸 =

{𝑒0, 𝑒1, 𝑒2}. The nodes in 𝑒0, 𝑒1 and 𝑒2 form the multi-set 𝑆 = {𝑣0, 𝑣1, 𝑣2, 𝑣2, 𝑣2, 𝑣3, 𝑣3, 𝑣4, 𝑣4, 𝑣5, 𝑣6}. The
degree of 𝑣0 is 𝑑𝑣0 = 1 and that of 𝑣2 is 𝑑𝑣2 = 3. For set 𝐶 = {𝑣0, 𝑣1, 𝑣2, 𝑣3}, the volume is vol(𝐶) =
𝑑𝑣0 + 𝑑𝑣1 + 𝑑𝑣2 + 𝑑𝑣3 = 7. The volume of hypergraph 𝐻 is vol(𝐻) = 11 and the pairwise volume of 𝐻 is
vol2 (𝐻) = 15.

Lemma 1. [17] For a hypergraph 𝐻 (𝑉 , 𝐸), the volume vol(𝐻) = ∑
𝑒∈𝐸 |𝑒 |. In particular, when the

graph is dyadic, vol(𝐻) = 2𝑚.

Clustering. Given a graph 𝐻 (𝑉 , 𝐸), a clustering 𝒞 = {𝐶1,𝐶2, · · · ,𝐶𝑘 } is a partition of 𝑉 , that is, 𝑉

is the disjoint union
¤⋃
𝑖∈[𝑘]𝐶𝑖 .

2.1 Random Graph Model and Modularity for Dyadic Graph Clustering
The modularity function proposed by Newman-Girvan (NG) [51] is widely used in dyadic graph

clustering as the objective function. Our hypergraph clustering problem also uses modularity as the

objective function. In the following, we introduce the random graph model, called configuration

model, used to generate a random graph𝐺 ′ from a dyadic graph 𝐺 and how to calculate the NG
modularity of a clustering 𝒞 from 𝐺 and 𝐺 ′.

1
We believe that there might be other design options of random hypergraph model that lead to better scalability and

clustering quality: we are open to this line of discussions.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:5

Configuration Model for Dyadic Graph [10]. Given a graph 𝐺 (𝑉 , 𝐸), the configuration model

generates a random graph𝐺 ′ (𝑉 , 𝐸′) preserving the degree distribution of𝐺 . For any positive integer

𝑘 , 𝐺 and 𝐺 ′ have the same number of nodes with degree 𝑘 . 𝐺 ′ is generated in a break-and-rewire

process as illustrated in Figure 1(b-c).

(1) Break. Break each edge 𝑒 (𝑢, 𝑣) ∈ 𝐸 into two stubs in the form of (𝑢,−) and (𝑣,−). A stub, e.g.,

(𝑣,−), has one end fixed and the other open. Each 𝑣 ∈ 𝑉 has 𝑑𝑣 stubs and there are in total

2𝑚 stubs. We use set 𝑇 to denote the 2𝑚 stubs.

(2) Rewire. Select two stubs uniformly at random from𝑇 without replacement, denoted as (𝑢′,−)
and (𝑣 ′,−), then rewire them to form a new edge (𝑢′, 𝑣 ′). Repeat step (2)𝑚 times, generating

𝑚 edges to form 𝐸′.

Newman-Girvan (NG) Modularity [51] for Dyadic Graph. For a cluster 𝐶 of a graph 𝐺 , an

edge is an innercluster edge of 𝐶 if both ends of the edge are in 𝐶 . The set of innercluster edges is

denoted as 𝐸 (𝐶) = {(𝑢, 𝑣) ∈ 𝐸 |𝑢, 𝑣 ∈ 𝐶}. Lemma 2 shows that the expected number of innercluster

edges of 𝐺 ′ in 𝐶 is approximately
vol2 (𝐶)
4𝑚

.

Lemma 2 ([51]). Let 𝐺 ′ (𝑉 , 𝐸′) be the random graph of 𝐺 (𝑉 , 𝐸) generated under the configuration
model. Given cluster 𝐶 ⊆ 𝑉 , the expected number of innercluster edges of 𝐺 ′ in 𝐶 is 𝐸𝑥𝑝 [|𝐸 (𝐶) |] =
vol2 (𝐶)
4𝑚−1 ≈

vol2 (𝐶)
4𝑚

if we assume that𝑚 ≫ 1.

The NG modularity computes the difference between the actual number of innercluster edges

of 𝐺 in 𝐶 and the expected number of innercluster edges of 𝐺 ′ in 𝐶 , i.e., |𝐸 (𝐶) | − 𝐸𝑥𝑝 [|𝐸 (𝐶) |],
∀𝐶 ∈ 𝒞:

NG(𝒞) =
∑

𝐶∈𝒞 |𝐸 (𝐶) | − 𝐸𝑥𝑝 [|𝐸 (𝐶) |]
𝑚

=

∑
𝐶∈𝒞 |𝐸 (𝐶) | − vol2 (𝐶)

4𝑚

𝑚
. (1)

2.2 Existing Hypergraph Clustering Methods
Existing hypergraph clustering methods convert a hypergraph into a dyadic graph by clique

reduction [7, 38, 39] or into a bipartite graph by bipartite reduction [19, 34, 41]. We briefly describe

them below and discuss their limitations.

2.2.1 Clique Reduction. [7, 38, 39] use clique reduction to convert a hypergraph 𝐻 (𝑉 , 𝐸) to a

dyadic graph 𝐺 on 𝑉 , then apply dyadic graph clustering to 𝐺 . It substitutes each hyperedge 𝑒 ∈ 𝐸
with a clique of dyadic edges that are unweighted [7] or weighted [38, 39]. Figure 1(b) depicts a

dyadic graph converted from the hypergraph in Figure 1(a). Clique reduction leads to scalability
but hinders effectiveness, due to the loss of high-order information.

2.2.2 Bipartite Reduction. Bipartite reduction converts a hypergraph 𝐻 (𝑉 , 𝐸) to a bipartite graph

𝐵(𝑉 ¤⋃𝐸, 𝐸𝐵) based on the node-hyperedge relations in 𝐻 . 𝐵 has two sets of nodes 𝑉 and 𝐸. For

a node 𝑣 ∈ 𝑉 and a hyperedge 𝑒 ∈ 𝐸, an edge (𝑣, 𝑒) ∈ 𝐸𝐵 iff 𝑣 ∈ 𝑒 . Figure 1(d) shows a bipartite
graph converted from the hypergraph in Figure 1(a). Most existing work along this line uses 𝐵 to

generate random hypergraphs [19, 34, 41] which preserve both the node degrees and precise hyperedge
cardinalities of 𝐻 (called the cardinality sequence of 𝐻). We call this random hypergraph model

Bipartite Matching Model (BMM). Specifically, BMM divides each edge (𝑣, 𝑒) in 𝐵 into two stubs

(see Figure 1(d-e)), a red stub from 𝑣 and a blue stub from 𝑒 . It then selects, for each hyperedge

𝑒 ∈ 𝐸, |𝑒 | stubs uniformly at random from the red stubs either with replacement [41] or without

replacement [19]. BMM then joins |𝑒 | red stubs to form 𝑒’s corresponding random hyperedge having
cardinality |𝑒 | (see Figure 1(e)). The generated randomized counterpart of 𝐻 (𝑉 , 𝐸) is denoted as

𝐻 ′ (𝑉 , 𝐸′).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:6 Zijin Feng, Miao Qiao, & Hong Cheng

Modularity for Hypergraph. Given a hypergraph 𝐻 , its randomized counterpart 𝐻 ′ under BMM,

and a clustering𝒞 of 𝐻 , the modularity is calculated by
1

𝑚

∑
𝐶∈𝒞 (|𝐸 (𝐶) | − 𝐸𝑥𝑝 [|𝐸 (𝐶) |]), the same

as Equation 1. Note in a cluster 𝐶 , a hyperedge 𝑒 is an innercluster hyperedge of 𝐶 if all the nodes

of 𝑒 are in 𝐶 . Thus |𝐸 (𝐶) | only counts those hyperedges in 𝐻 whose nodes all fall in cluster 𝐶 and

ignores the rest, i.e., an All-Or-Nothing (AON) hyperedge-to-cluster contribution [20, 34]. The

expected number of innercluster hyperedges 𝐸𝑥𝑝 [|𝐸 (𝐶) |] in 𝐻 ′ is calculated by:

𝐸𝑥𝑝 [|𝐸 (𝐶) |] =
∑︁
𝑒∈𝐸
(vol(𝐶)
vol(𝐻))

|𝑒 | =
∑︁
𝑠≥2
|𝐸𝑠 | · (

vol(𝐶)
vol(𝐻))

𝑠 , (2)

where |𝐸𝑠 | denotes the number of innercluster hyperedges in 𝐻 having cardinality 𝑠 . Equation 2

can be computed in 𝑂 (1) time. Though it brings the benefit of efficiency, the rigid AON constraint

leads to degenerated clustering quality since a large number of hyperedges are not counted in the

modularity computation.

Kamiński et al. [34] proposed a non-AON hyperedge-to-cluster contribution to calculate modu-

larity: it counts a hyperedge 𝑒 in calculating 𝐸𝑥𝑝 [|𝐸 (𝐶) |] when 𝑒 has > 50% of nodes in𝐶 . For each

hyperedge 𝑒 ∈ 𝐸, the expected contribution from 𝑒’s corresponding random hyperedge in 𝐻 ′ can
be calculated by enumerating all integers 𝑠′ ∈ (|𝑒 |/2, |𝑒 |], accordingly 𝐸𝑥𝑝 [|𝐸 (𝐶) |] is calculated by:

𝐸𝑥𝑝 [|𝐸 (𝐶) |] =
∑︁
𝑒∈𝐸,

𝑠′ : integers in (|𝑒 |/2, |𝑒 |]

(
|𝑒 |
𝑠′

) (vol(𝐶)vol(𝐻))
𝑠′

(1 − vol(𝐶)
vol(𝐻))𝑠

′−|𝑒 |
. (3)

Computing Equation 3 takes 𝑂 (|𝑒 |) time for a hyperedge 𝑒 , and 𝑂 (vol(𝐻)) time in total for all

hyperedges in 𝐸. Louvain-style [14] modularity-based clustering evaluates the modularity function

|𝑉 | times, leading to 𝑂 (vol(𝐻) |𝑉 |) complexity which is very expensive.

Remark. Given the limitations of existing hypergraph clustering methods, in this paper, we design

a novel random hypergraph model, a new non-AON hypergraph modularity function, and an

effective and scalable hypergraph clustering algorithm.

3 HYPEREDGE EXPANSION MODEL

(a) AA (b) DB21 (c) AS (d) CG (e) CD (f) AR (g) HS

Fig. 2. For each real hypergraph (subfigure), the blue line shows the cumulative distribution, the red line
shows the cumulative distributions of exponential models used to fit the blue line, the inset shows the
probability density of the edge cardinality 𝑥 .

This section proposes a random graph model, called Hyperedge Expansion Model (HEM). Given

a hypergraph 𝐻 (𝑉 , 𝐸), HEM produces a random hypergraph 𝐻 ′ (𝑉 , 𝐸′) by generating 𝑚 = |𝐸 |
hyperedges on 𝑉 . Its building block function edge-expansion() (in Algorithm 1) generates a hy-

peredge 𝑒′ by repeatedly adding nodes into 𝑒′. A node 𝑣 ∈ 𝑉 is selected from 𝑉 with probability

proportional to its degree, 𝑝𝑣 =
𝑑𝑣 (𝐻)
vol(𝐻) . Let the continuation probability 𝛾 be

vol(𝐻)−2𝑚
vol(𝐻)−𝑚 . 𝛾 ∈ [0, 1) if

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:7

Algorithm 1: edge-expansion
Input: A hypergraph 𝐻 (𝑉 , 𝐸), a multi-set of nodes 𝑒′

Output: A multi-set of nodes 𝑒′

1 𝑣 ← a random node selected with probability 𝑝𝑣 = 𝑑𝑣 (𝐻)/vol(𝐻);
2 return 𝑒′ ← 𝑒′ ∪ {𝑣};

𝑚 > 0. As each edge 𝑒 ∈ 𝐸 is non-trivial, i.e., has at least 2 nodes, every random hyperedge 𝑒′ is
non-trivial and is generated in a Bernoulli process:

(1) Initialize 𝑒′ ← edge-expansion(∅). 𝑒′ now has one node.

(2) Call edge-expansion(𝑒′) then terminate the process with probability (1 − 𝛾). Repeat step (2)

until the termination is triggered.

Figure 1(f) shows the generation of a random hyperedge 𝑒′ by HEM. 𝑒′ is initialized with a

randomly selected node 𝑣3, then 𝑣5 and 𝑣6 are selected and added to 𝑒′ in the first and second

trial after which the Bernoulli process terminates. A random hyperedge 𝑒′ = {𝑣3, 𝑣5, 𝑣6} is then
generated. By running the above process𝑚 times, HEM can generate a randomized hypergraph

𝐻 ′ (𝑉 , 𝐸′) of 𝐻 (𝑉 , 𝐸). Lemma 3 and Theorem 1 show the properties of HEM.

Lemma 3. Given a hypergraph𝐻 , the randomhypergraph𝐻 ′ generated underHEM has𝐸𝑥𝑝 [vol(𝐻 ′)] =
vol(𝐻) when 𝛾 =

vol(𝐻)−2𝑚
vol(𝐻)−𝑚 .

