
1

Approximate Shortest Distance Computing: A
Query-Dependent Local Landmark Scheme

Miao Qiao, Hong Cheng, Lijun Chang, and Jeffrey Xu Yu, Senior Member, IEEE

Abstract—Shortest distance query is a fundamental operation in large-scale networks. Many existing methods in the literature
take a landmark embedding approach, which selects a set of graph nodes as landmarks and computes the shortest distances
from each landmark to all nodes as an embedding. To answer a shortest distance query, the precomputed distances from the
landmarks to the two query nodes are used to compute an approximate shortest distance based on the triangle inequality.
In this paper, we analyze the factors that affect the accuracy of distance estimation in landmark embedding. In particular we
find that a globally selected, query-independent landmark set may introduce a large relative error, especially for nearby query
nodes. To address this issue, we propose a query-dependent local landmark scheme, which identifies a local landmark close
to both query nodes and provides a more accurate distance estimation than the traditional global landmark approach. We
propose efficient local landmark indexing and retrieval techniques, which achieve low offline indexing complexity and online
query complexity. Two optimization techniques on graph compression and graph online search are also proposed, with the goal
of further reducing index size and improving query accuracy. Furthermore, the challenge of immense graphs whose index may
not fit in the memory leads us to store the embedding in relational database, so that a query of the local landmark scheme can
be expressed with relational operators. Effective indexing and query optimization mechanisms are designed in this context. Our
experimental results on large-scale social networks and road networks demonstrate that the local landmark scheme reduces
the shortest distance estimation error significantly when compared with global landmark embedding and the state-of-the-art
sketch-based embedding.

Index Terms—local landmark embedding, least common ancestor, local search, graph compression, query optimization.

F

1 INTRODUCTION

A S the size of graphs that emerge nowadays from var-
ious application domains is dramatically increasing,

the number of nodes may reach the scale of hundreds of
millions or even more. Due to the massive size, even simple
graph queries become challenging tasks. One of them, the
shortest distance query, has been extensively studied during
the last four decades. Querying shortest paths or shortest
distances between nodes in a large graph has important
applications in many domains including road networks,
social networks, communication networks, the Internet, etc.
For example, in road networks, the goal is to find shortest
routes between locations; in social networks, the goal is to
find the closest social relationships such as friendship or
collaboration between users; while in the Internet, the goal
is to find the nearest server in order to reduce access latency
for clients. Although classical algorithms like breadth-first
search (BFS), Dijkstra’s algorithm [1], and A∗ search [2],
[3], [4] can compute the exact shortest paths in a network,
the massive size of modern information networks and the
online nature of such queries make it infeasible to apply
the classical algorithms online. On the other hand, it is
space inefficient to precompute and store the shortest paths
between all pairs of nodes, as it requires O(n3) space

• M. Qiao, H. Cheng, L. Chang and J. X. Yu are with the Department
of Systems Engineering and Engineering Management, The Chinese
University of Hong Kong, Hong Kong.
E-mail: {mqiao, hcheng, ljchang, yu}@se.cuhk.edu.hk

to store the shortest paths and O(n2) space to store the
distances for a graph with n nodes.

Recently, there have been many different methods [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15] for
estimating the shortest distance between nodes based on
graph embeddings. A commonly used embedding technique
is landmark embedding, where a set of graph nodes is
selected as landmarks [6], [12], [14] (also called reference
nodes [11], [15], beacons [8], or tracers [5]) and the
shortest distances from a landmark to all the other nodes in
a graph are precomputed. Such precomputed distances can
be used online to provide an approximate distance between
two graph nodes based on the triangle inequality.

In this paper, we revisit the landmark embedding ap-
proach. According to the findings in the literature [5],
[12], the problem of selecting the optimal landmark set
is NP-hard, by a reduction from the classical NP-hard
problems such as vertex cover or minimum K-center [16].
As a result, the existing studies use random selection or
graph measure based heuristics such as degree, between-
ness centrality, closeness centrality, coverage, etc. Despite
various heuristics which try to optimize landmark selection,
all the existing methods follow the triangulation based
distance estimation, which estimates the shortest distance
between a pair of query nodes as the sum of their distances
to a landmark. As the landmark selection step is query
independent, the landmark set provides a single global
view for all possible queries which could be diameter apart
or close by. Thus it is hard to achieve uniformly good
performance on all queries. As a consequence, the landmark

2

embedding approach may introduce a large relative error,
especially when the landmark set is distant from both nodes
in a query but the two nodes themselves are nearby. For
example, in a US road network with 24 million nodes and
58 million edges, landmark embedding (with 50 randomly
selected landmarks) has a maximum relative error of 68 for
one query among 10, 000 random queries we tested.

This observation motivates us to find a query-dependent
“local landmark” which is close to both query nodes for a
more accurate distance estimation. In contrast, the original
landmarks are called “global landmarks”. In this paper, we
propose a query-dependent local landmark scheme, which
identifies a local landmark specific to a pair of query nodes.
Then the distance between the two query nodes is estimated
as the sum of their shortest distances to the local landmark,
which is much closer than the global one. The query-
dependent local landmark scheme is expected to reduce
the distance estimation error in principle, compared with
the traditional global landmark embedding.
Challenges. The key challenges of the query-dependent
local landmark scheme lie in the following aspects. First,
efficient local landmark indexing and retrieval techniques
are needed. We cannot afford expensive online computation
to find a query-specific local landmark, as it would sig-
nificantly increase the query processing time. Second, the
shortest distance from a query node to a local landmark
needs to be efficiently computed. This distance should not
be computed from scratch at the query time. These two
factors are crucial to achieve efficient online query process-
ing. Third, the embedding index should be compact. The
estimation accuracy improvement and the query processing
efficiency should not be achieved at the expense of an
increase in the offline indexing complexity.

Bearing these goals in mind, we propose a shortest
path tree (SPT) based local landmark scheme, where the
shortest path tree rooted at node r is a tree composed
of the shortest paths from r to all the other nodes. The
SPTs rooted at global landmarks help to select the query-
dependent local landmarks between two query nodes. Our
main contributions are summarized as follows.
• In the traditional landmark embedding, we find that

the query-independent global landmark selection intro-
duces a large relative error, especially for nearby query
nodes which are distant from the global landmarks.
In light of this, we propose a query-dependent local
landmark scheme which finds a local landmark close
to both query nodes to improve the distance estimation
accuracy. The local landmark scheme proves to be a
robust embedding solution that substantially reduces
the dependency of query performance on the global
landmark selection strategy.

• Given a query node pair, the proposed local landmark
scheme finds a local landmark, which is defined as the
least common ancestor (LCA) of the two query nodes
in the SPT rooted at one of the global landmarks. An
O(1) time algorithm for finding the LCA on an SPT is
introduced. We show that the shortest path tree based
local landmark scheme can significantly improve the

distance estimation accuracy, without increasing the
offline embedding or the online query complexity.

• Facing the challenge of immense graphs whose index
may not fit in the memory, we also study to store
the embedding in relational database, so that a query
of the local landmark scheme can be expressed with
relational operators.

• We performed extensive experiments on large-scale
social networks and road networks with both memory
and relational database implementations. Experimental
results show that our local landmark scheme signifi-
cantly reduces the average relative error to the scale
of 0 − 10−3, which is orders of magnitude better
than global landmark embedding, and several times
better than the state-of-the-art sketch-based embedding
TreeSketch [14].

2 PRELIMINARY CONCEPTS

Consider a weighted undirected graph G = (V, E,w),
where V is a set of vertices, E is a set of edges, and
w : E 7→ R+ is a weighting function mapping an edge
(u, v) ∈ E to a positive real number w(u, v) > 0,
which measures the length of (u, v). We denote n = |V |
and m = |E|. For a pair of vertices a, b ∈ V , we
use δ(a, b) to denote the shortest distance between a
and b, and P (a, b) = (a, v1, v2, . . . , vl−1, b) to denote
the shortest path, where {a, v1, . . . , vl−1, b} ⊆ V and
{(a, v1), (v1, v2), . . . , (vl−1, b)} ⊆ E.

2.1 Landmark Embedding
Given a pair of query nodes (a, b), to efficiently estimate an
approximate shortest distance between a and b, a commonly
adopted approach is landmark embedding. Consider a set of
nodes S = {l1, . . . , lk} ⊆ V which are called landmarks.
For each li ∈ S, we compute the shortest distances to all
nodes in V . Then for every node v ∈ V , we can use a k-
dimensional vector

−→
D(v) = 〈δ(l1, v), δ(l2, v), . . . , δ(lk, v)〉

to represent its distances to the k landmarks. This is called
landmark embedding, which can be used to compute an
approximate shortest distance between nodes a and b based
on the triangle inequality as

δ̃(a, b) = min
li∈S

{δ(li, a) + δ(li, b)} (1)

This general embedding approach has been widely used in
many existing methods in the literature.

