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ABSTRACT
Subgraph matching finds a set I of all occurrences of a
pattern graph in a target graph. It has a wide range of
applications while suffers an expensive computation. This
efficiency issue has been studied extensively. All existing
approaches, however, turn a blind eye to the output crisis,
that is, when the system has to materialize I as a prepro-
cessing/intermediate/final result or an index, the cost of the
export of I dominates the overall cost, which could be pro-
hibitive even for a small pattern graph.

This paper studies subgraph matching via two problems.
1) Is there an ideal compression of I? 2) Will the compres-
sion of I reversely boost the computation of I? For the
problem 1), we propose a technique called VCBC to com-
press I to code(I) which serves effectively the same as I.
For problem 2), we propose a subgraph matching compu-
tation framework CBF which computes code(I) instead of
I to bring down the output cost. CBF further reduces the
overall cost by reducing the intermediate results. Extensive
experiments show that the compression ratio of VCBC can be
up to 105 which also significantly lowers the output cost of
CBF. Extensive experiments show the superior performance
of CBF over existing approaches.
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1. INTRODUCTION
The subgraph matching of a pattern graph p on a tar-

get graph d reports the set Ip of all the subgraphs of d
that are isomorphic to p. This problem underpins various
analytical applications based on the significant role graphs
play in modelling the interconnectivity of objects in areas
such as biology, chemistry, communication, transportation
and social science. For example, by letting pattern graphs
have semantic/statistical meanings, subgraph matching is
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used to monitor terrorist cells in activity networks [10], iden-
tify properties of recommendation/social networks [18, 23],
and decode functions of biological networks [5]. Subgraph
matching naturally becomes a fundamental construct of the
query language of graph databases such as Neo4j, Agens-
Graph and SAP HANA.

Unfortunately, the computation of subgraph matching is
NP-complete [11]. The basic approach is a brute-force search
over all the subgraphs of d. Ullman’s backtracking algorithm
[30] has sparked studies on different searching orders, prun-
ing rules and neighborhood indexes (see [22] as an entrance).
However, these techniques assume that the target graph fits
into the memory of a machine, which does not hold on many
real graphs nowadays1. This fact has motivated the research
on two approaches: using external memory and using a clus-
ter of machines. A common issue to both approaches is how
to arrange the materialization caused by the memory limit.

The first approach [9, 16, 17, 25, 26] is investigated under
external memory (EM) model [3] where cost is defined as the
total number of I/Os performed. An I/O transfers a block of
B words between the main memory and the disk. Subgraph
matching has two settings in EM model, subgraph listing [9]
and subgraph enumeration [26]. Subgraph listing requires
the system to materialize Ip whereas subgraph enumeration
does not. Such a distinction separates the output cost—the

Θ(
|Ip|
B

) I/Os of exporting Ip to the disk—from the enumer-
ation cost—the cost of subgraph enumeration [16, 26].

The second approach is to study subgraph matching [1,
2, 19, 20, 21, 27, 29] on parallel computing platforms such
as MapReduce. Brute-force search algorithms for subgraph
matching are parallelized in two styles, BFS and DFS, differ
on whether intermediate results are materialized or not.

BFS-style algorithms [20, 21, 29] are iterative. In its final
iteration, Ip is computed from an intermediate result Ip′ of
the previous iteration—the instance set of another pattern
graph p′. p′ is normally smaller than p by a node or an edge.
Such a process applies unless p has only one node/edge. The
system must materialize and shuffle Ip′ to initiate the com-
putation of Ip. This is a severe burden: shuffle is the most
expensive operation in a parallel system such as MapReduce.

DFS-style solutions [1, 2, 19, 27] do not materialize inter-
mediate results. The target graph is partitioned, replicated
and shuffled before the one-round parallel computation takes

1Consider Facebook as an example: with 109 daily active
users http://newsroom.fb.com/company-info/ and
an average of 190 friends per user http://arxiv.org/abs/
1111.4503, the graph requires 1.6 petabytes of storage.

http://newsroom.fb.com/company-info/
http://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503


place. DFS-style solutions have some theoretical analysis [2],
but their practical performances on real target graphs may
not be appealing [20] compared to BFS-style solutions.

Though the instance set Ip of a subgraph matching may
be massive in this big data era, its materialization could
be demanded or even inevitable in practice. This is es-
pecially true when subgraph matching is the basic form
of a query in a graph database system such as Neo4j. A
traditional database materializes views for query optimiza-
tion, which, in the context of a graph database, is to ma-
terialize the instance set of a subgraph query. This prac-
tice avoids repetitive computations of frequent queries and
common sub-queries, saves system resources, shortens query
delay and enhance concurrency. Besides, BFS-style paral-
lelisms inevitably materialize Ip. A persistent Ip is also
demanded when subgraph matching serves as a preprocess-
ing/intermediate step of a application [10, 18, 23, 5]; other-
wise any unexpected error will trigger a re-computation of
Ip — could be even more expensive than materializing Ip.