Proof. Firstly, since each hyperedge in 𝐻 is non-trivial and vol(𝐻) ≥ 2𝑚, we have 𝛾 =
vol(𝐻)−2𝑚
vol(𝐻)−𝑚 ∈ [0, 1). Let 𝑌 be the cardinality of any hyperedge 𝑒′ generated under HEM. For each hy-

peredge 𝑒′, as𝑌−1 out of its𝑌 nodes are generated in the Bernoulli process,𝑌−1 is a random variable

following a geometric distributionwith success rate 1−𝛾 . Thus, the probability that the process termi-

nates in the (𝑌−1)-th trial is𝛾𝑌−2 (1−𝛾) and we have 𝐸𝑥𝑝 [𝑌−1] = 1

1−𝛾 . AsHEM independently gen-

erates𝑚 hyperedges to produce𝐻 ′, we have 𝐸𝑥𝑝 [vol(𝐻 ′)] =𝑚·𝐸𝑥𝑝 [𝑌] =𝑚·(1

1−𝛾 +1) = vol(𝐻). □

Theorem 1. Given a hypergraph 𝐻 , by setting 𝛾 =
vol(𝐻)−2𝑚
vol(𝐻)−𝑚 , the random hypergraph 𝐻 ′ (𝑉 , 𝐸′)

under HEM preserves 1) the number of edges𝑚, 2) the volume 𝐸𝑥𝑝 [vol(𝐻 ′)] = vol(𝐻), and 3) the
degree sequence of 𝐻 : for each 𝑣 ∈ 𝑉 , 𝐸𝑥𝑝 [𝑑𝑣 (𝐻 ′)] = 𝑑𝑣 (𝐻).

Proof. 1) is obvious. 2) can be derived from Lemma 3. For 3), we consider a node 𝑣 ∈ 𝑉 . Let𝑋 be a

random variable that 𝑣 is selected in the edge-expansion(𝑒′) ofHEM, we have 𝐸𝑥𝑝 [𝑋] = 𝑑𝑣 (𝐻)
vol(𝐻) . Let

𝑌 be a random variable denoting the cardinality of hyperedge generated by HEM. From Lemma 3,

we have 𝐸𝑥𝑝 [𝑌] = vol(𝐻)
𝑚

. Since 𝑋 and 𝑌 are independent variables, 𝐸𝑥𝑝 [𝑋𝑌] = 𝐸𝑥𝑝 [𝑋]𝐸𝑥𝑝 [𝑌] =
𝑑𝑣 (𝐻)
vol(𝐻) ·

vol(𝐻)
𝑚

=
𝑑𝑣 (𝐻)
𝑚

is the expected number of occurrences of 𝑣 in 𝑒′. Therefore, 𝐸𝑥𝑝 [𝑑𝑣 (𝐻 ′)] =
𝑚 · 𝐸𝑥𝑝 [𝑋𝑌] = 𝑑𝑣 (𝐻). □

We examine 16 hypergraphs that we found in real-world applications (see details in Table 2) to see

howHEM preserves the cardinality distribution – we let the exponential model be a bridge between

the real hypergraphs and their corresponding random hypergraphs under HEM. Figure 2 shows

the probability densities 𝑝 (𝑥) of edge cardinality 𝑥 in the insets and the cumulative distributions

𝑃 (𝑋 < 𝑥) (blue lines) of cardinality in logarithmic scale on 7 out of 16 hypergraphs due to space

limit. Note that the insets only show a range of 𝑥 from 3 to 30 because (1) 𝑝 (𝑥) for larger value 𝑥 are

too small to be visualized, and (2) neither real hypergraphs nor random hypergraphs contain trivial

edges and thus 𝑃 (𝑋 < 2) = 0. Given 𝛾 in HEM, we use the continuous probability density function

of the exponential model 𝑝 (𝑥) = 𝐶 ·𝑒𝑥𝑝 (−𝜆𝑥) to depict the discrete edge cardinality density function
𝑃 [|𝑒 | = 𝑠] = 𝛾𝑠−2 (1 − 𝛾) = 1−𝛾

𝛾2
𝛾𝑠 (see the proof of Lemma 3), by setting 𝐶 =

1−𝛾
𝛾2

and 𝜆 = − ln(𝛾).

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:8 Zijin Feng, Miao Qiao, & Hong Cheng

The cumulative distributions of exponential models with given 𝛾s are plotted in red dashed lines.

We measure the “distance” between the cardinality cumulative probability distribution function

(CDF) 𝑆 (𝑥) of the real hypergraphs and the CDF 𝑃 (𝑥) of the corresponding random hypergraphs

using Mean Squared Error𝑀𝑆𝐸 =
∑

𝑥
(𝑆 (𝑥)−𝑃 (𝑥))2

𝑛𝑥
. MSE aggregates the squared distance between

𝑆 (𝑥) and 𝑃 (𝑥) for each 𝑥 , 𝑛𝑥 is the number of distinct 𝑥 . The average MSE on all 16 hypergraphs

is 10
−3
. As a comparison, the power-law model (alternative to the exponential model, see [23])

on average obtains 42 times larger MSE than the exponential model. This shows the exponential

model can well fit the distribution of empirical data.

Remark. HEM simplifies existing random hypergraph models by relaxing the preservation of

the cardinality of every individual hyperedge. In otherw BMM generates, for each 𝑒 ∈ 𝐸, a

corresponding random hyperedge 𝑒′ having the same cardinality while our HEM preserves the

cardinality distribution of hyperedges in 𝐸. The next section describes how HEM paves the way

for efficient computation of our new hypergraph modularity function which can be naturally

integrated into the hyperedge generation process of HEM.

4 PI MODULARITY
This section describes how to compute the modularity of a clustering on a hypergraph with HEM.

We first define 𝜃-innercluster hyperedge, a relaxation of innercluster hyperedge in Section 2.2.

Definition 1 (𝜃 -Innercluster hyperedge). Given a multi-set 𝑒′ of 𝑠 nodes, a cluster 𝐶 , and a
real parameter 𝜃 ∈ [0, 1], let 𝑌 = {𝑦1, 𝑦2, · · · , 𝑦𝑠 } be a sequence of random variables 𝑦𝑖 ∈ {0, 1}, s.t.,∑

𝑖∈[𝑠] 𝑦𝑖 ≤ (1 − 𝜃) × 𝑠 . 𝑒′ is a 𝜃 -innercluster hyperedge of 𝐶 if for any outcome of 𝑌 , there is a node
ordering of 𝑒′ = {𝑣1, 𝑣2, · · · , 𝑣𝑠 } such that ∀𝑖 ∈ [𝑠],either 𝑣𝑖 ∈ 𝐶 or 𝑦𝑖 = 1. In other words, if 𝑦𝑖 = 0,
then node 𝑣𝑖 must belong to𝐶 ; if 𝑦𝑖 = 1, then the constraint can be relaxed and thus 𝑣𝑖 can be exempted
from the test of 𝑣𝑖 ∈ 𝐶 .

Note that a random hyperedge 𝑒′ is a 𝜃 -innercluster hyperedge of a cluster 𝐶 if 𝑒′ has at least
𝜃×|𝑒′ | nodes in𝐶 . Definition 1 leads to a relaxation-rejection process in estimating the contributions

from 𝜃 -innercluster hyperedges in a random hypergraph to a cluster. 𝑌 is generated such that each

𝑦𝑖 = 1 with probability 1 − 𝜃 and 𝑦𝑖 = 0 with probability 𝜃 , ∀𝑖 ∈ [𝑠]. For a random hyperedge 𝑒′

of cardinality 𝑠 , an expected number of (1 − 𝜃) × 𝑠 nodes in 𝑒′ will have their constraints relaxed.
Thus, if there is an ordering of nodes in 𝑒′ = {𝑣1, 𝑣2, · · · , 𝑣𝑠 } such that for each 𝑖 ∈ [𝑠], 𝑦𝑖 = 1 or

𝑣𝑖 ∈ 𝐶 , then 𝑒′ is a 𝜃 -innercluster hyperedge. In HEM, for a specific outcome of random variables

of 𝑌 , consider the 𝑖-th invocation of procedure edge-expansion(): if the relaxation is not granted

(i.e., 𝑦𝑖 = 0) or the test of 𝑣𝑖 ∈ 𝐶 fails, this ordering of the nodes in hyperedge will be rejected. An

extreme case is when 𝜃 = 1 where no relaxation is granted, thus all the nodes in a 𝜃 -innercluster

hyperedge are forced to be in 𝐶; as another extreme case, when 𝜃 = 0, all the hyperedges are

𝜃 -innercluster hyperedges without being rejected. This relaxation-rejection process leads to a

simplified computation of the hyperedge-to-cluster contributions as described below.

Since each node 𝑣𝑖 in the edge expansion of HEM is selected proportional to the degree distribu-

tion over𝑉 , the probability 𝑃𝑟 (𝑦𝑖 = 1 𝑜𝑟 𝑣𝑖 ∈ 𝐶) that the edge expansion passes is (1 − 𝜃) + 𝜃 vol(𝐶)
vol(𝐻) .

Denote by 𝜂 = 𝜃

(
1 − vol(𝐶)

vol(𝐻)

)
. According to Definition 1, the condition (𝑦𝑖 = 1 𝑜𝑟 𝑣𝑖 ∈ 𝐶) has to hold

for all 𝑖 ∈ [𝑠], thus the probability that a random hyperedge of size 𝑠 can pass every edge expansion

without being rejected is [(1 − 𝜂)]𝑠 . Combining the continuation probability 𝛾 in the HEM model,

the expected number of non-rejected hyperedges in cluster 𝐶 under HEM, 𝐸𝑥𝑝 [|𝐸 (𝐶) |], is

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:9

𝐸𝑥𝑝 [|𝐸 (𝐶) |] = 1 − 𝛾
𝛾2
|𝐸 |

∞∑︁
𝑠=2

[
𝛾

(
1 − 𝜃 + 𝜃 vol(𝐶)

vol(𝐻)

)]𝑠
. (4)

Lemma 4 provides an efficient way to calculate the expected hyperedge-to-cluster contributions

of 𝜃 -innercluster hyperedges to cluster 𝐶 , i.e., 𝐸𝑥𝑝 [|𝐸 (𝐶) |] defined in Equation 4.

Lemma 4. The expected contributions of random hyperedges underHEM to cluster𝐶 can be computed
via 𝐸𝑥𝑝 [|𝐸 (𝐶) |] = |𝐸 | (1 − 𝜂)2 (1 + 𝛾𝜂

1−𝛾)
−1, where 𝜂 = 𝜃

(
1 − vol(𝐶)

vol(𝐻)

)
.

Proof. Since 0 ≤ 𝛾 < 1, 1 − 𝜃 + 𝜃 vol(𝐶)
vol(𝐻) = 1 − 𝜂 ≤ 1, term 𝛾 (1 − 𝜂) ∈ [0, 1). Thus, ∑∞𝑠=2 (𝛾 (1 −

𝜂))𝑠 converges to 𝛾2 (1−𝜂)2
1−𝛾 (1−𝜂) =

𝛾2 (1−𝜂)2
1−𝛾+𝛾𝜂 . Then we have 𝐸𝑥𝑝 [|𝐸 (𝐶) |] = 1−𝛾

𝛾2
|𝐸 |∑∞𝑠=2 (𝛾 (1 − 𝜂))𝑠 =

1−𝛾
𝛾2
|𝐸 | 𝛾

2 (1−𝜂)2
1−𝛾+𝛾𝜂 = |𝐸 | (1 − 𝜂)2 (1 + 𝛾𝜂

1−𝛾)
−1
. □

We then define Partial Innerclusteredge (PI) hypergraph modularity.

Definition 2 (Partial Innerclusteredge (PI) hypergraph modularity). For an edge 𝑒 and a
cluster 𝐶 , denote by 𝑙 (𝑒,𝐶) = |𝑒∩𝐶 |

|𝑒 | the loyalty of 𝑒 to 𝐶 . Let 𝜌 : [0, 1] ↦→ [0, 1] be a monotonically
increasing function that maps the loyalty of an edge 𝑒 to a cluster 𝐶 to its contribution 𝜌 (𝑙 (𝑒,𝐶)).
When an edge 𝑒 has positive loyalties to two disjoint clusters, 𝑒 should support the merge of the
two clusters. In other words, 𝜌 needs to be super-additive [31] that for ∀𝑥,𝑦 ∈ (0, 1], if 𝑥 + 𝑦 ≤ 1,
𝜌 (𝑥) + 𝜌 (𝑦) ≤ 𝜌 (𝑥 + 𝑦). Let 𝐸𝜃 (𝐶) be the set of 𝜃 -innercluster hyperedges of 𝐶 in the hypergraph
𝐻 (𝑉 , 𝐸). The support to 𝐶 on the hypergraph is the aggregation of the contributions from all edges in
𝐸𝜃 (𝐶): supt𝜃 (𝐶) =

∑
𝑒∈𝐸𝜃 (𝐶) (𝜌 (𝑙 (𝑒,𝐶))). The modularity of a clustering 𝒞 on a hypergraph 𝐻 is:

PI𝐻 (𝒞) =
1

|𝐸 |
∑︁
𝐶∈𝒞

[
supt𝜃 (𝐶) − 𝐸𝑥𝑝 [|𝐸 (𝐶) |]

]
, (5)

where 𝐸𝑥𝑝 [|𝐸 (𝐶) |] can be computed via Lemma 4 in 𝑂 (1) time.