2.2 Landmark Selection
In the landmark embedding approach, a key question is
how to select the landmark set S from V , as the landmarks
can heavily influence the estimation accuracy of shortest
distance queries. However, selecting the optimal set of land-
marks has been proven to be NP-hard, by a reduction from
the classical NP-hard problems such as vertex cover [12] or
minimum K-center [5]. Due to the hardness of the landmark
selection problem, previous studies (e.g., [5], [12], [15])
proposed various heuristics, including random selection,

3

degree, centrality, and coverage based selection heuristics.
But the performance of different heuristics heavily depends
on the graph properties, e.g., degree distribution, diameter,
etc. There is no heuristic that excels in all kinds of graphs.

2.3 Factors on Embedding Performance
Here we briefly discuss the factors that affect the perfor-
mance of landmark embedding.
A globally selected query-independent landmark set:
Most existing methods select a single set of global
landmarks which are independent of queries. Such a
query-independent landmark set provides a single global
view for all possible queries which could be diameter
apart or close by, thus it cannot achieve uniformly
good performance on all queries. The landmark set can
only provide a very rough distance estimation for a
query, especially when it is distant from both query nodes,
and the two query nodes are close by, as shown in Figure 1.

),(alδ

),(blδ

),(),(),(),(
~

bablalba δδδδ >>+=

),(baδ

Fig. 1. Distance Estimation with a Landmark

The number of landmarks k: In general, increasing the
number of landmarks k will improve the performance of
landmark embedding. An extreme case is k = |V | which
leads to zero estimation error. This actually corresponds
to computing all pair shortest paths as an embedding. As
a side effect, increasing k will cause an increase of the
query processing time and the index size, as the query
complexity is O(k) and the index space complexity is
O(kn). Thus, increasing k is not an efficient or scalable
solution to improve the embedding performance.

2.4 A Query-Dependent Local Landmark Scheme
In this paper we propose a novel framework, called local
landmark scheme, for estimating the shortest distance with
a small number of query-dependent local landmarks. In this
framework, the problem is formulated as follows.
Problem Statement: Given an arbitrary query node pair
(a, b) and a global landmark set S, our goal is to identify
a query-specific local landmark which is closer to the true
shortest path P (a, b) than any global landmark in a graph
G. The approximate shortest distance between a and b
is computed as the sum of their distances to the local
landmark.

The local landmark can be defined in an abstract way as:
Definition 1 (Query-Dependent Local Landmark):

Given a global landmark set S and a query (a, b), a
query-dependent local landmark function is

Lab(S) : V k 7→ V

which maps S to a vertex in V called a local landmark.

With the local landmark, we can estimate a shortest
distance of query (a, b) as

δ̃L(a, b) = δ(Lab(S), a) + δ(Lab(S), b) (2)

Let us see an example.
Example 1: Figure 2 shows an example graph with the

global landmark set S = {l1, l2, l3}. In this graph, a solid
line between two nodes represents an edge of unit length,
while a dashed line between two nodes represents a path
with zero or more intermediate connecting nodes and thus
a length no less than one.

For a pair of query nodes (a, b), the path in bold
(a, e, f, g, b) is the shortest path between a and b. The
shortest paths from the global landmark l1 to a and b are
(l1, . . . , c, e, a) and (l1, . . . , c, d, g, b), respectively. Based
on l1, the estimated shortest distance between a and b is

δ̃(a, b) = δ(l1, a) + δ(l1, b) (3)

But if we have the shortest distances δ(c, a) and δ(c, b), we
can have a more accurate distance estimation based on c
than that based on l1:

δ̃L(a, b) = δ(c, a) + δ(c, b) (4)

as we have δ̃(a, b) = δ̃L(a, b) + 2δ(l1, c).
As opposed to the concept of global landmark, we call

node c a local landmark with respect to query nodes a, b.

a b

c

d

e f g

h
p

d

l1
l2

l3

Fig. 2. Local Landmarks

3 SHORTEST PATH TREE BASED LOCAL
LANDMARK
In landmark embedding, the shortest distances from each
global landmark l ∈ S to all vertices in V are precomputed
for the embedding purpose. To preserve more delicate
information, we can further consider the shortest path tree
(SPT) rooted at each global landmark l ∈ S.

Definition 2 (Shortest Path Tree): Given a graph G =
(V, E,w), the shortest path tree rooted at a vertex r ∈ V is
a spanning tree of G, such that the path from the root r to
each node v ∈ V is a shortest path between r and v, and
the path length is the shortest distance between r and v.

Figure 3 shows an SPT rooted at the global landmark l1
according to the graph in Figure 2. An SPT not only con-
tains the shortest distance information from the tree root,
it also preserves the more delicate structure information on
how the two query nodes are connected. Based on the tree
structure, we can identify a node, e.g., c, which is closer to
nodes a and b than l1. Based on this intuition, we propose
an SPT based local landmark function.

4

l1
l2

l3
a

b

c

de

f g

h
p

Fig. 3. Shortest Path Tree Rooted at l1

3.1 SPT Based Local Landmark Function

In Example 1, we find that the distance estimation based on
node c, i.e., δ̃L(a, b) = δ(c, a) + δ(c, b) is a tighter upper
bound than that based on l1. If we look at the SPT rooted
at l1 in Figure 3, it is not hard to find that c is the least
common ancestor (LCA) of a and b.

Definition 3 (Least Common Ancestor): Let T be a
rooted tree. The least common ancestor of two nodes u
and v in T , denoted as LCAT (u, v), is the node furthest
from the root that is an ancestor of both u and v.

In light of this, we propose an SPT based local landmark
function, which returns the LCA of the query nodes a, b in
the SPT rooted at each landmark l ∈ S.

Definition 4 (SPT Based Local Landmark Function):
Given a global landmark set S and a query (a, b), the SPT
based local landmark function is defined as:

Lab(S) = arg min
r∈{LCATl

(a,b)|l∈S}
{δ(r, a) + δ(r, b)}

where LCATl
(a, b) denotes the least common ancestor of

a and b in the SPT Tl rooted at l ∈ S.
We can show that the distance estimation with the SPT

based local landmarks is more accurate, or at least the same
accurate as that with the global landmark set.

Theorem 1: Given a global landmark set S, ∀a, b ∈ V ,
we have

δ(a, b) ≤ δ̃L(a, b) ≤ δ̃(a, b).

Proof: First, δ(a, b) ≤ δ̃L(a, b) holds according to the
triangle inequality.

Next, ∀l ∈ S, r = LCATl
(a, b), we have

δ(l, a) + δ(l, b) = δ(r, a) + δ(r, b) + 2δ(r, l)

As δ(r, l) ≥ 0, we have

δ(r, a) + δ(r, b) ≤ δ(l, a) + δ(l, b)

Consequently,

δ̃L(a, b) = min
l∈S

{δ(LCATl
(a, b), a) + δ(LCATl

(a, b), b)}
≤ min

l∈S
{δ(l, a) + δ(l, b)}

= δ̃(a, b)

To efficiently calculate δ̃L(a, b), a 6= b ∈ V , we have:

δ̃L(a, b) = min
l∈S

{δ(LCATl
(a, b), a) + δ(LCATl

(a, b), b)}
(5)

= min
l∈S

{δ(l, a) + δ(l, b)− 2δ(l, LCATl
(a, b))}

When LCATl
(a, b), ∀l ∈ S is known, Eq.(5) can be

computed in O(|S|) time. For each l ∈ S, it simply
looks up three embedded distances δ(l, a), δ(l, b) and
δ(l, LCATl

(a, b)).

3.2 LCA Computation
We introduce the techniques in [17] for efficiently finding
the LCA of two nodes in an SPT T in O(1) time with an
O(n) size index, where n is the number of nodes in T . A
closely related problem to LCA is Range Minimum Query
(RMQ), the solution to which leads to the solution to LCA.

Definition 5 (Range Minimum Query): Let A be an ar-
ray of length n, namely A[1, . . . , n]. For indices 1 ≤ i ≤
j ≤ n, RMQA(i, j) returns the index of the smallest
element in the subarray A[i, . . . , j].

This linkage between the two problems is based on the
following observation. LCAT (a, b) is the shallowest node
encountered between the visits to a and b during a depth
first search of a tree T . Based on this linkage, we can reduce
the LCA problem to RMQ as follows:

1) Perform a depth first search on the tree T and record
the node label sequence trace[1, . . . , 2n − 1] in
the Euler Tour of the tree. The Euler Tour of T
traverses each of the n − 1 edges in T twice, once
in each direction, during a DFS traversal. Therefore,
the array trace has a length 2n − 1. For example,
for the shortest path tree in Figure 3, trace =
(l1, . . . , c, e, a, . . . , h, . . . , l3, . . . , h, . . . , a, e, p, e, f, e,
c, d, . . . , l2, . . . , d, g, b, g, d, c, . . . , l1).

2) Record the level of the nodes in T in an array
L[1, . . . , 2n− 1], where L[i] is the level of the node
trace[i]. We define the level of the root as 0, and the
level of a child increases that of its parent by 1.