When the system has to materialize the instance set Ip
as a preprocessing result, intermediate result, index, or final
result, etc., existing solutions turn a blind eye to the output

crisis of subgraph matching: the Ω(
|Ip|
B

) I/Os on listing Ip
to the disk becomes a lower bound of the overall cost no
matter how deftly one computes Ip. This observation has
led us to investigate subgraph matching via two problems:

1. Is there an ideal compression on the instance set Ip?
2. Will the compression of Ip reversely boost the compu-

tation of subgraph matching?

Our contributions. This is the first attempt, in the liter-
ature, on resolving the output crisis of subgraph matching
using output compression. Output compression is vertical
to input compression techniques [14] which focus on down-
sizing the size of the target graph in a subgraph matching.

This paper proposes the vertex-cover based compression
(VCBC) technique to compress I to code(I). VCBC features
an impressive compression ratio, that is, the size of code(I)
is significantly smaller than that of I. Moreover, code(I)
serves effectively the same as a materialized I, that is, the
decompression process of VCBC restores Ip in a streamed

manner from code(I) in Θ(
|Ip|
B

) I/Os. VCBC, together with
general compression techniques, provides an effective storage
solution for subgraph matching. Such a storage solution is
desirable in three cases. 1) Ip is prohibitively large such that
existing solutions cannot afford materializing Ip. 2) The
materialization of Ip constitutes the performance bottleneck
of an algorithm. 3) The access of Ip is not efficient enough
unless Ip is placed on a faster yet more expensive medium,
for example, SSD or the main memory.

A perhaps more interesting contribution is the Crystal-
Based computation Framework (CBF). CBF drastically re-
duces the output cost of subgraph matching by targeting on

code(Ip) instead of Ip. This breaks the barrier of Ω(
|Ip|
B

)
I/Os when the output cost is the bottleneck of a subgraph
matching, yielding a significant improvement in overall per-
formance. Apart from that, CBF leads to up to orders of
magnitude speedup over existing approaches in terms of
enumeration—computing Ip without materializing Ip. In
particular, CBF excels in matching complex pattern graphs
against dense target graphs where all existing solutions fail,

Table 1: Notations

Symbol Description
p, d The pattern graph p and target graph d.
np,mp np = |V (p)|,mp = |E(p)|.
g(V ′) The induced subgraph of g on vertex set V ′.
code(·) The compressed code of a piece of data.
ρ(·) The compression ratio: Equation 1.
Ip The instance set of p — the set of

subgraphs of d that are isomorphic to p.
fg The instance-bijection of instance g ∈ Ip.
ordp The order on V (p) for symmetry breaking.

HVc(g) The helve of instance g: fg(u) for all u ∈ Vc.
H(Ip) The set of helves of instances in Ip.

Imgp(u|h) {fg(u)|g ∈ Ip|h} of a node u.
Ip|h The set of instances in Ip with helve h.

{Vc, λ,P} A core-crystal decomposition of p.
Vc A vertex cover of p.

core(p) p(Vc), the induced subgraph of p on Vc.
Vc The complement of Vc, that is, V (p) \ Vc.
P p1, p2, · · · , pλ, λ subgraphs of p, where

pi is a crystal Qxi,yi , for i ∈ [1, λ].
Qx,y A graph with y nodes fully connected to a Cx.
Cx A clique of size x.
M Size of the main memory.
B Size of a disk block.
σ, η Two constants defined in the assumption.

as will be shown in our empirical studies.

Organization. Section 2 formally defines subgraph match-
ing and the two problems to be addressed in this paper.
Sections 3 studies the compression problem while Section 4
investigates the computation problem. Section 5 surveys re-
lated work. Section 6 evaluates our techniques via extensive
experimentation. Section 7 concludes the paper.

2. PRELIMINARIES
We now formally introduce all the definitions. Table 1

aggregates all the notations used in the paper.

2.1 Subgraph Matching
This paper focuses on the subgraph matching on unla-

beled and undirected graphs. A graph g consists of a set
V (g) of vertexes and a set E(g) of edges. A vertex is also
called a node. An edge e(u, v) connects two vertexes u and
v in V (g). e(u, v) is incident to both u and v. The degree
of a node v is the total number of edges incident to v. A
graph g is a clique if for every pair u, v of nodes in V (g),
edge (u, v) ∈ E(g). A clique of size k is denoted as Ck.