The proposed PImodularity measures the deviation between the actual and expected contribution

from 𝜃 -innercluster hyperedges to a cluster 𝐶 , summed over all the clusters in 𝒞. PI modularity

together with the proposed random graphmodelHEM follow the framework of the Newman-Girvan

modularity on dyadic graphs, but PI𝐻 (𝒞) replaces the traditional concept of innercluster edges
with 𝜃 -innercluster hyperedges. It counts the contributions from a hyperedge 𝑒 to a cluster 𝐶 even

if a small portion of nodes in 𝑒 fall out of𝐶 (i.e., non-AON contribution). The expected contribution

𝐸𝑥𝑝 [|𝐸 (𝐶) |] under HEM can be computed in 𝑂 (1) time by Lemma 4. In contrast, 𝐸𝑥𝑝 [|𝐸 (𝐶) |]
calculated by Equation 3 takes 𝑂 (vol(𝐻)) time. This gives PI modularity better scalability than its

counterpart adopting non-AON contribution under the BMM model.

Remark. PI modularity controls the relaxations with Bernoulli trials instead of counting the exact

number of 𝜃 -innercluster hyperedges. The relaxation-rejection random process can be creatively

integrated into the edge expansion process of HEM, and the expected hyperedge-to-cluster contri-

butions of 𝜃 -innercluster hyperedges are interpretable by the edge expansion process. The merits

of our HEM and PI modularity are: (1) preservation of high-order information and properties such

as cardinality distribution (in Theorem 1) in hypergraphs, and (2) efficient computation of the

modularity.

5 PI CLUSTERING
This section proposes a clustering algorithm called PI Clustering (PIC) to optimize the PImodularity

with two novel optimization techniques for improving efficiency and scalability.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:10 Zijin Feng, Miao Qiao, & Hong Cheng

5.1 Loyalty Function and PI Modularity Computation
To quantify the contribution of an individual node of a hyperedge to a cluster, we denote a weight

of a node 𝑢 in a hyperedge 𝑒 by𝑤 (𝑢, 𝑒) and initialize𝑤 (𝑢, 𝑒) = 1

|𝑒 | . Using the node weight notation,

the (weighted) degree of a node 𝑢 can be expressed as 𝑑𝑢 =
∑

𝑒∈𝐸 𝑤 (𝑢, 𝑒), and the loyalty can be

equivalently written as 𝑙 (𝑒,𝐶) = ∑
𝑢∈𝑒∩𝐶 𝑤 (𝑢, 𝑒). When 𝑒 and 𝐶 are clear from the context, we use

the simplified notation 𝑙 to denote the loyalty.

As defined in Definition 2, function 𝜌 maps loyalty 𝑙 (𝑒,𝐶) (from hyperedge 𝑒 to a cluster 𝐶) to

the contribution of 𝑒 to 𝐶 in the modularity. We consider 4 candidate functions for 𝜌 , all of which

satisfy the monotonically increasing and super-additive requirements.

• All-Or-Nothing (AON): 𝜌 (𝑙) = 1 if 𝑙 = 1 and 0 otherwise;

• Linear-over-Logarithm: 𝜌 (𝑙) = 𝑙
log(1/𝑙+1) ;

• Quadratic: 𝜌 (𝑙) = 𝑙2;

• Exponential: 𝜌 (𝑙) = exp(𝑙)−1
exp(1)−1 . The denominator, Euler’s number (exp(1) = 2.71828 · · ·) minus 1,

transforms the range to [0, 1].

The rationale behind the monotonicity property is that the more nodes of a hyperedge 𝑒 fall in

a cluster 𝐶 , the higher contribution 𝑒 makes to 𝐶 in the modularity. The rationale behind the

super-additive property is that, for two clusters 𝐶1,𝐶2 each having some nodes of a hyperdge 𝑒 ,

they should be brought closer by 𝑒 , thus the merge of them is encouraged. This rationale is realized

by the super-additive property, i.e., 𝜌 (𝑥 +𝑦) ≥ 𝜌 (𝑥) + 𝜌 (𝑦), where 𝜌 (𝑥 +𝑦), 𝜌 (𝑥), and 𝜌 (𝑦) are the
contribution of 𝑒 to𝐶1 ∪𝐶2,𝐶1,𝐶2, respectively. The instantiation of 𝜌 will not affect the following

discussions and thus we leave the selection of 𝜌 as a super parameter, which shall be discussed in

the experiment, similar to the parameter 𝜃 .

Consider two clusterings𝒞 and𝒞
′
on the same hypergraph𝐻 where𝒞

′
merges cluster {𝑢} ∈ 𝒞

with another cluster 𝐶 ∈ 𝒞. Denote by ΔPI𝑢→𝐶 = PI𝐻 (𝒞′) − PI𝐻 (𝒞) the PI modularity gain when

these two clusters in 𝒞 are merged. Recall that Definition 2 defines 𝜂 = 𝜃

(
1 − vol(𝐶)

vol(𝐻)

)
for cluster𝐶 ,

we denote it as 𝜂𝐶 where 𝐶 is treated as a parameter to denote the 𝜂 value for different clusters.

ΔPI𝑢→𝐶 =
1

|𝐸 | (supt𝜃 (𝐶 ∪ {𝑢}) − supt𝜃 ({𝑢}) − supt𝜃 (𝐶))

+(1 − 𝛾)
(
(1 − 𝜂𝐶)2
1 − 𝛾 + 𝛾𝜂𝐶

+
(1 − 𝜂{𝑢})2

1 − 𝛾 + 𝛾𝜂{𝑢}
−
(1 − 𝜂𝐶∪{𝑢})2

1 − 𝛾 + 𝛾𝜂𝐶∪{𝑢}

) (6)

The value of supt𝜃 (𝐶 ∪ {𝑢}) − supt𝜃 ({𝑢}) − supt𝜃 (𝐶) is the support gain by merging the two

clusters. Symmetrically, the PI modularity gain ΔPI𝐶→𝑢 of removing a node 𝑢 ∈ 𝐶 from cluster𝐶 is

ΔPI𝐶→𝑢 = −1 × ΔPI𝑢→𝐶\{𝑢} . (7)

proofs of Eqations 6-7. As all clusters other than {𝑢} and 𝐶 remain unchanged after the

merge, ΔPI𝑢→𝐶 = PI𝐻 (𝐶∪{𝑢})−PI𝐻 ({𝑢})−PI𝐻 (𝐶). As we have (1−𝜂)2 (1+ 𝛾𝜂

1−𝛾)
−1 = (1−𝛾) (1−𝜂)

2

1−𝛾+𝛾𝜂 ,

ΔPI𝑢→𝐶 =
1

|𝐸 | (supt𝜃 (𝐶 ∪ {𝑢}) − supt𝜃 ({𝑢}) − supt𝜃 (𝐶))

+ (1 − 𝛾) (1 − 𝜂𝐶)
2

1 − 𝛾 + 𝛾𝜂𝐶
+
(1 − 𝛾) (1 − 𝜂{𝑢})2

1 − 𝛾 + 𝛾𝜂{𝑢}
−
(1 − 𝛾) (1 − 𝜂𝐶∪{𝑢})2

1 − 𝛾 + 𝛾𝜂𝐶∪{𝑢}
.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:11

Fig. 3. Flow diagram of PI Clustering (PIC) algorithm.

By extracting the common factor 1 − 𝛾 for the last three terms, the proof of Equation 6 completes.

For Equation 7 we have:

ΔPI𝐶→𝑢 = PI𝐻 (𝐶 \ {𝑢}) + PI𝐻 ({𝑢}) − PI𝐻 (𝐶)
= −1 × (PI𝐻 (𝐶) − PI𝐻 ({𝑢}) − PI𝐻 (𝐶 \ {𝑢})) = −1 × ΔPI𝑢→𝐶\{𝑢} .

This completes the proof of Equation 7. □

5.2 PI Clustering Algorithm
Our clustering algorithm PIC is Louvain-style. Start with singleton clustering where each cluster

contains a single node. Each iteration scans all the nodes in the graph: for each 𝑣 , try to mobilize 𝑣

from its own cluster to its neighbors’ clusters. For node 𝑣 , a node 𝑢 is 𝑣 ’s neighbor if 𝑢 and 𝑣 belong

to a common hyperedge. We use an adjacency matrix𝐴 to represent the neighborhood relationship,

the size of which is vol2 (𝐻) =
∑

𝑒∈𝐸
(|𝑒 |
2

)
. Keep the change if the modularity can be increased and

discard the change otherwise. Repeat the iterative process by moving any node in 𝑉 from its own

cluster to its neighbors’ clusters until the modularity gain in one scan of 𝑉 is no greater than a

threshold 𝜖 . Then we compress all the nodes in each cluster into a supernode. On the compressed

graph, we repeat the above node movement and graph compression steps until the modularity gain

is no greater than 𝜖 . Figure 3 shows a flow diagram to illustrate the concrete steps of PIC algorithm.

Algorithm 2 shows the PI clustering method. For a given hypergraph 𝐻 (𝑉 , 𝐸), Line 1 initializes
the singleton clustering. incSum accumulates the modularity gain in each iteration and indicates

a termination if it falls below 𝜖 after an iteration (Line 6). 𝛾 defined in Section 3 is computed in

Line 2. cids records the cluster id of each node and vols stores the volume of each node. These

two parameters are global – they will be, by default, implicitly passed to any function called by

Algorithm 2. Line 3 computes the adjacencymatrix𝐴. Line 4-5 initializes the indices for computation

optimization, we leave its elaboration to Section 5.3.

Line 6-25 follows a Louvain framework. Each iteration (Line 8-24) repeatedly traverses each

node 𝑢 ∈ 𝑉 , attempting to improve the modularity by mobilizing 𝑢 from its own cluster 𝐶 to its

neighbor’s cluster 𝐶′, until the accumulated modularity gain in one scan of 𝑉 falls below 𝜖 . After

each iteration, the graph is compressed – each cluster into a supernode – with all information

updated (Line 25). The iteration stops when the gain of an iteration falls below 𝜖 (Line 6). We abuse

𝐶 (also for𝐶′) to denote both the cluster itself and the cluster id (cid). Given a node 𝑢, NbrClusters()

in Line 12 finds a collection CC of the clusters of all the 𝑢’s neighbors by checking the adjacency

list of 𝑢. EdgeContributions() in Line 13 visits every node in 𝑢’s incident hyperedges to compute the

support gain by moving 𝑢 to each of 𝑢’s neighbors’ clusters. It thus computes, for all the clusters𝐶′

in CC, the total support Δ𝑠𝑢𝑝𝑡𝑠 [𝐶′] from all the edges incident on 𝑢 to 𝐶′. Now we take two steps,

step 1 moves 𝑢 from its current cluster𝐶 and step 2 places 𝑢 in another cluster𝐶′. Line 14 calculates

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:12 Zijin Feng, Miao Qiao, & Hong Cheng

Algorithm 2: PIC
Input: 𝐻 (𝑉 , 𝐸), parameters 𝜃 , 𝜖 : termination condition, two booleans rule-1 and rune-2: switches of

the two optimization techniques proposed in Section 5.3.

Output: clusters 𝒞
1 𝒞 ← {{}}; incSum← +∞; 𝑡 ← 0; 𝑛 ← |𝑉 |;
2 𝛾 ←calculated by Theorem 1; cids[𝑣] ← 𝑣 , vols[𝑣] ← 𝑑𝑣 , ∀𝑣 ∈ 𝑉 ;

3 𝐴←adjacency matrix, 𝐴[𝑢] records the neighbors of 𝑢, for ∀𝑢;
4 if rule-1 then lastTime←initR1Index() // OPT Rule 1;

5 if rule-2 then hlyt, edgeChgs← initR2Index() // OPT Rule 2;

6 while incSum > 𝜖 do
7 incSum← 0; inc← +∞;
8 while inc > 𝜖 do
9 inc← 0;

10 for each 𝑢 ∈ 𝑉 do
11 𝐶 ← cids[𝑢], Δ∗ ← 0, 𝐶∗ ← 𝐶;

12 CC← NbrClusters(𝑢);

13 Δ𝑠𝑢𝑝𝑡𝑠 ← EdgeContributions(𝑢);

14 ΔPI𝐶→𝑢 ← - deltaPI(𝑢, 𝐶 \ {𝑢}, Δ𝑠𝑢𝑝𝑡𝑠 [𝐶]);
15 for each 𝐶′ ∈ CC do
16 ΔPI𝑢→𝐶′ ← deltaPI(𝑢, 𝐶′, Δ𝑠𝑢𝑝𝑡𝑠 [𝐶′]);
17 Δ← ΔPI𝑢→𝐶′ + ΔPI𝐶→𝑢 ;

18 if Δ > Δ∗ then Δ∗ ← Δ, 𝐶∗ ← 𝐶′;

19 if Δ∗ > 0 then
20 inc+ = Δ∗, vols [𝐶]− = 𝑑𝑢 , vols [𝐶∗]+ = 𝑑𝑢 , cids[𝑢] ← 𝐶∗;
21 if rule-1 then lastTime[𝐶] ← lastTime[𝐶∗] ← 𝑡 ;

22 if rule-2 then
23 for each 𝑒 on 𝑢 do edgeChgs[𝑒]+ = 𝑤 (𝑢, 𝑒);

24 incSum+ = inc;

25 𝐻 , 𝐴← Compress(cids, 𝐻 , 𝐴); Update 𝛾 , cids, and vols (Line 2);

26 return 𝒞 generated by adding 𝑢 to 𝒞[cids[𝑢]] for all 𝑢 ∈ 𝑉 ;

27 Function deltaPI(𝑢, 𝐶 , Δ𝑠𝑢𝑝𝑡) from Eqn 6-7 return

28
Δ𝑠𝑢𝑝𝑡
|𝐸 | + (1 − 𝛾)

(
(1−𝜂𝐶)2
1−𝛾+𝛾𝜂𝐶 +

(1−𝜂{𝑢})2
1−𝛾+𝛾𝜂{𝑢} −

(1−𝜂𝐶∪{𝑢})2
1−𝛾+𝛾𝜂𝐶∪{𝑢}

)
;

the modularity gain of step 1 by calling the function deltaPI which leverages Equations 6-7. For

each cluster 𝐶′ in CC (Line 15), the modularity gain is computed similarly (Line 16). The total

modularity gain Δ updates the maximum gain Δ∗ (Line 17-18) and when there is a positive gain,

we make the move (Line 19-20). The resulting clustering 𝒞 can be extracted using cids (Line 26).