3) For the n nodes in the tree T , record the timestamp
of each node in stamp[1, . . . , n], where stamp[a] =
mini{trace[i] = a}, a ∈ V . Here the “timestamp”
refers to a counter of consecutively increasing inte-
gers starting from 0. The stamp array records the
time when a node is visited for the first time.

With the above transformation, without loss of generality,
for two nodes a, b, let stamp[a] < stamp[b], then

LCAT (a, b) = trace[arg min
stamp[a]≤i≤stamp[b]

L[i]] (6)

= trace[RMQL(stamp[a], stamp[b])]

The query RMQL(stamp[a], stamp[b]) finds the index
of the node with the smallest level, i.e., the shallowest node,
in the subarray L[stamp[a], stamp[b]]. According to [17],
an RMQ query can be answered in O(1) time with an
index of size O(n). We need to perform the DFS traversal
|S| times, one for each landmark, thus it takes O(|S|n)
processing time and O(|S|n) index space in total.

5

3.3 Complexity Analysis
We analyze the online query complexity and the offline
embedding complexity of LLS.
Online Query Time Complexity: The query is based
on Eq.(5). For each global landmark l ∈ S, there are
three lookup operations to retrieve the embedded distances,
which take O(1) time. In addition, there is an LCA query
which can be answered in O(1) time by RMQ. For all
global landmarks in S, the query time complexity is O(|S|).
Offline Embedding Space Complexity: The space re-
quirement of LLS can be partitioned into three parts: (1)
embedded distances from each global landmark to every
node in the graph in O(|S|n) space; (2) shortest path
trees and the corresponding trace, L and stamp arrays
for all global landmarks in O(|S|n) space; and (3) RMQ
index tables for all global landmarks in O(|S|n) space.
Combining the above three factors, the offline embedding
space complexity of LLS is O(|S|n) .
Offline Embedding Time Complexity: Given a global
landmark set S, the time complexity to compute the single-
source shortest paths from a landmark by Dijkstra’s al-
gorithm [1] is O(m + n log n). It can be simplified to
O(n log n) when the graph G is sparse. We also have
to build the RMQ index in O(n) time for each global
landmark in S. Thus the total embedding time complexity
is O(|S|n log n).

When compared with GLS, it is not hard to verify
that our LLS has the same online query complexity and
offline embedding complexity, although our complexities
have slightly larger constant factors.

3.4 Extending LLS to Directed Graphs
Our LLS method is mainly designed for undirected graphs.
Here we briefly discuss how to extend it to handle directed
graphs. For each landmark l, we build two SPTs rooted
at l. One is a backward tree TBl, where the tree path
PTBl

(v, l) is the shortest path from v to l for v ∈ V .
The other is a forward tree TFl, where the tree path
PTFl

(l, v) is the shortest path from l to v for v ∈ V .
Given a query (x, y), for landmark l, we first retrieve
two tree paths, PTBl

(x, l) and PTFl
(l, y), then find one of

their common nodes with the smallest distance estimation,
i.e., minv∈PT Bl

(x,l)∩PT Fl
(l,y){d(x, v) + d(v, y)}, as a local

landmark candidate. Finally, we report

d̃(x, y) = min
l∈S

{ min
v∈PT Bl

(x,l)∩PT Fl
(l,y)

{d(x, v) + d(v, y)}}

as the approximate distance. Using hashing techniques, the
query time is O(Σl∈S(|PTBl

(x, l)| + |PTFl
(l, y)|)) where

|PTBl
(x, l)| and |PTFl

(l, y)| denote the number of hops
in the corresponding paths. The embedding uses O(|S|n)
space to store the forward and backward SPTs for all
landmarks in S.

4 OPTIMIZATION TECHNIQUES
In this section, we propose two additional techniques, graph
compression and local search to further optimize the perfor-
mance of our local landmark scheme. Graph compression

aims to reduce the embedding index size by compressing
the graph nodes, and local search performs limited scope
online search to improve the distance estimation accuracy.

4.1 Index Reduction with Graph Compression
As we have shown, the embedding index takes O(|S|n)
space, which is a linear function of the graph node number
n. Thus we can effectively reduce the embedding index size
if the graph nodes can be compressed. Towards this goal,
we propose graph compression techniques which reduce
some simple local graph structures with low-degree nodes
to a representative node. Our compression techniques are
lossless, thus do not sacrifice the distance query accuracy.

4.1.1 Graph Compression and Index Construction
We first define two types of special graph nodes, i.e., tree
node and chain node.

Definition 6 (Graph Incident Tree and Tree Node): A
tree T = (VT , ET , r) with the root r is a graph incident
tree on a graph G = (V, E) if (1) VT ⊂ V , ET ⊂ E; and
(2) for any path P (u, v) between u ∈ VT and v ∈ V −VT ,
P must go through the tree root r. A graph incident tree
is maximal if it is not contained in another graph incident
tree. The nodes VT − {r} are called tree nodes and the
root r is the entry node of all tree nodes in T .

i j k
a

b

c

d

e f

g

h
l

m

n

o

Fig. 4. Graph Compression Example

For example, in Figure 4, the tree with nodes
a, b, c, d, e, f is a maximal graph incident tree, where the
root a is the entry node and nodes b, c, d, e, f are the tree
nodes. A graph incident tree can be simply discovered
by recursively removing graph nodes with degree 1 until
the entry node is met (with degree > 1). As the entry
node is the only access point for a tree node to connect
to the rest of the graph, it is sufficient to keep the entry
node as a representative. The graph incident tree is thus
compressed to the entry node by removing all the tree
nodes. In addition, the distance from each tree node to the
entry node is saved in an array. After we remove all tree
nodes, we next identify the chain nodes.

Definition 7 (Chain Node): Given a graph G = (V,E),
a chain node v ∈ V is a non tree node with degree(v) = 2.

If we trace through the two edges incident on a chain
node respectively, the two nodes which are first encountered
through the chain with a degree greater than 2 are called
end nodes. The two end nodes may be identical when a
cycle exists. For example in Figure 4, nodes i and j are
chain nodes with end nodes h and k. We will remove the
chain nodes and the incident edges, and then connect the
two end nodes with a new edge, whose length is equal to

6

the length of the chain. The distances from a chain node
to both end nodes are saved in an array.

After we remove the tree nodes and chain nodes and
their incident edges from a graph G = (V,E), we obtain a
compressed graph G′ = (V ′, E′). Then the index structures
including the embedded distances, shortest path trees and
RMQ index tables are constructed on top of G′, instead of
G. As |V ′| < |V |, the index size can be effectively reduced.

One point worth noting is that, as a graph incident tree
is compressed to a single entry node, the tree structure is
lost. When given two query nodes from the same tree, their
LCA cannot be identified from the compressed graph G′.
For example, for nodes e, f in Figure 4, their LCA d cannot
be identified from the compressed graph, as d has been
removed as a tree node. In order to handle such queries, we
select one global landmark l ∈ V and build the embedding
index including the shortest path tree and RMQ table on
the original graph; and select the other global landmarks
from V ′ and build the index on the compressed graph. For
any two tree nodes on the same graph incident tree, e.g.,
e, f , their LCA is the same in all shortest path trees rooted
at any global landmarks. Thus it is sufficient to build the
full index on the original graph for one global landmark
only. The space complexity is O(n + (|S| − 1)n′), which
is smaller than O(|S|n) on the original graph.

4.1.2 Query Processing on Compressed Graph
Given a query (a, b), if a, b ∈ V ′, the local landmark based
approximate shortest distance δ̃L(a, b) can be estimated by
Eq.(5) in the same way as in the original graph; otherwise,
if at least one of a, b is a tree node or chain node and not
in V ′, then

δ̃L(a, b) = min
ra∈map(a),
rb∈map(b)

{δ(a, ra) + δ̃L(ra, rb) + δ(b, rb)}

(7)
where map(a) contains the representative nodes for a,
defined as follows: (1) if a is a tree node, map(a) contains
the corresponding entry node; (2) if a is a chain node,
map(a) contains the two end nodes; and (3) if a ∈ V ′,
map(a) is a itself. The intermediate query δ̃L(ra, rb) can
be answered by Eq.(5), as ra, rb ∈ V ′, according to the
definition of map().

There are two special cases to be handled separately.
1) If a, b are tree nodes from the same graph incident

tree, the query δ̃L(a, b) can be answered with the
local landmark from the index on the original graph.
For example, for query (e, f) in Figure 4, δ̃L(e, f) =
δ(e, d) + δ(f, d), where d is the LCA of e and f .

2) If a, b are two chain nodes with the same end nodes,
then δ̃L(a, b) = min{d, |δ(a, r)−δ(b, r)|}, where d is
estimated by Eq.(7), and r is either one of the two end
nodes. For example, for query (i, j) in Figure 4, there
are two paths P1 = (i, j) and P2 = (i, h, n, k, j)
between i and j. The distance δ̃L(i, j) is estimated
by the shorter one among P1 and P2.

Our graph compression is lossless. Thus in all the above
cases, the estimated distance based on the compressed

graph will be the same as that based on the original graph.