Lemma 5. The time complexity of Algorithm 2 is𝑂 (vol(𝐻) · ˜|𝑒 | + vol2 (𝐻)), where ˜|𝑒 | is the average
edge cardinality in the graph.

Proof. Given a node 𝑢 as input, NbrClusters() iterates each adjacent node of 𝑢 and EdgeContri-

butions() visits every node in 𝑢’s incident hyperedges. Thus, for a round of Algorithm 2’s process

(Line 10-23), NbrClusters() and EdgeContributions() take 𝑂 (vol2 (𝐻)) and 𝑂 (vol(𝐻) · ˜|𝑒 |) time,

respectively. Plus the total 𝑂 (vol2 (𝐻)) time taken to visit neighbor clusters of each of 𝑛 nodes

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:13

Fig. 4. An example to illustrate the step of mobilizing a node in PIC algorithm and the computation of PI
modularity.

in Line 15-18 and 𝑂 (vol(𝐻) · ˜|𝑒 |) for graph compression in Line 25, the total time complexity of

Algorithm 2 is thus 𝑂 (vol(𝐻) · ˜|𝑒 | + vol2 (𝐻)). □

Example 2. Figure 4 shows intermediate steps of PIC in clustering a hypergrpah 𝐻 . Figure 4(a)
shows 𝐻 , Figure 4(b) shows two clusters of 𝐻 before the step: 𝐶0 = {𝑣0, 𝑣1, 𝑣2, 𝑣3} and 𝐶1 = {𝑣4, 𝑣5, 𝑣6}.
Let 𝜌 (𝑙) = 𝑙

log(1/𝑙+1) and 𝜃 = 0.7. The process of moving 𝑣2 from 𝐶0 to 𝐶1 and the corresponding
modularity gain calculation is shown below.
• Step 1: PIC removes 𝑣2 from its current cluster 𝐶0, the modularity gain ΔPI𝐶0→𝑣2 is calculated with
Equation (7): ΔPI𝐶0→𝑣2 =

−(1 − 𝛾)
((1 − 𝜂𝐶0\{𝑣2 })2

1 − 𝛾 + 𝛾𝜂𝐶0\{𝑣2 }
+
(1 − 𝜂{𝑣2 })2

1 − 𝛾 + 𝛾𝜂{𝑣2 }
−
(1 − 𝜂𝐶0

)2

1 − 𝛾 + 𝛾𝜂𝐶0

)
−
supt𝜃 (𝐶0) − supt𝜃 ({𝑣2}) − supt𝜃 (𝐶0 \ {𝑣2})

|𝐸 | = −0.06,

where supt𝜃 (𝐶0) = 𝜌 (𝑙 (𝑒0,𝐶0)) = 1

log(1+1) = 1. Similarly computed: supt𝜃 ({𝑣2}) = 0 and supt𝜃 (𝐶0 \
{𝑣2}) = 0.61. Then 𝜂𝐶0

= 𝜃 (1 − vol(𝐶0)
vol(𝐻)) = 0.7 × (1 − 1.83/3) = 0.27 where vol(𝐶0) = 1.83 and

vol(𝐻) = 3. Similarly we have 𝜂{𝑣2 } = 0.51 and 𝜂𝐶0\{𝑣2 } = 0.47.
• Step 2: PIC merges 𝑣2 to its neighbor cluster 𝐶1, the modularity gain ΔPI𝑣2→𝐶1

= 0.44 is calculated
by Equation (6), similar to Step 1.

The total modularity gain incurred from the move of 𝑣2 is ΔPI = ΔPI𝐶0→𝑣2 +ΔPI𝑣2→𝐶1
= −0.06+0.44 =

0.38 > 0. Thus, 𝑣2 moves to 𝐶1 and Figure 4(c) shows the updated clustering 𝒞′ = {𝐶′0,𝐶′1}.
Now consider the PI modularity of the clustering in Figure 4(c).

PI(𝐶′
0
) = 1

|𝐸 |

(
supt𝜃 (𝐶′0) − |𝐸 | (1 − 𝜂𝐶′

0

)2 (1 +
𝛾𝜂𝐶′

0

1 − 𝛾)
−1
)

=
1

3

×
(
0.61 − 3 × (1 − 0.47)2 × (1 + 0.63 × 0.47

1 − 0.63)
−1
)
= 0.04

based on Equation (5), where supt𝜃 (𝐶′0) = 𝜌 (𝑙 (𝑒0,𝐶′0)) =
3/4

log(4/3+1) = 0.61, 𝜂𝐶′
0

= 0.47 and 𝛾 = 0.63.
We compute PI(𝐶′

1
) = 0.11 similarly. The PI modularity of the clustering 𝒞′ in Figure 4(c) is thus

PI𝐻 (𝒞′) = PI(𝐶′
0
) + PI(𝐶′

1
) = 0.04 + 0.11 = 0.15.

Besides our clustering result, we give another clustering result under the AON contribution by letting
𝜃 = 1.0 in Figure 4(d) for comparison. In this scenario, 𝑣2 will not move to 𝐶1 as the modularity gain
is negative: ΔPI = ΔPI𝐶0→𝑣2 + ΔPI𝑣2→𝐶1

= −0.19 + 0.16 = −0.03 < 0. It is because after moving 𝑣2
from 𝐶0 to 𝐶1, not all nodes of 𝑒0 and 𝑒1 belong to cluster 𝐶0 \ {𝑣2} or cluster 𝐶1 ∪ {𝑣2}, thus 𝑒0 and 𝑒1
can contribute to neither of these two clusters due to the AON constraint. Intuitively, the clustering in

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:14 Zijin Feng, Miao Qiao, & Hong Cheng

Figure 4(c) is more reasonable, as 𝑣2 has a tighter connection with 𝑣4, 𝑣5, 𝑣6 through hyperedges 𝑒1, 𝑒2.
This shows the benefit of non-AON contribution for hypergraph clustering.

5.3 Optimizations
The proof of Lemma 5 indicates that the bottleneck of PIC is on traversing i) adjacency lists to

check each neighbor cluster (Line 15, Algorithm 2) and/or ii) a large number of incident edges and

their nodes (in EdgeContributions()). We alleviate the bottleneck by designing three indices for

skipping the clusters which have not been changed for a certain time and the non 𝜃 -innercluster

hyperedges. We set time 𝑡 , a counter of the number of nodes examined in Line 1 of Algorithm 2,

and design three indices in Line 4-5.

(1) lastTime: Maintains the latest change time of each cluster for the purpose of skipping the cluster

of 𝑢’s neighbor 𝑣 if 𝑣 ’s cluster has not been changed in the last scan. A cluster is changed if there

is node addition or removal.

(2) hlyt: Records the historical maximum loyalty of each hyperedge for skipping the traversal of

non 𝜃 -innercluster hyperedges in EdgeContributions(). For each edge 𝑒 , we keep hlyt[𝑒] .𝑙 =
max𝐶 𝑙 (𝑒,𝐶), the maximum loyalty of 𝑒 to any cluster 𝐶 . For any 𝑒 , hlyt[𝑒] is maintained in a

lazy manner, updated only when 𝑒 is visited and the condition of Line 7, Algorithm 4 is met.

(3) edgeChgs: Used to calculate the upper bound of the loyalty of a hyperedge 𝑒 to any cluster 𝐶 ,

𝑙 (𝑒,𝐶), with the purpose of reducing the update frequency of hlyt[𝑒]. Given an edge 𝑒 and the

current time 𝑡 , assume the last update of hlyt[𝑒] is done at 𝑡 ′ and denote𝐶′ = argmax𝐶 𝑙 (𝑒,𝐶) at
𝑡 ′. Let Δ𝑉 ⊆ 𝑒 be the set of nodes in 𝑒 whose cluster memberships have changed during the time

(𝑡 ′, 𝑡]. We maintain edgeChgs[𝑒] = ∑
𝑢∈Δ𝑉 𝑤 (𝑢, 𝑒). Let 𝐶∗ = argmax𝐶 𝑙 (𝑒,𝐶) at time 𝑡 , then we

have 𝑙 (𝑒,𝐶∗) ≤ hlyt[𝑒] .𝑙 + edgeChgs[𝑒] – if all nodes in Δ𝑉 are moved to 𝐶′ during (𝑡 ′, 𝑡], the
equality is established and 𝐶∗ is 𝐶′.

Lemma 6. Let 𝑡 be the current time of Algorithm 2 and 𝑢 be a node in cluster 𝐶𝑢 . For any neighbor
𝑣 ∈ 𝐴[𝑢] in cluster 𝐶𝑣 , denote by time 𝑡 ′𝑢 and 𝑡 ′𝑣 the last time 𝐶𝑢 and 𝐶𝑣 were updated (Line 20),
respectively. If 𝑡 − 𝑡 ′𝑢 > 𝑛 and 𝑡 − 𝑡 ′𝑣 > 𝑛 (i.e., 𝑡 − 𝑡 ′𝑢 > 𝑛 means there are more than 𝑛 nodes examined
since time 𝑡 ′𝑢 where 𝑛 = |𝑉 |), then 𝑢 will not be moved to 𝐶𝑣 at time 𝑡 .

Proof. Suppose 𝑢 is moved to𝐶𝑣 at time 𝑡 , we have ΔPI𝐶𝑢→𝑢 + ΔPI𝑢→𝐶𝑣
> ΔPI𝐶𝑢→𝑢 + ΔPI𝑢→𝐶𝑢

.

The previous visit to 𝑢 was done at time 𝑡 − 𝑛 during the last round of Line 10. With 𝑡 − 𝑡 ′𝑢 > 𝑛

and 𝑡 − 𝑡 ′𝑣 > 𝑛, 𝑡 ′𝑢 and 𝑡 ′𝑣 are both earlier than 𝑡 − 𝑛, thus neither 𝐶𝑢 nor 𝐶𝑣 has been updated since

(incl.) 𝑡 − 𝑛. Thus we have ΔPI𝐶𝑢→𝑢 + ΔPI𝑢→𝐶𝑣
> ΔPI𝐶𝑢→𝑢 + ΔPI𝑢→𝐶𝑢

at 𝑡 − 𝑛, then 𝑢 should have

been moved to𝐶𝑣 at 𝑡 − 𝑛, contradicting the fact that 𝑢 ∈ 𝐶𝑢 at 𝑡 and both𝐶𝑢 and𝐶𝑣 have not been

changed since (incl.) 𝑡 − 𝑛. □

Lemma 7 proves the correctness of loyalty upper bound which is then used to skip the traversal

of non 𝜃 -innercluster hyperedges in the merge node 𝑢 and cluster 𝐶 .

Lemma 7. Let 𝑡 be the current time of Algorithm 2. Given a node 𝑢 and a cluster 𝐶 , consider the
merge of 𝑢 and𝐶 . For any incident edge 𝑒 of 𝑢, when calculating the support that 𝑢 and𝐶 receive from
𝑒 , we have 𝑙 =

(
𝑤 (𝑢, 𝑒) + hlyt[𝑒] .𝑙 + edgeChgs[𝑒]

)
as the upper bound of the maximum loyalty of 𝑒

to 𝐶 ∪ {𝑢} at time 𝑡 , that is, for any cluster 𝐶 at time 𝑡 , 𝑙 ≥ 𝑙 (𝑒,𝐶 \ {𝑢}) +𝑤 (𝑢, 𝑒).

Proof. Given a node 𝑢, an incident edge 𝑒 of 𝑢, and any cluster 𝐶 , we have 2 cases at time 𝑡 .

Case one (when 𝑢 ∈ 𝐶) we have 𝐶 ∪ {𝑢} = 𝐶 so 𝑙 (𝑒,𝐶 \ {𝑢}) + 𝑤 (𝑢, 𝑒) = 𝑙 (𝑒,𝐶). As hlyt[𝑒] .𝑙 +
edgeChgs[𝑒] ≥ 𝑙 (𝑒,𝐶) and𝑤 (𝑢, 𝑒) > 0, we have 𝑙 = hlyt[𝑒] .𝑙 + edgeChgs[𝑒] +𝑤 (𝑢, 𝑒) > 𝑙 (𝑒,𝐶) as
desired. Case 2 (when 𝑢 ∉ 𝐶), we have 𝐶 \ {𝑢} = 𝐶 so 𝑙 (𝑒,𝐶 \ {𝑢}) +𝑤 (𝑢, 𝑒) = 𝑙 (𝑒,𝐶) +𝑤 (𝑢, 𝑒). As

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:15

Algorithm 3: NbrClusters
Input: Node 𝑢
Output: Set of distinct neighbor clusters of 𝑢, CC

1 CC← [];
2 if rule-1 & 𝑡 − lastTime[cids [𝑢]] > 𝑛 then
3 for each 𝑣 ∈ 𝐴[𝑢] do
4 if cids[𝑣] ∉ CC & 𝑡 − lastTime[cids[𝑣]] ≤ 𝑛 then CC.add(cids[𝑣]);

5 else for each 𝑣 ∈ 𝐴[𝑢] do if cids[𝑣] ∉ CC then CC.add(cids[𝑣]);
6 return CC;

Algorithm 4: EdgeContributions
Input: Node 𝑢
Output: Changes in support after and before the move, Δ𝑠𝑢𝑝𝑡𝑠 []

1 Δ𝑠𝑢𝑝𝑡𝑠 ← [];
2 for each incident edge 𝑒 of 𝑢 do
3 if rule 2 & 𝑤 (𝑢,𝑒)∑

𝑢∈𝑒 𝑤 (𝑢,𝑒)
+ hlyt[𝑒] .𝑙 + edgeChgs[𝑒] < 𝜃 then

4 continue;

5 lyts← [];
6 for each 𝑣 ∈ 𝑒 do if 𝑣 ≠ 𝑢 then lyts[cids[𝑣]]+ = 𝑤 (𝑣, 𝑒);
7 if rule-2 & edgeChgs[𝑒] > 0 then
8 hlyt[𝑒] ← maxLoyalty(𝑢, 𝑒 , lyts), edgeChgs← 0;

9 if 𝑤 (𝑢, 𝑒) + hlyt[𝑒] .𝑙 < 𝜃 then continue;

10 𝑙1 ← 𝑤 (𝑢, 𝑒);
11 for each 𝐶′ that 𝑒 has positive loyalty with do
12 𝑙2 ← lyts[𝐶′], 𝑙3 ← 𝑙1 + 𝑙2;
13 Δ𝑠𝑢𝑝𝑡𝑠 [𝐶′] += 𝜌 (𝑙3) − 𝜌 (𝑙1) − 𝜌 (𝑙2);

14 return Δ𝑠𝑢𝑝𝑡𝑠 ;

hlyt[𝑒] .𝑙 + edgeChgs[𝑒] ≥ 𝑙 (𝑒,𝐶), by adding𝑤 (𝑢, 𝑒) on both sides, we have 𝑙 ≥ 𝑙 (𝑒,𝐶) +𝑤 (𝑢, 𝑒) =
𝑙 (𝑒,𝐶 \ {𝑢}) +𝑤 (𝑢, 𝑒). □

Based on Lemmas 6-7, our two optimizations are as follows.

• Rule 1: skip the settled clusters. As Lemma 6 suggests, we call a cluster that has not been updated

in the last scan (𝑛 ticks in time) ‘settled’. Algorithm 3 can exclude a cluster from CC with a

simple test to alleviate the bottleneck in Line 15-18 of Algorithm 2. Specifically, for a node 𝑢

and a neighbor 𝑣 ∈ 𝐴[𝑢], if both 𝐶𝑢 and 𝐶𝑣 are settled, we can safely exclude 𝐶𝑣 from CC. Index
lastTime is maintained in Line 21: if there is a node added/removed from a cluster 𝐶 at time 𝑡 ,

lastTime[𝐶] is set to 𝑡 .
• Rule 2: skip the neutral edges. As Lemma 7 suggests, given a node 𝑢 and for an incident edge 𝑒

of 𝑢, if 𝑤 (𝑢, 𝑒) + hlyt[𝑒] .𝑙 + edgeChgs[𝑒] < 𝜃 , then we call 𝑒 ‘neutral’. With the loyalty upper

bound, we can skip an edge from the calculation of contribution Δ𝑠𝑢𝑝𝑡𝑠 (Line 13, Algorithm 2)

and alleviate the bottleneck incurred in EdgeContributions(). Specifically, for a node 𝑢 and an

incident edge 𝑒 of 𝑢, if the loyalty upper bound of 𝑒 , 𝑙 < 𝜃 , then we can safely skip the calculation

of the contributions from 𝑒 . Index edgeChgs is maintained in Line 23: if a node 𝑢 changes its

cluster id, the value of edgeChgs[𝑒] is increased by𝑤 (𝑢, 𝑒) for all incident edges 𝑒 of 𝑢.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:16 Zijin Feng, Miao Qiao, & Hong Cheng

Time Space
LOUV [7] 𝑂 (˜|𝑒 | · vol(𝐻) + vol2 (𝐻)) 𝑂 (vol2 (𝐻))
IRMM [39] 𝑂 (𝑚2𝑛 +𝑚𝑛2) 𝑂 (𝑚𝑛 +𝑚2 + 𝑛2)
CNMR [34] 𝑂 (𝑚𝑛2) 𝑂 (vol(𝐻))
CNMO [34] 𝑂 (𝑚2𝑛2) 𝑂 (vol(𝐻))
HMLL [20] 𝑂 (˜𝑑𝐺 · ˜|𝑒 | · vol(𝐻) + vol2 (𝐻)) 𝑂 (vol(𝐻) + vol2 (𝐻))
HPPR [58] 𝑂 (|𝒞 | · log vol(𝐻) · ˜|𝑒 | · vol(𝐻)) 𝑂 (vol(𝐻))
EDVW [30] 𝑂 (𝑚2𝑛 +𝑚𝑛2 + 𝑛3) 𝑂 (𝑚2 +𝑚𝑛 + 𝑛2)
PBCC [61] 𝑂 ((𝑚 + 𝑛) · vol(𝐻) + (𝑚 + 𝑛)2) 𝑂 (vol(𝐻))
PIC (ours) 𝑂 (˜|𝑒 | · vol(𝐻) + vol2 (𝐻)) 𝑂 (vol(𝐻) + vol2 (𝐻))

Table 1. Time and Space Complexitiy

The functions NbrClusters() and EdgeContributions() with the above optimization techniques are

presented in Algorithm 3 and Algorithm 4, respectively. Algorithm 3 applies Rule 1 in computing

CC: when the switch rule-1 in Algorithm 2 is on, Line 2-4 skips the settled clusters. Algorithm 4

applies Rule 2 in computing the support array Δ𝑠𝑢𝑝𝑡𝑠 in Line 13: if the switch rule-2 is on, Line 3

and 9 skip the neutral edge 𝑒 . Indices hlyt and edgeChgs are maintained in Line 8. If 𝑒 passes the

test, in Line 10-13, we first calculate 𝑒’s loyalty to {𝑢}, 𝐶′ \ {𝑢} and 𝐶′ stored in variables 𝑙1, 𝑙2 and

𝑙3 respectively, then calculate the support of 𝑒 to the merge of {𝑢} and 𝐶′ \ {𝑢}.

6 RELATEDWORK
Random Graph Model. By comparing a given graph 𝐺 with its corresponding random graph,

a clustering algorithm detects densely innerconnected clusters. For dyadic graphs, two existing

random graph models are Erdős-Rényi model [25] and configuration model [10, 21, 23]. The former

preserves the number of edges in 𝐺 and the latter further preserves the degree sequence of 𝐺 .

Planted partition model [64] specifies, additionally, the number 𝑘 of communities and parameters

𝑝 and 𝑞: edges across and within communities are chosen with probability 𝑞 and 𝑝 , resp. For a

hypergraph 𝐻 , existing work turns 𝐻 into a dyadic graph [7, 38, 39] or a bipartite graph [19, 34, 41]

before applying a random graph model. A recently proposed random hypergraph model [52] retains

the core-periphery structure of 𝐻 . We are the first to challenge the necessity of preserving the

precise cardinality sequence to scale up non-AON contribution computation in random hypergraph

model.

Graph Clustering and Modularity. Graph clustering [26, 55] has been extensively studied on

dyadic graphs.With fitness measures such as modularity [21], conductance [15], normalized cut [56],

etc., clusters can be found via optimization. Exact modularity optimization is computationally hard,

leading to approximation approaches [14, 22, 24, 50].

Resolution Limit. Modularity, with other quality functions that are mathematically similar to

it, i.e., based on global optimization of intra- and extra-community links and on a comparison to

null model, has resolution limit [27, 40]: clusters smaller than a certain scale may not be identified.

In other words, the clusters found by modularity maximization algorithms on large networks

may have hidden sub-clusters that require deeper investigations to reveal. Existing solutions to

the resolution limit in the literature include adopting a tunable resolution parameter [12, 54] and

constructing a hierarchical structure [14] which allows a user to zoom in the clustering; the latter

applies to our PIC via iteratively compressing the clusters into supernodes. As argued by [14], such

multi-level structure allows a user to uncover and reveal the intermediate clustering with proper

resolution by zooming the hierarchical structure.

Hypergraph Clustering. The following work studies hypergraph clustering with different cluster-

ing fitness measures. [58] connects conductance with personalized page rank, [30, 66] generalizes

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:17

spectral method in minimizing the normalized cut, [61] proposes a bipartite correlation cluster-

ing objective and proves to be related to normalized cut and modularity, [44, 45] studies various

hyperedge weight functions to reflect different structural importance of hyperedges. The main

drawback of the spectral method is that it assumes that the users know the number of clusters be-

forehand, without knowing which, the performance can drop dramatically [62]. Our paper proposes

a hypergraph modularity function under a newly designed random hypergraph model.

Most existing modularity-based hypergraph clustering methods are Louvain-like. LOUV [7] and

IRMM [38, 39] apply clique reduction to convert a hypergraph 𝐻 to a dyadic graph𝐺 . LOUV [7]

applies Louvain [14] directly to 𝐺 with unweighted edges. IRMM [38, 39] extends LOUV by

reweighing each dyadic edge after each pass. Specifically, it assigns each hyperedge 𝑒 a weight

of 1 initially and assigns the corresponding dyadic edges a weight of 1/(|𝑒 | − 1). After a pass of
Louvain, it readjusts the weight of every hyperedge 𝑒 based on the clusters of nodes in 𝑒 and then

the weight of dyadic edges in 𝐺 . [34] proposes two clustering methods CNMR and CNMO which

iteratively select a hyperedge 𝑒 and then merge the clusters of all the nodes in the edge. CNMR
selects 𝑒 randomly while CNMO follows a prioritized order in selecting 𝑒 . They both adopt the

AON contribution. A modularity-based generative model (BMM-like) was proposed by [20] upon

which algorithm HMLL optimizes the generative function in a Louvain manner. Table 1 lists the

complexities of existing hypergraph clustering methods.
˜𝑑𝐺 denotes the average node degree in the

dyadic graph 𝐺 (after clique reduction).
˜|𝑒 | denotes the average edge cardinality in 𝐻 . |𝒞 | denotes

number of clusters a method find. The time complexity of our PIC and LOUV is the lowest among

the 9 clustering methods.

Recently, an extensive study has been conducted on local hypergraph clustering [9, 29, 46, 48, 60,

64] which finds a cluster biased to a (set of) given node(s) by optimizing local clustering functions.

Matrix-based Graph Clustering. Matrix-based clustering such as spectral clustering cannot re-

place graph-based clustering due to its computation complexity. For example, spectral clustering [8]

has two phases: affinity matrix construction takes 𝑂 (𝑛2𝑚) time while eigendecomposition takes

𝑂 (𝑛3) time, where 𝑛 = |𝑉 | and𝑚 = |𝐸 |. For the large-scale hypergraphs (𝑛 can be up to 15 million)

tested in this paper, the complexity of spectral clustering can be prohibitive. Though matrix sparsi-

fication and sub-matrix construction [32] may reduce the time by introducing approximation [28],

many graph clustering applications still resort to graph-based methods for better effectiveness and

scalability.

7 EXPERIMENTATIONS
This section evaluates the performance of our proposed PIC method on 16 real-world hypergraphs.

Table 2 shows the statistics of them. We compare PIC with 8 state-of-the-art hypergraph clustering

methods introduced in Section 6: LOUV [7] (code provided by [16, 34]), IRMM [39], CNMO [34],

CNMR [34], HMLL [20], HPPR [58], EDVW [30], and PBCC [61].

The algorithms were implemented in Java with library JavaSE-9. All experiments were conducted

on a machine with Intel XeonE5-2697 CPU, 504GB main memory and Linux(centos), engaged one

core for all the algorithms. All algorithms were run 20 times to report the average. The cut-off

running time was set to be 6 hours.