4.2 Improving Accuracy by Local Search
In this subsection, we propose an online local search (LS)
technique which performs a limited scope local search on
the graph and may find a shortcut with a smaller distance
than that based on LLS. Given a query (a, b), for each
global landmark l ∈ S, we can find LCATl

(a, b) in Tl

rooted at l. The shortest path between a query node and a
local landmark LCATl

(a, b) can also be obtained from the
corresponding SPT Tl. If we trace the shortest paths from
a to all the LCAs (similarly from b to all the LCAs), we
can form two partial shortest path trees rooted at a and b
respectively, e.g., Ta and Tb in Figure 5 following Example
1. A leaf node in such trees must be an LCA; while it is
also possible an LCA is an intermediate node, if it lies on
the shortest path from a query node to another LCA, e.g.,
the intermediate node c in Ta in Figure 5 (a).

a

c
d

e

h

d

(a) Ta

bg
p

c
d

h
(b) Tb

Fig. 5. Partial Shortest Path Trees

The local search expands a partial shortest path tree T
by a width of c, i.e., for each node in T , its neighbors
within c hops in the graph are included in the expanded
tree T c. For the two expanded trees T c

a and T c
b rooted

at the query nodes, the common nodes of T c
a and T c

b act
as bridges to connect the two query nodes. We will find
a path connecting the two query nodes through a bridge
with the smallest distance. If the distance is smaller than
the estimation δ̃L(a, b) by LLS, we will report this local
search distance as a more accurate estimation for the query
(a, b). Figure 6 shows the 1-hop expanded trees T 1

a and T 1
b ,

where the 1-hop neighbors of every tree node in Ta and Tb

are included. The yellow shade illustrates (in an abstract
way) that each node in the dashed path is also expanded
to include its 1-hop neighbor. Based on the expanded trees
there are four paths connecting a and b, i.e., (a, e, c, d, g, b),
(a, e, f, g, b), (a, e, p, . . . , b) and (a, . . . , h, . . . , p, . . . , b).
As (a, e, f, g, b) has the shortest distance between a and
b, we return the distance as the answer.

Algorithm 1 shows the pseudocode of the local search.
Lines 2-3 build two partial shortest path trees rooted at
a and b respectively to all the local landmarks. Lines 4-5
expand the two trees to include the neighbors within c hops
for each tree node. distT c

a
(a, r) in line 8 represents the path

length from a to r in the expanded tree T c
a .

The setting of the search width c is a trade-off between
the accuracy and the online query cost. If we set c to 2
or above, for graphs with high average degree, e.g., social
networks, the online search space will explode and the
query time will become too long. On the other hand, if

7

a

c
d

e f g

h
z

x

p

y

(a) T 1
a

x y

z

c
d

e f g

h p

b

(b) T 1
b

Fig. 6. 1-Hop Expanded Trees T 1
a and T 1

b

Algorithm 1 Local Search
Input: A query (a, b) and the expansion width c.
Output: The shortest distance of a path.

1: LCA ← {LCATl
(a, b)|l ∈ S}

2: Ta ← partial SPT (a, LCA)
3: Tb ← partial SPT (b, LCA)
4: T c

a ← Tree Expansion(Ta, c)
5: T c

b ← Tree Expansion(Tb, c)
6: dist ←∞
7: for r ∈ T c

a ∩ T c
b do

8: if distT c
a
(a, r) + distT c

b
(b, r) < dist then

9: dist ← distT c
a
(a, r) + distT c

b
(b, r)

10: return dist

we set c = 0 without edge expansion, it will be faster
but much less accurate than the c = 1 case (note that LS
with c = 0 is more accurate than LLS or the same, since it
searches a shortcut between two query nodes by connecting
two partial trees directly). Thus, in our experiment, we set
c = 1 to achieve a good balance.

4.2.1 Comparing Local Search with TreeSketch

TreeSketch [14] is a sketch-based method for shortest dis-
tance/path estimation. It also uses online search to improve
the accuracy. The main differences between TreeSketch and
LS include different search order and stop condition. In
TreeSketch, the sketch of node s denoted as Ts is a tree
rooted at s. For a query q = (s, d), TreeSketch performs
a bi-directional search on Ts and Td, and the expansion
follows a breadth-first search order on each side. Let VBFS

and VRBFS denote the sets of visited nodes from two
sides respectively. Consider u ∈ Ts and v ∈ Td that
are two nodes under expansion in the current iteration.
TreeSketch checks if there is an edge from u to a node
in VRBFS or from a node in VBFS to v. If yes, then an
s-d path is found and added to a queue Q. Denote the
length of the shortest path in Q as lmin, the algorithm
terminates if dist(s, u)+dist(v, d) ≥ lmin. This early stop
condition may miss a better shortcut and thus return a less
optimal answer. Figure 7 is an example. l1 and l2 are two
landmarks. For query (s, d), all the solid arrows are edges
in Ts∪Td while the dashed arrows are not. The solid curves
are paths with one or more edges in Ts or Td. During
the search process, when b is visited, VBFS = {j, a, f}
and VRBFS = {e, c, b}, TreeSketch finds the first shortcut

l1
d

e

h

b c

VRBFS

l2

s

f
j
VBFS

a

Fig. 7. Comparing Local Search with TreeSketch

p = p(s, a) ◦ (a, b) ◦ p(b, d) = (s, a, b, c, e, d), and updates
lmin = 5. TreeSketch finds dist(s, f) + dist(b, d) = 5 =
lmin and then terminates the search. In contrast, LS can
find a better shortcut p∗ = (s, j, f, h, d) with length 4 by
local search, but p∗ is missed by TreeSketch due to its early
stop mechanism.

5 LOCAL LANDMARK SCHEME ON RELA-
TIONAL DATABASE

Although the proposed memory based LLS and LS methods
can estimate an approximate shortest distance between
two nodes efficiently, the index size in O(|S|n) increases
linearly with the graph size. For very large graphs, the index
may become too large to fit in the memory. This limitation
motivates us to consider a scalable disk-based index. In
this section, we propose to build a disk-based index on
relational database (RDB) due to its powerful indexing
and query optimization mechanisms. In the following, we
will study how to design a database schema to store the
index and how to use RDB features to optimize the query
performance.

5.1 LLS on Relational Database

We first study how to implement the local landmark scheme
on relational database, denoted as LLSdb. To distinguish, the
memory based LLS described before is denoted as LLSmem.

5.1.1 Database Schema For LLSdb

Recall the local landmark scheme estimates a shortest
distance of a query (a, b) as δ̃L(a, b) = δ(Lab(S), a) +
δ(Lab(S), b) in Eq.(2). If we store δ(Lab(S), a) and
δ(Lab(S), b) in a relational table, they can be retrieved to
answer a shortest distance query. Thus we create a table,
called TblD, with TblD schema = (s, t, d) where s, t ∈ V
are two nodes and d = δ(s, t) is the true shortest distance
from s to t. (s, t) is designated as the primary key to support
efficient selection and join operations on them.

We populate TblD to build a local landmark embedding
as follows. On an SPT rooted at a global landmark l,
consider a path P (v, l) = (v, v1, v2, . . . , vt, l) for any
v ∈ V , we calculate δ(v, vi) = δ(v, l)− δ(vi, l) and insert
the tuple 〈v, vi, δ(v, vi)〉 into TblD, for i = 1, 2, . . . , t.
Algorithm 2 shows how to populate TblD using SPTs and
the shortest distance δ(v, l), ∀v ∈ V and ∀l ∈ S.

Example 2: Figure 8 shows a graph with two global
landmarks l1 and l2. Based on the SPTs rooted at l1 and
l2 respectively, we can build TblD on the right, which only
lists tuples with attribute s = a or s = b here.

8

Algorithm 2 Constructing TblD
Input: SPTs for landmark set S and δ(v, l), v ∈ V, l ∈ S

1: for ∀v ∈ V, l ∈ S do
2: Obtain P (v, l) = (v, v1, v2, . . . , vt, l) from SPT Tl;
3: for i = 1, . . . , t do
4: δ(v, vi) ← δ(v, l)− δ(vi, l);
5: Insert tuple 〈v, vi, δ(v, vi)〉 into TblD;

l1

l2
a

b

c

de

f
g

s t d
a e 1
a c 2
a l1 3
a g 1
a l2 2
b g 1
b d 2
b c 3
b l1 4
b l2 1

Fig. 8. Example for Building TblD

5.1.2 LLSdb Query

For LLSdb, we express the shortest distance query in
relational algebra as follows.

δ̃LLSdb
(x, y) ← Gmin(t1.d+t2.d)(ρt1(σs=x(TblD))

./t1.t=t2.t ρt2(σs=y(TblD))) (8)

which is composed of a join operation and an aggregation
operation. Firstly, it selects two groups of tuples where
s = x and s = y and renames them as t1 and t2
respectively, then it joins t1 and t2 using the condition
t1.t = t2.t. Such t1.t is a local landmark. In LLSdb, any
node can be a local landmark, as long as it satisfies the
condition t1.t = t2.t. This is different from LLSmem which
restricts the local landmarks as LCAs of two query nodes.
Finally, the aggregation operator Gmin finds the minimum
t1.d + t2.d over all joined tuples.