Parameters. As our experiments suggested that the clustering performance of PIC is insensitive

to 𝜖 , we followed Scikit network [16] in setting 𝜖 = 10
−3

for Louvain-style baselines LOUV, IRMM,

and PBCC as well as PIC. For the setting of parameter 𝜃 , we train a predictive model on selected

hypergraph features under the following guidelines. i) Select features that can collectively capture

the cardinality distribution which has a significant influence on 𝜃 : to allow hyperedges with high

cardinalities to contribute to the clustering, 𝜃 should be smaller; if the cardinalities are small, then

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:18 Zijin Feng, Miao Qiao, & Hong Cheng

Name Data set 𝑛 𝑚 ˜|𝑒 | vol(𝐻) vol2 (𝐻) Has Ground Truth # of Classes
SO Stack Overflow [4] 15,211,989 1,103,218 23.7 26,146,267 29,306,268,738 False

HS Threads Stack [13] 2,301,086 8,578,968 2.6 22,624,290 41,990,824 False

AR Amazon Reviews [3] 2,268,192 4,242,398 17.2 72,855,752 6,064,824,282 False

CD Coauth DBLP [13] 1,659,954 2,093,835 3.5 7,252,705 16,238,552 False

CG Coauth Geology [13] 903,793 834,152 4.0 3,315,150 10,706,346 False

AS Amazon Sport [3] 695,253 1,946,419 3.7 7,264,704 45,663,728 False

DB21 DBLP 2021 [1] 528,315 291,371 4.4 1,277,736 5,142,290 True 2,977

DB20 DBLP 2020 [1] 516,230 292,801 4.3 1,251,107 4,922,964 True 3,221

AX20 Arxiv 2020 352,443 116,219 6.4 743,044 33,810,830 False

AA Amazon Art [3] 221,004 383,934 3.8 1,461,184 11,365,750 False

AL21 ACL 2021 [2] 5,295 2,079 4.8 9,959 42,678 True 11

AL20 ACL 2020 [2] 3,969 1,599 4.6 7,401 28,910 True 9

CS Coauth DBLP Small [13] 3,965 4,278 2.7 11,388 17,164 True 14

CI Citeseer Cociting [5] 1,318 597 4.7 2,800 26,468 True 6

DA1 Drug Abuse Network 1 [6] 273 692 2.9 1,982 2,480 True 6

DA0 Drug Abuse Network 0 [6] 226 578 2.9 1,665 2,058 True 6

Table 2. Data Sets

F-measure Purity
DA0 DA1 CI CS AL21 AL20 DB20 DB21 DA0 DA1 CI CS AL21 AL20 DB20 DB21

LOUV 0.202 0.225 0.203 0.066 0.046 0.047 0.018 0.018 0.402 0.416 0.306 0.258 0.143 0.153 0.256 0.277
IRMM 0.213 0.231 0.316 0.069 0.052 0.050 \ \ 0.386 0.402 0.451 0.262 0.164 0.177 \ \
CNMO 0.224 0.254 0.342 \ \ \ \ \ 0.354 0.410 0.487 \ \ \ \ \
CNMR 0.010 0.004 0.058 0.003 0.014 0.020 \ \ 0.092 0.072 0.122 0.042 0.075 0.101 \ \
HMLL 0.065 0.059 0.003 0.090 0.000 0.000 0.000 0.000 0.291 0.285 0.028 0.277 0.009 0.010 0.013 0.026

HPPR 0.105 0.097 0.241 0.006 0.133 0.006 0.130 0.145 0.341 0.318 0.270 0.052 0.174 0.034 0.248 0.273

EDVW 0.120 0.101 0.177 0.075 0.052 0.072 \ \ 0.352 0.303 0.271 0.117 0.105 0.117 \ \
PBCC 0.052 0.048 0.069 0.001 0.004 0.004 0.000 0.000 0.223 0.200 0.145 0.025 0.030 0.032 0.092 0.106

PIC 0.304 0.303 0.446 0.129 0.229 0.100 0.105 0.106 0.450 0.435 0.535 0.359 0.393 0.298 0.257 0.275
ARI NMI

DA0 DA1 CI CS AL21 AL20 DB20 DB21 DA0 DA1 CI CS AL21 AL20 DB20 DB21
LOUV 0.055 0.082 0.144 0.012 0.006 0.004 0.007 0.007 0.245 0.263 0.354 0.092 0.080 0.078 0.215 0.202

IRMM 0.053 0.088 0.226 0.011 0.006 0.005 \ \ 0.243 0.271 0.362 0.088 0.078 0.074 \ \
CNMO 0.031 0.097 0.246 \ \ \ \ \ 0.322 0.348 0.380 \ \ \ \ \
CNMR 0.006 0.002 0.041 0.001 0.004 0.006 \ \ 0.582 0.573 0.378 0.309 0.298 0.265 \ \
HMLL 0.028 0.025 0.002 0.016 0.000 0.000 0.000 0.000 0.496 0.451 0.369 0.226 0.314 0.284 0.576 0.562
HPPR 0.026 0.031 0.048 0.002 0.009 0.002 0.000 0.001 0.325 0.334 0.252 0.211 0.163 0.199 0.006 0.023

EDVW 0.036 0.027 0.114 0.003 0.003 0.005 \ \ 0.364 0.362 0.332 0.231 0.173 0.214 \ \
PBCC 0.022 0.022 0.052 0.001 0.003 0.002 0.000 0.000 0.518 0.511 0.372 0.299 0.306 0.279 0.610 0.604
PIC 0.086 0.099 0.340 0.018 0.020 0.007 0.026 0.015 0.296 0.265 0.389 0.124 0.065 0.087 0.305 0.294

Table 3. ClusteringQuality of Different Methods

a larger 𝜃 is preferred. ii) Keep the number of hypergraph features small and the predictive model

simple to avoid overfitting because among the datasets we’ve collected, only 8 have ground truth. iii)

Select features that are irrelevant to the ground truth clustering and use leave-one-out strategy on

the datasets with ground truth to facilitate a fair comparison, i.e., use 7 out of 8 datasets for training

with the target 𝜃 value achieving the best overall performance (found through grid search) on the

training hypergraphs, and then use the trained model to predict 𝜃 for clustering the remaining

hypergraph and evaluating the quality. Strictly following the above guidelines, we selected two

features, the average hyperedge cardinality
˜|𝑒 | and 𝜆 (the parameter introduced in Section 3 that

is calculated from the hypergraph volume and the number of hyperedges), and a simple linear

regression model to determine 𝜃 . To choose a loyalty function 𝜌 , we used the above leave-one-out
strategy similarly. We chose Linear-over-Logarithm as the default loyalty function: averaged over 4

measures and 8 datasets, the performance using Linear-over-Logarithm is 1.3%, 10.2%, and 14168%

better than that using Quadratic, Exponential, and AON functions.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:19

ARI NMI F−measure Purity

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

θ

Score

θpredicted

(a) DA1 (predicted ˆ𝜃 = 0.6)

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

θ

Score

θpredicted

(b) CI (predicted ˆ𝜃 = 0.31)

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

θ

Score

θpredicted

(c) CS (predicted ˆ𝜃 = 0.56)

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

θ

Score

θpredicted

(d) AL21 (predicted ˆ𝜃 = 0.21)

0.2

0.4

0.6

0.8

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

θ

Score

θpredicted

(e) DB20 (predicted ˆ𝜃 = 0.38)

Fig. 5. Sensitivity Test on 𝜃

7.1 Effectiveness
We evaluate the clustering quality in the alignment to the ground truth clustering with four widely

used metrics: F-measure [49], Purity [49], Adjusted Rand Index (ARI) [33], and Normalized Mutual

Information (NMI) [35].

Exp 1. Table 3 shows the clustering performance of PIC and the 8 baselines on 8 datasets with

ground truth. Top-3 scores for each dataset are highlightedwith bold&underline, bold, and underline,

resp. ‘\’ denotes no result due to time-out or out-of-memory reason. We set 𝜃 in PIC with the

predictive model. On F-measure, PIC outperforms all 8 baselines (in top-down order as listed in

Table 3 unless otherwise specified) by 222%, 107%, 29%, 2871%, 3923%, 516%, 160% and 3732%, resp,

averaged over all datasets. On purity, PIC outperforms all 8 baselines by 50%, 48%, 15%, 435%,

1492%, 208%, 134% and 531%, resp. On ARI, PIC is 120%, 77%, 73%, 1507%, 4404%, 520%, 286% and

620% higher than the 8 baselines. On NMI, PIC outperforms LOUV, IRMM, and HPPR by 18%,

12%, and 754%, resp. CNMR, HMLL, and PBCC gain higher NMI than our PIC because they report

very small-sized clusters that are preferred by NMI empirically with bias, as explained in the next

paragraph.

CNMR, HMLL and PBCC tend to find small-sized clusters, which has also been observed by [20].

In terms of the average size, CNMR, HMLL and PBCC have only 1.2, 1.6 and 2.5 nodes per cluster,

resp. The almost singleton-sized clusters found may not conform to the real communities [42].

The tendency can also be shown in terms of the maximum cluster size, on DB21, that of HMLL
and PBCC is only 19 and 242 while that of ground truth and ours is 141, 649 and 166, 990. The

reason is that CNMR and PBCC can stop early in the iterative merge of clusters and HMLL adopts

AON hyperedge contribution which makes the hyperedges with relatively large cardinality hard

to contribute to the forming of large clusters. It shows that our partial (non-AON) contribution

function well addresses the issue and reports more reasonable clusters.

Exp 2.We perform a sensitivity test and evaluate the clustering quality of PIC when the parameter

𝜃 varies from 0 to 1 with step size 0.1 and that of the predicted 𝜃 (denoted as
ˆ𝜃). Figure 5 reports the

F-measure, purity, ARI, and NMI on 5 data sets (due to the space limit, we omit the results on DA0,
AL20, and DB21 which are similar to those on DA1, AL21, and DB20, resp.). ˆ𝜃 and the corresponding

performances are highlighted with a red vertical line.

When 𝜃 varies from 0 to 1, different measures show different trends and fall in different value

ranges. NMI increases with 𝜃 but F-measure, purity and ARI drop at a large 𝜃 . Take DA1 as an
example, Figure 5(a) shows that when 𝜃 increases, NMI increases steadily while the other three

measures first rise, reach the peak at 𝜃 = 0.6, then drop. The value ranges of F-measure, ARI, purity

and NMI are quite different: 0.20-0.30, 0-0.10, 0.33-0.44, and 0-0.43, resp..

Visually
ˆ𝜃 seems to achieve a good balance of the four measures.Wewant to further quantitatively

evaluate how good the overall performance is by
ˆ𝜃 compared with the best performance by grid

search. However, we cannot simply aggregate the four measures under the same 𝜃 as the overall

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:20 Zijin Feng, Miao Qiao, & Hong Cheng

Time (sec.)
DA0 DA1 CI CS AL20 AL21 AA AX20 DB20 DB21 AS CG CD AR HS SO

LOUV 0.01 0.01 0.01 0.01 0.01 0.03 10.14 10.56 3.98 4.09 71.48 14.62 28.30 2,277.88 75.20 \
IRMM 1.53 1.82 7.50 1,253.65 163.39 416.87 \ \ \ \ \ \ \ \ \ \
CNMO 13.09 28.01 382.31 \ \ \ \ \ \ \ \ \ \ \ \ \
CNMR 0.01 0.01 0.78 94.25 30.32 60.10 \ \ \ \ \ \ \ \ \ \
HMLL 0.07 0.08 3.68 0.53 0.79 1.78 2,856.77 8,795.43 1,191.89 4,151.22 12,028.23 5,694.31 11,616.99 \ \ \
HPPR 1.66 2.05 1.18 30.05 8.54 14.31 \ 4,043.35 11,590.39 13,476.95 \ \ \ \ \ \
EDVW 0.64 0.96 46.11 3,109.80 2,148.09 18,233.85 \ \ \ \ \ \ \ \ \ \
PBCC 20.69 25.84 9.56 35.42 19.50 27.64 \ \ 503.81 521.98 \ \ \ \ \ \
PIC 0.01 0.01 0.01 0.02 0.02 0.04 7.76 39.77 4.49 4.53 23.39 16.89 28.87 1,451.29 58.14 13,548.25

PIC1 0.01 0.01 0.01 0.01 0.01 0.02 6.25 23.53 3.21 3.36 19.95 12.86 24.57 978.28 48.42 6,877.25

PIC2 0.01 0.01 0.01 0.01 0.01 0.03 5.31 18.11 3.50 3.59 20.35 12.62 24.47 740.55 49.37 6,195.13

PIC12 0.01 0.01 0.01 0.01 0.01 0.02 4.72 9.24 3.02 3.16 19.49 12.08 24.32 665.56 47.98 5,204.51

Table 4. Time Cost of Different Methods

performance, because different measures have different value ranges and one measure can dominate

the others. Thus we use a scaling function to transform the original measures into the same range

for fair aggregation.

Specifically, let 𝑥𝑘,𝜃 denote one of the four measures at 𝜃 , where 𝑘 ∈ {0, 1, 2, 3} and 𝜃 ∈ 𝐼 =

{0, 0.1, . . . , 1} ∪ { ˆ𝜃 }. Denote by 𝑥𝑘,𝑚𝑎𝑥 = max𝜃 ∈𝐼 𝑥𝑘,𝜃 the highest score and 𝑥𝑘,𝑚𝑖𝑛 = min𝜃 ∈𝐼 𝑥𝑘,𝜃 the

lowest score. We transform each measure score using the equation below:

𝑞𝑘,𝜃 =
log(𝑥𝑘,𝜃/𝑥𝑘,𝑚𝑖𝑛)

log(𝑥𝑘,𝑚𝑎𝑥/𝑥𝑘,𝑚𝑖𝑛)
, for 𝑘 ∈ {0, 1, 2, 3} and ∀𝜃 ∈ 𝐼 .