5.1.3 Accuracy Analysis

LLSdb is more accurate, or at least the same accurate as
LLSmem, i.e.,

δ̃LLSdb
(x, y) ≤ δ̃LLSmem(x, y)

The proof can be sketched as follows. LLSmem uses LCAs
on SPTs as local landmarks. For any global landmark
l ∈ S, we denote LCATl

(x, y) as r. Obviously, tuples
〈x, r, δ(x, r)〉 and 〈y, r, δ(y, r)〉 are in TblD and they satisfy
the t1.t = t2.t condition. Thus the LCAs are a subset of
local landmarks considered in LLSdb. Under the aggrega-
tion operator Gmin, we prove δ̃LLSdb

(x, y) ≤ δ̃LLSmem(x, y).
Example 3 shows one such case.

Example 3: In Figure 8, there are two global landmarks
l1 and l2. Given a query (a, b), LCATl1

(a, b) = c, and
LCATl2

(a, b) = l2. Therefore, by LLSmem we have

δ̃LLSmem(a, b) = min{δ(a, c)+δ(b, c), δ(a, l2)+δ(b, l2)} = 3

In comparison, in LLSdb, we have two tuples in TblD,
〈a, g, 1〉 and 〈b, g, 1〉, by joining which we have a more
accurate estimation as

δ̃LLSdb
(a, b) = 1 + 1 < 3 = δ̃LLSmem(a, b)

g is a local landmark providing a shortcut between a, b.
For the memory based LS, if we set c = 0, it will

report the same estimated distance as LLSdb, since both
of them essentially find shortcuts between two query nodes
by joining two partial trees without edge expansion. From
this perspective, it is not surprising that LLSdb achieves a
better accuracy than LLSmem.

5.2 Local Search on Relational Database

We now study how to implement local search on relational
database, denoted as LSdb.

5.2.1 Database Schema For LSdb

We create another table TblG which stores the graph edges
E and serves for online expansion. We define the schema
TblG schema = (s, t, d) where e(s, t) ∈ E represents an
edge and d = w(s, t) is the edge weight. (s, t) is designated
as the primary key to support efficient selection and join
operations on them. For a graph G(V,E, w), we insert all
edges in E and a self-loop for each node in V to TblG:

TblG ← {〈u, v, w(u, v)〉|(u, v) ∈ E} ∪ {〈v, v, 0〉|v ∈ V }
The purpose of adding self-loops will be made clear shortly.

5.2.2 LSdb Query
We define two slightly different local search queries:
unidirectional-expansion, denoted as LSdbu, and
bidirectional-expansion, denoted as LSdbb. We first
express LSdbu in relational algebra as follows.

δ̃LSdbu
(x, y) ← Gmin(t1.d+TblG.d+t2.d)(ρt1(σs=x(TblD))

./t1.t=TblG.s TblG

./TblG.t=t2.t ρt2(σs=y(TblD))) (9)

It is composed of two join operations. The tuples selected
by σs=x(TblD) correspond to a set of shortest paths orig-
inating from x to some graph nodes t1.t. The first join
operator expands these shortest paths from x by one edge
with the condition t1.t = TblG.s, and the second join
operator connects the expanded paths with the shortest
paths originating from y with the condition TblG.t = t2.t.
Conversely if we perform the second join operation before
the first join, this corresponds to expanding the shortest
paths originating from y and then connecting them with
the shortest paths from x. The final result will be the same
regardless of the join order. Here we do not explicitly
specify a join order and leave it to DBMS. The aggregation
operator Gmin finds the minimum t1.d+TblG.d+ t2.d over
all joined tuples.

Note that if t1 has a tuple 〈x, v, δ(x, v)〉 and t2 has a
tuple 〈y, v, δ(y, v)〉, v ∈ V , then LSdbu will join these

9

two tuples through an intermediate tuple 〈v, v, 0〉 corre-
sponding to a self-loop on v and generate a distance
of δ(x, v) + 0 + δ(y, v). This actually performs no edge
expansion and is the same as LLSdb. Thus the purpose of
including self-loops in TblG is to allow both edge expansion
and no expansion, with the hope to generate more accurate
distance estimations.

Next we define the bidirectional-expansion LSdbb in
relational algebra as follows.

δ̃LSdbb
(x, y) ← Gmin(t1.d+g1.d+g2.d+t2.d)

(ρt1(σs=x(TblD)) ./t1.t=g1.s ρg1(TblG)
./g1.t=g2.s ρg2(TblG)
./g2.t=t2.t ρt2(σs=y(TblD))) (10)

LSdbb expands the shortest paths from both x and y
by one edge respectively through the first and third join
operators, and connects the expanded paths by the second
join operator. It is similar to the memory based local search
with the search width c = 1. We do not consider further
edge expansions, as that would lead to an explosive number
of joined tuples.

Here we use one example to illustrate the local
search process unidirectional-expansion and bidirectional-
expansion.

x
y

a b

c
d

e f g

h p

d

l1 l2

l3z

(a) LSdbu

x
y

a b

c
d

e f g

h p

d

l1 l2

l3z

(b) LSdbb

Fig. 9. unidirectional-expansion and bidirectional-
expansion

Example 4: LSdbu performs unidirectional-expansion
and evaluates all possible paths between a and b in Figure
9(a). LSdbb, on the other hand, performs bidirectional-
expansion and evaluates all possible paths in Figure 9(b).
The yellow shade in figures illustrates (in an abstract way)
that each node in the dashed path is also expanded to
include its 1-hop neighbor. In this example, LSdbb can find
the true shortest path P (a, b) = (a, e, f, g, b). The search
space of LSdbu is a subset of that of LSdbb, thus LSdbu is
less accurate than LSdbb but with shorter response time.

LSdbb contains three join operations. The built-in query
optimization in RDB may generate a query plan by spec-
ifying a join order. It may reduce the intermediate joined
results only, but cannot reduce the total number of final
joined tuples before aggregation. The final joined results
can be huge, thus cause an unacceptable query response
time. Let us see an example as follows.

Example 5: Figure 10 shows three tables t1, g1 and
t1 ./t1.t=g1.s g1. t1 contains shortest paths between x
and nodes a1, a2, . . . , ap, each of which can be joined

with a tuple in g1 leading to the same node m. Thus
the join result contains p tuples denoting paths between
x and m with different distances t1.d + g1.d (the distance
column t1.d + g1.d is omitted in Figure 10 due to lack
of space). Similarly, Figure 11 shows tables g2, t2 and
g2 ./g2.t=t2.t t2. The join result contains q tuples denoting
paths between m and y with different distances g2.d+ t2.d
(the distance column g2.d + t2.d is omitted in Figure 11
due to lack of space).

When we join these two intermediate results using the
condition g1.t = g2.s, we totally get p × q tuples denot-
ing different paths between x and y. By aggregation on
min(t1.d + g1.d + g2.d + t2.d), only one tuple with the
smallest distance will be returned. Thus all but one of these
tuples are a waste of effort. We should try to reduce the
intermediate result size before the final join.

s t d
x a1 d1

x a2 d2

...
x ap dp

t1

s t d
a1 m d′1
a2 m d′2
...
ap m d′p

g1

t1.s t1.t g1.t
x a1 m
x a2 m
...
x ap m

t1 ./t1.t=g1.s g1

Fig. 10. Table t1 Joins g1

s t d
m b1 e1

m b2 e2

...
m bq eq

g2

s t d
y b1 e′1
y b2 e′2
...
y bq e′q

t2

g2.s g2.t t2.s
m b1 y
m b2 y
...
m bq y

g2 ./g2.t=t2.t t2

Fig. 11. Table g2 Joins t2

Optimization of LSdbb: With careful analysis, we optimize
LSdbb as follows:

δ̃LSdbb
(x, y) ← Gmin(d1+t2.d+g2.d)

((g1.tGmin(t1.d+g1.d) as d1

(ρt1(σs=x(TblD)) ./t1.t=g1.s ρg1(TblG)))
./g1.t=g2.s (ρg2(TblG)
./g2.t=t2.t ρt2(σs=y(TblD)))) (11)

The major optimization is the early evaluation on
ρt1(σs=x(TblD)) ./t1.t=g1.s ρg1(TblG) by the inner aggre-
gation operation g1.tGmin(t1.d+g1.d). The aggregation oper-
ation groups the joined tuples by their destination g1.t, and
for each distinct g1.t, the tuples with non-minimum distance
on t1.d + g1.d are eliminated, as these tuples cannot lead
to a path with the minimum distance, when further joining
with g2 and t2. In Figure 10, this means we only keep one
tuple 〈x, ai,m, di + d′i〉 for m in the joined table where
di + d′i is the minimum among all tuples. This tuple will
join with tuples in table g2 ./g2.t=t2.t t2 in Figure 11 and
produce only q joined tuples, instead of p× q. Finally the
outer aggregation operation will return the tuple with the
minimum distance on (t1.d + g1.d + g2.d + t2.d). This

10

optimization greatly boosts the query efficiency by 5 to
70 times in our experiment.