In other words, we use 𝑥𝑘,𝑚𝑖𝑛 , 𝑥𝑘,𝑚𝑎𝑥 and log function to turn each 𝑥𝑘,𝜃 to a relative score 𝑞𝑘,𝜃 in the

range of [0, 1]. 𝑞𝑘,𝜃 = 0 when 𝑥𝑘,𝜃 = 𝑥𝑘,𝑚𝑖𝑛 and 𝑞𝑘,𝜃 = 1 when 𝑥𝑘,𝜃 = 𝑥𝑘,𝑚𝑎𝑥 . Through this function,

the four measures are transformed to the same range, and then we compute the average score for

each 𝜃 by 𝑞𝜃 = avg𝑘∈{0,1,2,3}𝑞𝑘,𝜃 to represent the overall performance.

We measure the quality of the predicted
ˆ𝜃 with the loss function, 𝐿𝑂𝑆𝑆 = (max𝜃 ∈𝐼 𝑞𝜃) − 𝑞 ˆ𝜃

,

which indicates the gap between the best quality over all grid searched 𝜃 and that of the predicted

ˆ𝜃 . The lower the loss, the higher the quality of
ˆ𝜃 . Averaged over the 8 datasets, the loss is 0.03. This

shows the effectiveness of our predictive model for setting 𝜃 – the overall clustering performance

with the predicted
ˆ𝜃 is close to or even the same as the best performance, e.g., on dataset DA1, the

loss is 0 which means that the predicted
ˆ𝜃 achieves the best performance as by grid search.

7.2 Scalability
Exp 3. Table 4 shows the time costs of PIC and the baselines on 16 datasets. To quantify the

impact of our optimization techniques on time cost, we conduct an ablation study by creating three

variants of our method: PIC denotes our algorithm without optimization, PIC1 uses only the first

optimization, PIC2 uses the second, and PIC12 uses both. When averaged over all datasets, PIC1,
PIC2 and PIC12 are 29%, 27% and 36% faster than PIC, resp., and PIC12 achieves the largest efficiency

improvement. These improvements show the effectiveness of both optimization techniques.

Baselines LOUV, IRMM, CNMO, CNMR, HMLL, HPPR, EDVW, PBCC are 0.6, 27271, 14112,

2589, 417, 1510, 240374, 1600 times slower than PIC12, resp, on average. In particular, PIC12 is five
orders of magnitude faster than IRMM on CS and than EDVW on CS, AL20, and AL21. LOUV failed

on SO with an out-of-memory error. The other baselines failed on many large hypergraphs with

out-of-time errors. The result echoes the time complexity in Table 1.

Exp 4. Table 5 shows the memory costs of all methods. The space for storing and preprocessing the

graph is not counted. We first conduct an ablation study to quantify the impact of our optimization

techniques on memory cost. The memory costs of PIC and its variants are very close. PIC1, PIC2,

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:21

Memory (MB)
DA0 DA1 CI CS AL20 AL21 AA AX20 DB20 DB21 AS CG CD AR HS SO

LOUV 0.14 0.17 1.57 1.37 2.00 2.89 632.47 1,846.29 322.01 335.12 2,518.80 675.27 1,057.26 324,165.2 2,507.00 \
IRMM 3.44 4.94 18.97 324.28 163.90 288.87 \ \ \ \ \ \ \ \ \ \
CNMO 0.03 0.03 0.08 \ \ \ \ \ \ \ \ \ \ \ \ \
CNMR 0.03 0.03 0.08 0.27 0.22 0.30 \ \ \ \ \ \ \ \ \ \
HMLL 0.32 0.38 1.43 2.81 2.59 3.59 559.05 1189.33 404.77 416.50 2,356.99 898.03 1,694.01 \ \ \
HPPR 0.11 0.13 0.27 1.04 0.76 1.02 \ 69.36 113.37 115.86 \ \ \ \ \ \
EDVW 7.70 11.13 121.18 1,358.50 1,078.48 1,913.91 \ \ \ \ \ \ \ \ \ \
PBCC 0.30 0.36 0.62 2.59 1.74 2.31 \ \ 266.34 270.75 \ \ \ \ \ \
PIC 0.11 0.13 0.40 0.88 0.75 1.04 163.26 308.09 119.64 122.96 707.80 275.66 537.39 49,277.73 1,504.04 225,429.26
PIC1 0.11 0.13 0.40 0.89 0.77 1.06 164.10 309.43 121.61 124.97 710.45 279.10 543.72 49,286.38 1,512.82 225,487.29

PIC2 0.12 0.14 0.41 0.94 0.78 1.07 169.11 309.86 124.11 127.40 737.50 288.38 569.34 49,342.46 1,634.95 225,446.10

PIC12 0.12 0.14 0.41 0.96 0.79 1.09 169.96 311.21 126.08 129.42 740.15 291.83 575.67 49,351.11 1,643.73 225,504.13

Table 5. Memory Cost of Different Methods

PIC PIC 1 PIC 2 PIC 12

10
−1

10
0

10
1

10
2

20%
40%

60%
80%

100%

Running Time (sec.)

(a) AS

10
−1

10
0

10
1

10
2

20%
40%

60%
80%

100%

Running Time (sec.)

(b) CD

10
1

10
2

10
3

10
4

20%
40%

60%
80%

100%

Running Time (sec.)

(c) AR

10
0

10
1

10
2

20%
40%

60%
80%

100%

Running Time (sec.)

(d) HS

10
2

10
3

10
4

20%
40%

60%
80%

100%

Running Time (sec.)

(e) SO

Fig. 6. Scalability: Time Cost by Varying Node Number

10
1

10
2

10
3

20%
40%

60%
80%

100%

Memory (MB)

(a) AS

10
1

10
2

10
3

20%
40%

60%
80%

100%

Memory (MB)

(b) CD

10
3

10
4

10
5

20%
40%

60%
80%

100%

Memory (MB)

(c) AR

10
1

10
2

10
3

10
4

20%
40%

60%
80%

100%

Memory (MB)

(d) HS

10
3

10
4

10
5

10
6

20%
40%

60%
80%

100%

Memory (MB)

(e) SO

Fig. 7. Scalability: Memory Cost by Varying Node Number

10
0

10
1

10
2

10
3

0.1 0.3 0.5 0.7 0.9

Running Time (sec.)

(a) AS

10
1

10
2

10
3

0.1 0.3 0.5 0.7 0.9

Running Time (sec.)

(b) CD

10
1

10
2

10
3

0.1 0.3 0.5 0.7 0.9

Running Time (sec.)

(c) AR

10
1

10
2

10
3

0.1 0.3 0.5 0.7 0.9

Running Time (sec.)

(d) HS

10
1

10
2

10
3

0.1 0.3 0.5 0.7 0.9

Running Time (sec.)

(e) SO

Fig. 8. Scalability: Time Cost on Cardinality Distributions (vary 𝜆)

and PIC12 only use 1%, 4%, and 5% more memory than PIC, averaged over all datasets. This shows

that the space overhead to maintain the additional indices for optimizations is negligible, but the

improvement in efficiency brought by them is quite notable.

Compared with baselines, the memory cost of PIC is much less than that of LOUV, IRMM,HMLL,
PBCC and EDVW. Though CNMO, CNMR, and HPPR take less memory space than PIC on the

smaller hypergraphs, they suffer from high running time and fail with out-of-time errors on seven

or more larger hypergraphs. The memory cost conforms to the space complexity in Table 1.

Exp 5. Figures 6-7 show the time and memory costs of PIC when varying the number of nodes

of the graph. Due to the space limit, we only show the results on 5 largest datasets. We randomly

divided the nodes of a graph into 5 groups (each 1/5 of nodes) and created 5 graphs with the 𝑖-th

graph the induced subgraph of the first 𝑖 groups of nodes. The experiments were performed on the

5 graphs.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

215:22 Zijin Feng, Miao Qiao, & Hong Cheng

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

Memory (MB)

(a) AS

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

Memory (MB)

(b) CD

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

Memory (MB)

(c) AR

10
3

10
4

10
5

0.1 0.3 0.5 0.7 0.9

Memory (MB)

(d) HS

10
2

10
3

10
4

0.1 0.3 0.5 0.7 0.9

Memory (MB)

(e) SO

Fig. 9. Scalability: Memory Cost on Cardinality Distributions (vary 𝜆)

(a) ground truth (b) PIC (c) LOUV (d) IRMM (e) CNMO

(f) CNMR (g) HMLL (h) HPPR (i) EDVW (j) PBCC

Fig. 10. Case Study

Figure 6 shows that the time cost increases not linear to the number of nodes but instead,

empirically linear to vol(𝐻) · ˜|𝑒 | + vol2 (𝐻) (i.e., the time complexity of PIC). Figure 7 shows that the
memory cost increases not linear to the node number, but empirically linear to vol(𝐻) + vol2 (𝐻)
(i.e., the space complexity of PIC).
Exp 6. Figure 8 and Figure 9 show the time and memory costs of PIC when varying the edge

cardinality distribution: we fix the node size 𝑛, edge size𝑚, node degree distribution, and change

𝜆 (a parameter in the exponential model depicting the edge cardinality distribution in Section 3)

from 0.1 to 0.9. We observed that with other factors fixed, the smaller the 𝜆, the larger the average

cardinality
˜|𝑒 |, and thus the higher the volume (in terms of either vol(𝐻) or vol2 (𝐻)) of the induced

graphs, e.g.,
˜|𝑒 | of the graph with 𝜆 = 0.1 is about 3 times larger than that of the graph with 𝜆 = 0.9.

Figure 8 shows that the time costs decrease with 𝜆, not linear to 𝜆 but empirically linear to

vol(𝐻) · ˜|𝑒 | +vol2 (𝐻). Figure 9 shows that the memory costs decrease, empirically linear to vol(𝐻) +
vol2 (𝐻). This result echoes the complexity of PIC listed in Table 1.

7.3 Case Study
To show the effectiveness and meaningfulness of our clustering method, we conduct a case study

on a subgraph of the real hypergraph DB21. The subgraph, as shown in Figure 10, consists of 40

nodes representing authors and 35 hyperedges representing the groups of authors who published a

paper together in the year 2021. There are three ground truth clusters as shown in Figure 10(a),

corresponding to three conferences: pvldb (in red), icml (in green), and emnlp (in blue). Each author

belongs to one cluster which is determined by the conference in which he/she published the most

papers in 2021. There is a dashed line between two nodes if and only if they share at least one

hyperedge. Figures 10(b)-(j) show the clustering results of our method PIC and 8 baseline methods.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

Modularity-based Hypergraph Clustering 215:23

We observe that PIC produces the most accurate clustering compared with the baselines. LOUV
and IRMM in Figures 10(c)-(d) break the red and blue clusters into several smaller ones. CNMO
in Figure 10(e) reports two extra singleton clusters. CNMR, HMLL and PBCC in Figures 10(f), (g)

and (j) generate many small-sized clusters. HPPR produces a giant blue cluster in Figure 10(h)

which is inaccurate, and EDVW merges the green and blue clusters into a single one by mistake in

Figure 10(i).

8 CONCLUSIONS
This paper proposes a scalablemodularity-based hypergraph clustering approach that can effectively

capture the non-AON hyperedge-cluster relation. Our experiments show that PIC outperforms

the state-of-the-art methods on real-world hypergraphs in terms of both clustering quality and

scalability and is up to five orders of magnitude faster than the baseline methods.

ACKNOWLEDGMENTS
Zijin Feng and Hong Cheng are supported in part by NSFC Grant No. U1936205, project #MMT-p2-

23 of the Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong and

by grant from the Research Grants Council of the Hong Kong Special Administrative Region, China

(No. CUHK 14217622). Miao Qiao is supported by Marsden Fund UOA1732 and NZ-Singapore Data

Science Research Programme UOAX2001, the Catalyst: Strategic Fund from Government Funding,

administrated by MBIE, New Zealand.

REFERENCES
[1] 2021. XML release of DBLP. https://dblp.org/xml/release/.

[2] 2022. ACL Anthology. https://aclanthology.org/.

[3] 2022. Amazon Review Data. https://nijianmo.github.io/amazon/index.html.

[4] 2022. ARB dataset. https://www.cs.cornell.edu/~arb/data/.

[5] 2022. LINQS dataset. https://linqs.soe.ucsc.edu/data.

[6] 2022. The Substance Abuse and Mental Health Services Administration. https://www.samhsa.gov/.

[7] Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David J. Kriegman, and Serge J. Belongie. 2005.

Beyond Pairwise Clustering. In CVPR. 838–845. https://doi.org/10.1109/CVPR.2005.89

[8] Charu Aggarwal and Chandan Reddy. 2013. Data clustering: algorithms and applications. https://doi.org/10.1201/

9781315373515

[9] Ali Aghdaei, Zhiqiang Zhao, and Zhuo Feng. 2021. HyperSF: Spectral Hypergraph Coarsening via Flow-based Local

Clustering. In ICCAD. 1–9. https://doi.org/10.1109/ICCAD51958.2021.9643555

[10] William Aiello, Fan Chung, and Linyuan Lu. 2000. A random graph model for massive graphs. In STOC. 171–180.
https://doi.org/10.1145/335305.335326

[11] Ilya Amburg, Nate Veldt, and Austin Benson. 2020. Clustering in graphs and hypergraphs with categorical edge labels.