Interestingly, we do not apply the same inner aggre-
gation on the join results of g2 ./g2.t=t2.t t2. Actually
we have tested that possibility and it turns out to be
slower than the current version. The reason is when one
side is aggregated, the join becomes an injection; then
aggregating the other side will not reduce the number
of tuples generated/evaluated but increase the overhead of
inner aggregation evaluation.

5.2.3 Accuracy Analysis

In terms of the distance estimation accuracy, we have

δ̃LSdbb
(x, y) ≤ δ̃LSdbu

(x, y) ≤ δ̃LLSdb
(x, y)

The proof can be sketched as follows. LSdbu can subsume
LLSdb by joining two tuples 〈x, v, δ(x, v)〉, 〈y, v, δ(y, v)〉
in TblD, for an arbitrary v ∈ V , through a self-loop tuple
〈v, v, 0〉, which generates an estimated distance δ(x, v) +
0 + δ(y, v). Similarly, LSdbb subsumes LLSdb through
joining the above two tuples with a self-loop twice, i.e.,
joining 〈x, v, δ(x, v)〉, 〈v, v, 0〉, 〈v, v, 0〉 with 〈y, v, δ(y, v)〉.
LSdbb subsumes LSdbu through joining with a self-loop
and a graph edge, i.e., joining 〈x, v, δ(x, v)〉, 〈v, v, 0〉,
〈v, u, δ(v, u)〉, with 〈y, u, δ(y, u)〉. Based on the aggrega-
tion operator Gmin, we prove the result. But in terms of
query complexity, LSdbb is the highest, and LLSdb is the
lowest. The three RDB approaches LLSdb, LSdbu and LSdbb

are trade-offs between query time and accuracy. A user can
choose one method based on his needs.

6 EXPERIMENT

We compare our query-dependent local landmark scheme
with global landmark embedding. We present extensive
experimental results in terms of accuracy, query efficiency
and index size on six large networks. All algorithms were
implemented in C++ and tested on a Windows server using
one 2.67 GHz CPU and 128 GB memory.

6.1 Dataset Description

We use four social networks or webgraphs: Slashdot1,
Google Webgraph2, Youtube [18], and Flickr [18], and two
road networks: NYRN3 and USARN3. Table 1 lists the
network statistics. |V | and |E| represent the node and edge
numbers in the original graph, while |V ′| and |E′| represent
the numbers in the compressed graph. As we can see, our
proposed graph compression technique effectively reduces
the node number by 38% − 73%. Our embedding index
is constructed on the compressed graph. We also sample
10, 000 node pairs in each network and show the average
shortest distance δ.

1. http://snap.stanford.edu/data/soc-Slashdot0902.html
2. http://snap.stanford.edu/data/web-Google.html
3. http://www.dis.uniroma1.it/∼challenge9/download.shtml

TABLE 1
Network Statistics

Dataset |V | |E| |V ′| |E′| δ
Slashdot 77,360 905,468 36,012 752,478 4.1146
Google 875,713 5,105,039 449,341 4,621,002 7.4607
Youtube 1,157,827 4,945,382 313,479 4,082,046 5.3317
Flickr 1,846,198 22,613,981 493,525 18,470,294 5.5439
NYRN 264,346 733,846 164,843 532,264 27km
USARN 23,947,347 58,333,344 7,911,536 24,882,476 1522km

6.2 Comparison Methods and Metrics

We compare the following embedding methods: (1) Global
Landmark Scheme (GLS), (2) Local Landmark Scheme
(LLS) and (3) Local Search (LS) with c = 1. For global
landmark selection, we use random selection and closeness
centrality based selection [12]. We use two landmark set
sizes k = 20 and k = 50 in our experiments.

We use the relative error |δ̃(s,t)−δ(s,t)|
δ(s,t) to evaluate the

quality of an estimated distance for a query (s, t). As it
is expensive to exhaustively test all node pairs in a large
network, we randomly sample 10, 000 node pairs in each
graph as queries and compute the average relative error on
the sample set. In addition, we test the query processing
time and the embedding index size.

In the following, we first compare the memory based im-
plementations of different methods, and then the relational
database based implementations.

6.3 Memory-based Implementations

6.3.1 Average Relative Error

Table 2 shows the average relative error (AvgErr) of GLS,
LLS and LS with different global landmark sets selected by
Random and Centrality.

LLS reduces the AvgErr of GLS by a large margin in
all cases. Under Random landmark selection strategy, the
AvgErr of LLS is one order of magnitude smaller than
that of GLS on most graphs; while under Centrality, LLS
reduces the AvgErr by 40% compared with GLS on average.
Furthermore, in most cases the AvgErr of LLS with k = 20
landmarks is even lower than that of GLS with k = 50
landmarks, and at the same time, LLS (k = 20) has a
smaller embedding index size than GLS (k = 50) (see the
GLS and LLS bars in Figure 12(b)). This result demonstrates
that selecting more global landmarks for GLS (e.g., k = 50)
and using more index space do not necessarily achieve a
better estimation accuracy than LLS (k = 20). Thus simply
selecting more landmarks for GLS may not be an effective
solution, as the main bottleneck of GLS is caused by the
query-independent landmark embedding.

LS achieves the best performance in all cases. Its AvgErr
is between 0 and the scale of 10−3 in most cases. In
particular, in social networks the average distance is usually
very small, according to the famous rule of “six degrees of
separation”. Thus by a local search with 1-hop expansion,
the expanded trees rooted at both query nodes are very
likely to intersect, which helps to find a very short path, or
even the shortest path, between the query nodes.

11

TABLE 2
Average Relative Error

k = 20 k = 50
SlashD Google Youtube Flickr NYRN USARN SlashD Google Youtube Flickr NYRN USARN

Random
GLS 0.6309 0.5072 0.6346 0.5131 0.1825 0.1121 0.4535 0.4750 0.4549 0.4559 0.1188 0.0632
LLS 0.1423 0.0321 0.0637 0.0814 0.0246 0.0786 0.0727 0.0142 0.0391 0.0444 0.0103 0.0241
LS 0.0000 0.0046 0.0009 0.0001 0.0071 0.0090 0.0000 0.0022 0.0003 0.0001 0.0042 0.0030

Centrality
GLS 0.1520 0.0426 0.0595 0.0567 0.6458 1.5599 0.1385 0.0245 0.0461 0.0524 0.6133 0.7422
LLS 0.1043 0.0290 0.0489 0.0503 0.1536 0.4708 0.0663 0.0140 0.0334 0.0284 0.1533 0.4505
LS 0.0001 0.0074 0.0010 0.0003 0.1479 0.4703 0.0000 0.0037 0.0005 0.0000 0.1455 0.4483

10−4

10−2

1

100 k=20
10−4

10−2

1

100

Slashdot Google Youtube Flickr NYRN USARN
k=50

GLSLLS LSLLSori

LSori

0.002 0.005 0.008 0.009 0.006 0.0200.006 0.021 0.015 0.014 0.036 0.0670.158 2.729 2.818 4.735 0.681 58.2890.009 0.042 0.036 0.044 0.047 0.1440.195 2.832 4.574 6.730 1.529 137.111

0.005 0.016 0.024 0.027 0.014 0.0580.018 0.054 0.032 0.033 0.091 0.1960.527 3.492 4.178 6.817 1.585 98.2210.026 0.105 0.092 0.109 0.145 0.3340.607 3.671 6.081 9.019 3.123 257.247
(a) Online Query Time in Milliseconds

10

10
2

10
3

10
4 k=20

10

10
2

10
3

10
4

Slashdot Google Youtube Flickr NYRN USARN
k=50

GLSLLS LSLLSori

LSori

6 58 91 125 21 191610 123 103 156 85 442516 160 136 304 90 462436 348 508 723 118 1085742 385 541 871 122 11056
16 145 227 312 53 479023 285 216 334 204 994829 321 249 482 208 1014789 869 1270 1808 294 2714195 906 1303 1955 298 27340

(b) Index Size in MB

Fig. 12. Query Time and Index Size Comparison

One point worth noting is that, the state-of-the-art tech-
niques for computing shortest paths and shortest distances
on road networks have achieved controlled error rate and
low complexities, with the aid of coordinates [19], [20].
As LLS and LS are designed for general graphs, the per-
formance improvement by our methods is more significant
on social networks than on road networks.

6.3.2 Online Query Time

Figure 12(a) shows the query time in milliseconds of
different methods in log scale – GLS, LLS and LS on
the compressed graph, LLSori and LSori on the original
uncompressed graph. According to our analysis in Section
3.3, the online query complexity is O(|S|) for both GLS
and LLS. Even in the largest graph USARN with 24 million
nodes, it only costs 0.196 milliseconds for LLS to process
one query when k = 50. In most cases, LLS is 2− 4 times
slower than GLS, which is a very small factor.