In WWW. 706–717. https://doi.org/10.1145/3366423.3380152

[12] Alex Arenas, Alberto Fernandez, and Sergio Gomez. 2008. Analysis of the structure of complex networks at different

resolution levels. New journal of physics 10, 5 (2008), 053039. https://doi.org/10.1088/1367-2630/10/5/053039

[13] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Kleinberg. 2018. Simplicial closure and higher-

order link prediction. Proc. Natl. Acad. Sci. 115, 48 (2018), E11221–E11230. https://doi.org/10.1073/pnas.1800683115

[14] Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast Unfolding of Communities

in Large Networks. J. Stat. Mech. 2008, 10 (04 2008), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

[15] Béla Bollobás and Bela Bollobas. 1998. Modern graph theory. Vol. 184. Springer Science & Business Media. https:

//doi.org/10.1007/978-1-4612-0619-4

[16] Thomas Bonald, Nathan de Lara, Quentin Lutz, and Bertrand Charpentier. 2020. Scikit-network: Graph Analysis in

Python. J. Mach. Learn. 21, 185 (2020), 1–6.
[17] Alain Bretto. 2013. Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer (2013). https:

//doi.org/10.1007/978-3-319-00080-0

[18] Jiajun Bu, Shulong Tan, Chun Chen, Can Wang, Hao Wu, Lijun Zhang, and Xiaofei He. 2010. Music recommendation

by unified hypergraph: combining social media information and music content. In ACM Multimedia. 391–400. https:

//doi.org/10.1145/1873951.1874005

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

https://dblp.org/xml/release/
https://aclanthology.org/
https://nijianmo.github.io/amazon/index.html
https://www.cs.cornell.edu/~arb/data/
https://linqs.soe.ucsc.edu/data
https://www.samhsa.gov/
https://doi.org/10.1109/CVPR.2005.89
https://doi.org/10.1201/9781315373515
https://doi.org/10.1201/9781315373515
https://doi.org/10.1109/ICCAD51958.2021.9643555
https://doi.org/10.1145/335305.335326
https://doi.org/10.1145/3366423.3380152
https://doi.org/10.1088/1367-2630/10/5/053039
https://doi.org/10.1073/pnas.1800683115
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1007/978-3-319-00080-0
https://doi.org/10.1007/978-3-319-00080-0
https://doi.org/10.1145/1873951.1874005
https://doi.org/10.1145/1873951.1874005

215:24 Zijin Feng, Miao Qiao, & Hong Cheng

[19] Philip S Chodrow. 2020. Configuration models of random hypergraphs. J. Complex Networks 8, 3 (08 2020), cnaa018.
https://doi.org/10.1093/comnet/cnaa018

[20] Philip S. Chodrow, Nate Veldt, and Austin R. Benson. 2021. Generative hypergraph clustering: From blockmodels to

modularity. Science Advances 7, 28 (2021), eabh1303. https://doi.org/10.1126/sciadv.abh1303

[21] Fan Chung and Linyuan Lu. 2002. The average distances in random graphs with given expected degrees. Natl Acad.
Sci. 99, 25 (2002), 15879–15882. https://doi.org/10.1073/pnas.252631999

[22] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding community structure in very large networks.

Phys. Rev. E 70, 6 (2004), 066111. https://doi.org/10.1103/PhysRevE.70.066111

[23] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-law distributions in empirical data. SIAM
review 51, 4 (2009), 661–703. https://doi.org/10.1137/070710111

[24] Jordi Duch and Alex Arenas. 2005. Community detection in complex networks using extremal optimization. Phys. Rev.
E 72, 2 (2005), 027104. https://doi.org/10.1103/PhysRevE.72.027104

[25] Paul Erdős, Alfréd Rényi, et al. 1960. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 1 (1960),
17–60.

[26] Santo Fortunato. 2010. Community detection in graphs. Phys. Reps. 486, 3-5 (2010), 75–174. https://doi.org/10.1016/j.

physrep.2009.11.002

[27] Santo Fortunato and Marc Barthelemy. 2007. Resolution limit in community detection. Proceedings of the national
academy of sciences 104, 1 (2007), 36–41. https://doi.org/10.1073/pnas.0605965104

[28] Santo Fortunato and Darko Hric. 2016. Community detection in networks: A user guide. Phys. Reps. 659 (2016), 1–44.
https://doi.org/10.1016/j.physrep.2016.09.002

[29] Kimon Fountoulakis, Pan Li, and Shenghao Yang. 2021. Local hyper-flow diffusion. NeurIPS 34 (2021), 27683–27694.
[30] Koby Hayashi, Sinan G Aksoy, Cheong Hee Park, and Haesun Park. 2020. Hypergraph random walks, laplacians, and

clustering. In CIKM. 495–504. https://doi.org/10.1145/3340531.3412034

[31] Einar Hille and Ralph Saul Phillips. 1996. Functional analysis and semi-groups. Vol. 31. American Mathematical Soc.

[32] Dong Huang, Chang-DongWang, Jian-ShengWu, Jian-Huang Lai, and Chee-Keong Kwoh. 2019. Ultra-scalable spectral

clustering and ensemble clustering. TKDE 32, 6 (2019), 1212–1226. https://doi.org/10.1109/TKDE.2019.2903410

[33] Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. J. Classif. 2, 1 (1985), 193–218. https://doi.org/10.

1007/BF01908075

[34] Bogumił Kamiński, Valérie Poulin, Paweł Prałat, Przemysław Szufel, and François Théberge. 2019. Clustering via

hypergraph modularity. PloS one 14, 11 (2019), e0224307. https://doi.org/10.1371/journal.pone.0224307

[35] Min-Soo Kim and Jiawei Han. 2009. A particle-and-density based evolutionary clustering method for dynamic networks.

VLDB 2, 1 (2009), 622–633. https://doi.org/10.14778/1687627.1687698

[36] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Yoo. 2011. Higher-order correlation clustering for

image segmentation. NIPS 24 (2011), 1530–1538.
[37] Larkshmi Krishnamurthy, Joseph Nadeau, Gultekin Ozsoyoglu, M Ozsoyoglu, Greg Schaeffer, Murat Tasan, and

Wanhong Xu. 2003. Pathways database system: an integrated system for biological pathways. Bioinformatics 19, 8
(2003), 930–937. https://doi.org/10.1093/bioinformatics/btg113

[38] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan Parthasarathy, and Balaraman

Ravindran. 2019. A New Measure of Modularity in Hypergraphs: Theoretical Insights and Implications for Effective

Clustering. In Complex Networks, Vol. 881. 286–297. https://doi.org/10.1007/978-3-030-36687-2_24

[39] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan Parthasarathy, and Balaraman

Ravindran. 2020. Hypergraph clustering by iteratively reweighted modularity maximization. Appl. Netw. Sci. 5, 1
(2020), 52. https://doi.org/10.1007/s41109-020-00300-3

[40] Jussi M Kumpula, Jari Saramäki, Kimmo Kaski, and János Kertész. 2007. Limited resolution in complex network

community detection with Potts model approach. Eur. Phys. J. B 56 (2007), 41–45. https://doi.org/10.1140/epjb/e2007-

00088-4

[41] Geon Lee, Minyoung Choe, and Kijung Shin. 2021. How Do Hyperedges Overlap in Real-World Hypergraphs? -

Patterns, Measures, and Generators. In WWW. 3396–3407. https://doi.org/10.1145/3442381.3450010

[42] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009. Community structure in large

networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
https://doi.org/10.1080/15427951.2009.10129177

[43] Lei Li and Tao Li. 2013. News recommendation via hypergraph learning: encapsulation of user behavior and news

content. In WSDM. 305–314. https://doi.org/10.1145/2433396.2433436

[44] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous Hypergraph Clustering with Applications. In NIPS, Vol. 30.
2308–2318.

[45] Pan Li and Olgica Milenkovic. 2018. Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral clustering.

In ICML. 3014–3023.

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

https://doi.org/10.1093/comnet/cnaa018
https://doi.org/10.1126/sciadv.abh1303
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1137/070710111
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1145/3340531.3412034
https://doi.org/10.1109/TKDE.2019.2903410
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1371/journal.pone.0224307
https://doi.org/10.14778/1687627.1687698
https://doi.org/10.1093/bioinformatics/btg113
https://doi.org/10.1007/978-3-030-36687-2_24
https://doi.org/10.1007/s41109-020-00300-3
https://doi.org/10.1140/epjb/e2007-00088-4
https://doi.org/10.1140/epjb/e2007-00088-4
https://doi.org/10.1145/3442381.3450010
https://doi.org/10.1080/15427951.2009.10129177
https://doi.org/10.1145/2433396.2433436

Modularity-based Hypergraph Clustering 215:25

[46] Wentao Li, Miao Qiao, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin. 2022. On Scalable Computation of Graph

Eccentricities. In SIGMOD. 904–916. https://doi.org/10.1145/3514221.3517874

[47] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. 2019. Dreamplace: Deep learning

toolkit-enabled gpu acceleration for modern vlsi placement. In DAC. 1–6. https://doi.org/10.1145/3316781.3317803

[48] Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F Gleich. 2021. Strongly local hypergraph diffusions for clustering

and semi-supervised learning. In WWW. 2092–2103. https://doi.org/10.1145/3442381.3449887

[49] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to information retrieval.
Cambridge University Press. https://doi.org/10.1017/CBO9780511809071

[50] Mark EJ Newman. 2006. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74,

3 (2006), 036104. https://doi.org/10.1103/PhysRevE.74.036104

[51] Mark E. J. Newman. 2010. Networks: An Introduction. https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

[52] Marios Papachristou and Jon Kleinberg. 2022. Core-Periphery Models for Hypergraphs. In KDD. 1337–1347. https:

//doi.org/10.1145/3534678.3539272

[53] Emad Ramadan, Arijit Tarafdar, and Alex Pothen. 2004. A hypergraph model for the yeast protein complex network.

In IPDPS. 189. https://doi.org/10.1109/IPDPS.2004.1303205

[54] Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community detection. Physical review E 74, 1

(2006), 016110. https://doi.org/10.1103/PhysRevE.74.016110

[55] Satu Elisa Schaeffer. 2007. Graph clustering. Comput. Sci. Rev. 1, 1 (2007), 27–64. https://doi.org/10.1016/j.cosrev.2007.

05.001

[56] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. TPAMI 22, 8 (2000), 888–905. https:

//doi.org/10.1109/34.868688

[57] Sucheta Soundarajan and John E. Hopcroft. 2012. Using community information to improve the precision of link

prediction methods. In WWW. 607–608. https://doi.org/10.1145/2187980.2188150

[58] Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. 2020. Hypergraph Clustering Based on PageRank.

In KDD. 1970–1978. https://doi.org/10.1145/3394486.3403248

[59] Bertrand Thirion, Gaël Varoquaux, Elvis Dohmatob, and Jean-Baptiste Poline. 2014. Which fMRI clustering gives good

brain parcellations? Front. Neurosci. 8 (2014), 167. https://doi.org/10.3389/fnins.2014.00167

[60] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Minimizing localized ratio cut objectives in hypergraphs. In

KDD. 1708–1718. https://doi.org/10.1145/3394486.3403222

[61] Nate Veldt, Anthony Wirth, and David F Gleich. 2020. Parameterized correlation clustering in hypergraphs and

bipartite graphs. In KDD. 1868–1876. https://doi.org/10.1145/3394486.3403238

[62] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and computing 17 (2007), 395–416. https:

//doi.org/10.1007/s11222-007-9033-z

[63] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A model-based approach to attributed graph

clustering. In SIGMOD. 505–516. https://doi.org/10.1145/2213836.2213894

[64] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local higher-order graph clustering. In KDD.
555–564. https://doi.org/10.1145/3097983.3098069

[65] Chen Zhe, Aixin Sun, and Xiaokui Xiao. 2019. Community Detection on Large Complex Attribute Network. In KDD.
2041–2049. https://doi.org/10.1145/3292500.3330721

[66] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with Hypergraphs: Clustering, Classification,

and Embedding. In NeurIPS. 1601–1608. https://doi.org/10.7551/mitpress/7503.003.0205

Received January 2023; revised April 2023; accepted May 2023

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 215. Publication date: September 2023.

https://doi.org/10.1145/3514221.3517874
https://doi.org/10.1145/3316781.3317803
https://doi.org/10.1145/3442381.3449887
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1145/3534678.3539272
https://doi.org/10.1145/3534678.3539272
https://doi.org/10.1109/IPDPS.2004.1303205
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1145/2187980.2188150
https://doi.org/10.1145/3394486.3403248
https://doi.org/10.3389/fnins.2014.00167
https://doi.org/10.1145/3394486.3403222
https://doi.org/10.1145/3394486.3403238
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1145/2213836.2213894
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1145/3292500.3330721
https://doi.org/10.7551/mitpress/7503.003.0205

	Abstract
	1 Introduction
	2 Preliminary Concepts
	2.1 Random Graph Model and Modularity for Dyadic Graph Clustering
	2.2 Existing Hypergraph Clustering Methods

	3 Hyperedge Expansion Model
	4 PI Modularity
	5 PI Clustering
	5.1 Loyalty Function and PI Modularity Computation
	5.2 PI Clustering Algorithm
	5.3 Optimizations

	6 Related Work
	7 Experimentations
	7.1 Effectiveness
	7.2 Scalability
	7.3 Case Study

	8 Conclusions
	Acknowledgments
	References