As LS performs online tree expansion and search in query
processing, the query time largely depends on the network
size. For example, it costs 0.158 milliseconds to process
one query in Slashdot, but 58 milliseconds in USARN when
k = 20, as the node number of USARN is about 310 times
larger than that of Slashdot.

We can also observe that LLS reduces the query time
of LLSori by 23% – 70%. The main reason is that graph
compression reduces the index size, thus increases the
locality of memory access and reduces the amortized time
per memory access. Similarly, LS reduces the query time
of LSori by 32% on average, as the graph compression
prevents LS from expanding the partial tree to tree/chain
nodes unnecessarily.

6.3.3 Index Size
Figure 12(b) shows the index size in MB of different
methods in log scale – GLS, LLS and LS on the compressed
graph, LLSori and LSori on the original uncompressed
graph. The index size of LLS is about 2 times that of GLS,
as LLS needs to store extra information including shortest
path trees and RMQ index tables. LS uses a little extra
space compared with LLS, as LS needs to store the original
graph in memory for edge expansion and local search.
Nevertheless, we can see that our LLS and LS methods use
moderate index sizes even for very large networks, e.g., an
index of 10 GB (when k = 50) on USARN with 24 million
nodes. We can also observe that the index size of LLS and
LS is significantly smaller than that of LLSori and LSori,
and it is reduced by 63% on average, which is consistent
with the graph compression ratio in Table 1.

In terms of the index construction time of LLS, it takes
less than 1 minute in most cases, while the longest one
takes 354.7 seconds on USARN when k = 50.

6.3.4 Distance Sensitive Relative Error
We evaluate the performance of GLS, LLS and LS on
queries in different shortest distance ranges. For each net-
work, we sort the 10, 000 sample queries in the increasing
order of their actual shortest distances and find the 20th,
40th, 60th, 80th and 100th percentiles of the shortest
distance. Based on this, we partition the 10, 000 queries
into 5 intervals, each containing 20 percent of the queries.
We evaluate the AvgErr in Figure 13 for queries whose
shortest distances fall into the five intervals respectively.
For each network we adopt the best landmark selection
heuristic, i.e., Centrality for social networks and Random
for road networks. We set k = 50.

12

 0

 0.05

 0.1

 0.15

 0.2

20 40 60 80 100

GLS

LLS

LS

(a) Slashdot

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

20 40 60 80 100

GLS

LLS

LS

(b) Google

 0

 0.02

 0.04

 0.06

 0.08

 0.1

20 40 60 80 100

GLS

LLS

LS

(c) Youtube

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

20 40 60 80 100

GLS

LLS

LS

(d) Flickr

 0

 0.1

 0.2

 0.3

 0.4

 0.5

20 40 60 80 100

GLS

LLS

LS

(e) NYRN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

20 40 60 80 100

GLS

LLS

LS

(f) USARN

Fig. 13. Average Relative Error on Queries with Shortest Distance in Different Ranges

We observe that LLS outperforms GLS in all distance
ranges on all networks. The improvement is most significant
for queries whose shortest distances are within the 20th
percentile. This demonstrates that LLS can provide very ac-
curate estimation for nearby query nodes while GLS cannot.
In particular, we observe that on the two road networks, the
improvement of LLS over GLS within the 20th percentile
is about 10 times or more, which is very substantial. This
is because the road networks have large diameters. If two
query nodes are nearby but distant from global landmarks,
GLS will provide a very inaccurate distance estimation.
In contrast, social networks usually have a fairly small
diameter, which guarantees that the global landmarks will
not be too far from the query nodes. Therefore, on the social
networks, the improvement by LLS is around 2 times within
the 20th percentile.

The performance of LS remains very stable in all distance
ranges. The AvgErr of LS is zero or close to zero on most
networks. We also observe that, on dense networks with
large average degrees, e.g., Slashdot and Flickr, local search
with neighbor expansion is particularly effective in finding
the (nearly) shortest paths. The AvgErr of LS on Slashdot
is zero in all distance ranges.

6.4 Relational Database based Implementations
In this experiment, we study the performance of local land-
mark scheme implemented on relational database. Specif-
ically we compare LLSdb, LSdbu and LSdbb and report
relative error, query time, index construction time and index
size. 20 randomly selected global landmarks are used. We
use Oracle Database 11g, Edition release 11.2.0.1.0 and
connect to it through ODBC interface. The disk quota for
Oracle system is 100 GB. We find in our experiments that
the index size for USARN exceeds the 100 GB disk quota,
so we only report results on the other five networks.

6.4.1 Average Relative Error
Figure 14 shows the average relative error of LLSdb, LSdbu

and LSdbb on five networks. LSdbb has the most accurate
estimation. It has zero error on SlashDot and Youtube, and
average error at 10−4–10−3 scale on the other networks.
The online bidirectional search in LSdbb reduces the error
of LLSdb by 93% on social networks on average. LSdbb

also outperforms LSdbu. The reduction of relative error is
the most remarkable on SlashDot, Google, and Flickr, i.e.,
100%, 76%, and 99%, respectively. In addition, LSdbu has
the second best performance. It outperforms LLSdb with a

reduction of relative error by 76% on social networks on
average. Note that the error on NYRN is the same for all
three methods. This shows that on a network with a large
diameter, local search within 1 or 2-hop neighborhood does
not help find a shortcut. But on social networks with much
smaller diameters, local search can reduce the relative error
substantially.

In Section 5.1.3 we have proved that LLSdb has better
precision than LLSmem. When we compare the average
error of LLSdb and LLSmem (in Table 2, under 20 random
global landmarks), we find LLSdb reduces the relative error
by 31% on average. In particular, on NYRN dataset, the
average error of LLSdb is only 1

3 that of LLSmem. This result
verifies that LLSdb is more accurate than LLSmem.

10
−4

10
−3

0.010.11 Slashdot Google Youtube Flickr NYRN
LLSdbLSdbu

LSdbbTreeSketch0.1382 0.0248 0.0372 0.0656 0.00800.0251 0.0148 0.0000 0.0115 0.00800.0000 0.0035 0.0000 0.0001 0.00800.0006 0.0069 0.0023 0.0007 0.0379
Fig. 14. Average Relative Error of RDB Algorithms

0.111010
2

10
3

10
4

Slashdot Google Youtube Flickr NYRN
LLSdbLSdbu

LSdbbTreeSketch
0.7 0.8 2.5 0.7 18.63.6 7.3 28.2 5.2 23.123.2 55.4 90.9 1633.5 46.943.9 206.8 318.0 497.5 2129.5

Fig. 15. Online Query Time (ms) of RDB Algorithms

6.4.2 Online Query Time
We report the query time of the three approaches in Figure
15 in milliseconds. LLSdb uses the least query time. The
query time of LSdbu is 6.67 times that of LLSdb on average.
As a disk-based solution with fairly good precision, LSdbu

only uses 13.5 ms query time on average on the five
networks, which is very cost effective. As for LSdbb, it
spends 8 times longer query time than LSdbu on most
networks. Still it spends less than 90.9 ms on 4 out of
5 graphs for query processing, which is also quite small
for a disk-based algorithm.

13

6.4.3 Index Size
Figure 16 reports the index size on the disk in MB. LSdbu

and LSdbb use the same disk space since both of them use
tables TblD and TblG, thus we use LSdb to represent both of
them. LSdb uses slightly more space than LLSdb since it has
to store the TblG table. The index size of all social networks
are within 1 GB in most cases. However, the index size of
NYRN is as large as 8.9 GB although it is a small network
with only 264K nodes. This is because the diameter of
NYRN is large while that of social networks is a small
value (less than 8 on the networks in our experiment). The
index time of LLSdb and LSdb shows a similar trend with
their index size, as almost all the index time is spent on
database insertion operations on TblD and TblG.

10

10
2

10
3

10
4

IndexSize(M
B)

10

10
2

10
3

10
4

Slashdot Google Youtube Flickr NYRNIndexTime(s
)

LLSdbLSdb

TreeSketch
42 808 440 696 889658 920 552 1088 8916144 2391 3266 4681 6926
14 260 492 488 441021 304 539 605 4678423 5765 7491 11302 4149

Fig. 16. Index Size and Index Time of RDB Algorithms

6.4.4 Comparison with TreeSketch
In this experiment, we compare LSdbb with TreeSketch
[14], a sketch-based method implemented in RDF graph
database provided by the authors. Figure 14 shows that
LSdbb reduces the average error of TreeSketch by a large
margin. LSdbb has zero error on SlashDot and Youtube. On
the other three networks, the average error of LSdbb is 2–
7 times smaller than that of TreeSketch. Figure 15 shows
that the query time of LSdbb is 2–45 times shorter than
that of TreeSketch on four out of five graphs. Furthermore,
Figure 16 shows the index time and index size of both
LSdbb (denoted as LSdb) and TreeSketch, from which we
can see LSdbb uses much smaller index size and shorter
index time on most graphs than TreeSketch. One reason
for the smaller index size is that we apply our graph
compression technique in LSdbb, but TreeSketch does not
have the compression. We also find the implementation of
TreeSketch incurs an unnecessary index overhead due to
the way RDF3x constructs all possible index configurations
which are not really needed for the shortest path estima-
tion. In conclusion, LSdbb outperforms TreeSketch in all
aspects.

7 RELATED WORK

Graph embedding techniques have been widely used to
estimate the distance between two nodes in a graph in
many applications including road networks [7], [11], social

networks and web graphs [10], [12], [13], [14], [15] as well
as the Internet [5], [6]. Shahabi et al. [7] utilize Linial,
London and Robinovich (LLR) embedding to estimate the
distance between two nodes. Kriegel et al. [11] propose
a hierarchical reference node embedding approach which
organizes reference nodes in multiple levels for a better
scalability. Potamias et al. [12] formulate the reference node
selection problem to selecting nodes with high betweenness
centrality. [5] proposes an architecture, called IDMaps,
which measures and disseminates distance information on
the global Internet. [8] defines a notion of slack – a certain
fraction of all distances that may be arbitrarily distorted
as a performance guarantee based on randomly selected
reference nodes. [9] and its follow-up studies [13], [14]
provide a (2k − 1)-approximate distance estimation with
O(kn1+1/k) memory for any integer k ≥ 1. To summarize,
the major differences between the above methods lie in the
following aspects: (1) landmark selection – some [8], [9],
[10], [13], [14] select landmarks randomly, while others [5],
[6], [11], [12] use heuristics; (2) landmark organization –
some methods organize landmarks in multiple levels [9],
[11], [13], [14], while other methods use a flat landmark
embedding; and (3) an error bound or not – [8], [9],
[13], [14], [15] analyze the error bound of the estimated
distances, while most of the other methods have no error
bounds or guarantees of the estimated distances.

There have been a lot of studies on computing shortest
paths and processing k-nearest neighbor queries in spatial
networks. Papadias et al. [21] use the Euclidean distance
as a lower bound to prune the search space and guide
the network expansion for refinement. Kolahdouzan and
Shahabi [22] propose to use first order Voronoi diagram
to answer KNN queries in spatial networks. Jagadish et
al. [23] compress high-dimensional data points to one-
dimensional values based on a set of well selected reference
nodes and then apply range search using a B+ tree index to
answer KNN queries. Hu et al. [24] propose an index, called
distance signature, which associates approximate distances
from one object to all the other objects in the network,
for distance computation and query processing. Samet et
al. [25] build a shortest path quadtree to support k-nearest
neighbor queries in spatial networks. For a spatial network
of dimension d, [19], [20] can retrieve an ε-approximation
distance estimation in O(log n) time using an index termed
path-distance oracle of size O(n ·max(sd, 1

ε

d)). [26] pro-
poses TEDI, an indexing and query processing scheme
for the shortest path query based on tree decomposition.
Based on incremental construction of a shortest path tree,
[27] monitors a type of nearest neighbor query, called
continuous detour query (CDQ), on road networks.

8 CONCLUSIONS

In this paper, we propose a novel shortest path tree based
local landmark scheme, which finds a node close to the
query nodes as a query-specific local landmark for a trian-
gulation based shortest distance estimation. Specifically, a
local landmark is defined as the LCA of the query nodes in

14

a shortest path tree rooted at a global landmark. Efficient
algorithms for indexing and retrieving LCAs are introduced,
which achieve low offline indexing complexity and online
query complexity. This strategy significantly reduces the
distance estimation error, compared with global landmark
embedding. We also study the local landmark scheme on
relational database for better scalability. Extensive exper-
imental results on large-scale social networks and road
networks demonstrate the effectiveness and efficiency of
the proposed local landmark scheme.

Acknowledgment: This work is supported by the Hong
Kong Research Grants Council General Research Fund
(GRF) Project No. CUHK 411211, 411310, 419109 and
418512.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Systems
Science and Cybernetics SSC4, vol. 4, no. 2, pp. 100–107, 1968.

[3] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in SODA, 2005, pp. 156–165.

[4] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for A*:
Efficient point-to-point shortest path algorithms,” in Workshop on
Algorithm Engineering and Experiments, 2006, pp. 129–143.

[5] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang, “IDMaps: A global internet host distance estimation ser-
vice,” IEEE/ACM Trans. Networking, vol. 9, no. 5, pp. 525–540, 2001.

[6] T. S. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in INFOCOM, 2002, pp. 170–179.

[7] C. Shahabi, M. Kolahdouzan, and M. Sharifzadeh, “A road network
embedding technique for k-nearest neighbor search in moving object
databases,” in GIS, 2002, pp. 94–100.

[8] J. Kleinberg, A. Slivkins, and T. Wexler, “Triangulation and embed-
ding using small sets of beacons,” in FOCS, 2004, pp. 444–453.

[9] M. Thorup and U. Zwick, “Approximate distance oracles,” Journal of
the ACM, vol. 52, no. 1, pp. 1–24, 2005.

[10] M. J. Rattigan, M. Maier, and D. Jensen, “Using structure indices
for efficient approximation of network properties,” in KDD, 2006, pp.
357–366.

[11] H.-P. Kriegel, P. Kröger, M. Renz, and T. Schmidt, “Hierarchical
graph embedding for efficient query processing in very large traffic
networks,” in SSDBM, 2008, pp. 150–167.

[12] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest
path distance estimation in large networks,” in CIKM, 2009, pp. 867–
876.

[13] A. D. Sarma, S. Gollapudi, M. Najork, and R. Panigrahy, “A sketch-
based distance oracle for web-scale graphs,” in WSDM, 2010, pp.
401–410.

[14] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum, “Fast and
accurate estimation of shortest paths in large graphs,” in CIKM, 2010.

[15] M. Qiao, H. Cheng, and J. X. Yu, “Querying shortest path distance
with bounded errors in large graphs,” in SSDBM, 2011.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[17] M. A. Bender and M. Farach-Colton, “The LCA problem revisited,”
in LATIN 2000: Theoretical Informatics, ser. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, vol. 1776, pp. 88–94.

[18] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and analysis of online social networks,” in
IMC, 2007, pp. 29–42.

[19] J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for
spatial networks,” PVLDB, pp. 1210–1221, 2009.

[20] J. Sankaranarayanan and H. Samet, “Distance oracles for spatial
networks,” in ICDE, 2009, pp. 652–663.

[21] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing
in spatial network database,” in VLDB, 2003, pp. 802–813.

[22] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neighbor
search for spatial network databases,” in VLDB, 2004, pp. 840–851.

[23] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, R. Zhang, “iDistance: An
adaptive B+-tree based indexing method for nearest neighbor search,”
TODS, vol. 30, issue 2, pp. 364–397, 2005.

[24] H. Hu, D. L. Lee, and V. C. S. Lee, “Distance indexing on road
networks,” in VLDB, 2006, pp. 894–905.

[25] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network
distance browsing in spatial databases,” in SIGMOD, 2008, pp. 43–54.

[26] F. Wei, “TEDI: Efficient shortest path query answering on graphs,”
in SIGMOD, 2010, pp. 99–110.

[27] S. Nutanong, E. Tanin, J. Shao, R. Zhang, K. Ramamohanarao,
“Continuous Detour Queries in Spatial Networks,” TKDE, vol. 24,
no. 7, pp. 1201–1215, 2012.

Miao Qiao Miao Qiao received her BE
in computer science and technology from
Shanghai Jiao Tong University in 2009. She
is currently a Ph.D. student in the Depart-
ment of Systems Engineering and Engineer-
ing Management, The Chinese University of
Hong Kong. Her major research interests in-
clude large-scale graph indexing and query,
and graph algorithms in relational databases.

Hong Cheng Hong Cheng is an Assistant
Professor in the Department of Systems En-
gineering and Engineering Management at
the Chinese University of Hong Kong. She
received her Ph.D. degree from University
of Illinois at Urbana-Champaign in 2008.
Her research interests include data min-
ing, database systems, and machine learn-
ing. She received research paper awards at
ICDE’07, SIGKDD’06 and SIGKDD’05, and
the certificate of recognition for the 2009

SIGKDD Doctoral Dissertation Award. She is a recipient of the
2010 Vice-Chancellor’s Exemplary Teaching Award at the Chinese
University of Hong Kong.

Lijun Chang Lijun Chang received his
B.Eng. in computer science and technology
from Renmin University of China in 2007,
and Ph.D. in Systems Engineering and Engi-
neering Management from Chinese Univer-
sity of Hong Kong in 2011. He is currently
a postdoctoral research fellow at Chinese
University of Hong Kong. His research in-
terests include graph exploration, uncertain
data management, and keyword search.

Jeffrey Xu Yu Jeffrey Xu Yu received the
BE, ME, and PhD degrees in computer
science, from the University of Tsukuba,
Japan, in 1985, 1987, and 1990, respec-
tively. Currently he is a professor in the De-
partment of Systems Engineering and Engi-
neering Management, The Chinese Univer-
sity of Hong Kong. His major research inter-
ests include graph mining, graph database,
keyword search, and query processing and
optimization. He is a senior member of the

IEEE, a member of the IEEE Computer Society, and a member of
ACM.