Let g1 and g2 be two graphs. The intersection g1 ∩ g2 of
g1 and g2 is a graph with vertex set V (g1)∩V (g2) and edge
set E(g1)∩E(g2). If g1 ∩ g2 = g1, then g1 is a subgraph of
g2. The induced subgraph g(V ′) of a graph g on a vertex
set V ′ is a graph with vertex set V ′ ∩ V (g) and edge set
E(g)|V ′ where E(g)|V ′ = E(g) ∩ (V ′ × V ′).

Definition 1 (Graph Isomorphism [12]). Given two
graphs g1 and g2, an isomorphism from g1 and g2 is a bijec-
tion f : V (g1) 7→ V (g2) such that (u, v) ∈ E(g1) if and only
if (f(u), f(v)) ∈ E(g2). If there is an isomorphism from g1
to g2, then we say g1 is isomorphic to g2.



v5v4 v6 4uv7

1u

u

3uu2

v1

v3

v2

5

6uv8 v9

p :d : 

Figure 1: Target graph d and pattern graph p

Definition 2 (Graph Matching). For a given target
graph d and a given pattern graph p, subgraph matching re-
ports the set Ip of all the subgraphs of d that are isomorphic
to p. Denote |V (p)| as np, |E(p)| as mp.

A subgraph g of d is an instance of p if it is isomorphic
to p. In other words, g ∈ Ip if and only if g is an instance
of p. We thus call Ip the instance set of p.

Example 1. We use a running example of a subgraph
matching on target graph d and pattern graph p in Figure 1.

Let V ′ = {v1, v2, · · · , v5}. d(V ′) is the induced subgraph
of d on set V ′. Subgraph g with vertex set V (g) = V ′∪{v6}
and edge set E(g) = E(d(V ′)) ∪ {(v2, v6)} is an instance of
p with an isomorphism f that maps vi to ui, for i ∈ [1, 6].

One instance g may have multiple isomorphisms to p. The
standard technique of symmetry breaking (SimB) [15]
validates exactly one isomorphism fg : V (p) 7→ V (g) for
each instance g. fg is called the instance-bijection of g.

Specifically, SimB selects a set ordp ⊆ V (p)×V (p) of node
pairs in the pattern graph. For each pair 〈u, v〉 in ordp, a
partial order ≺ is imposed such that u ≺ v. Besides, SimB
defines an arbitrary total order on target graph nodes V (d).
By default, for u, v ∈ V (d), u < v if the identifier of u
is smaller than that of v. Given an instance g ∈ Ip, an
isomorphism f from p to g is valid if f(u) < f(v), for any
u ≺ v. Each instance g has exactly one valid isomorphism
fg under ordp. fg is called the instance-bijection of g.

Example 2. In Figure 1, pattern graph p uses ordp =
{〈u4, u5〉} for symmetry breaking. In Example 1, instance g
has an isomorphism f . g has another isomorphism f ′ which
is the same as f except for f ′(v4) = u5 and f ′(v5) = u4. ordp
invalidates f ′−1 since f ′−1(u4) > f ′−1(u5) violates u4 ≺ u5.
The instance-bijection fg of g under ordp is

fg(ui) = vi, for ∀i ∈ [1, 6].

A mapping function maps a source to its image. For an
instance g and its instance-bijection fg, we call fg(u) the
image of u under g. We call Imgp(u) = {fg(u)|g ∈ Ip} the
image set of u under Ip where Ip is the instance set of p.

Example 3. Example 2 shows the instance-bijection fg of g.
fg(u1) = v1 so the image of u1 is v1, and thus v1 ∈ Imgp(u1).

2.2 Assumptions
This paper discusses subgraph matching in external mem-

ory (EM) model with two assumptions. In EM model, an
I/O transfers a block of B words between the disk and the
memory of a machine. The memory size is M words. The
cost is defined as the total number of I/Os performed. We

assume that the pattern graph has O(1) nodes and the tar-
get graph has O(M) nodes. Specifically, we assume:

A1 np = |V (p)| = O(1) , that is, np < σ for a constant σ.

A2 |V (d)| = O(M), that is, |V (d)| < η
σ
M for a constant

η < 1 such that V (d) fits in a memory of M/σ words.

2.3 D-Optimal Compression
A compression approach includes a compression algorithm

and a decompression algorithm. Let D be a piece of data.
The code of D, denote as code(D), is the compressed form
of D. D can be restored from code(D) if the compression is
lossless. The compression ratio on D is defined as

ρ(D) =
|code(D)|
|D| . (1)

In EM model, any algorithm that lists D needs Ω( |D|
B

)
I/Os, we thus define the notion of an “optimal” compression.

Definition 3 (D-Optimal Compression). A compres-
sion approach is d-optimal if the decompression is output-

sensitive—D can be restored from code(D) in Θ( |D|
B

) I/Os.

In other words, a d-optimal compression guarantees that
code(D) serves effectively the same as a materialized D.

2.4 Problems
For a subgraph matching on target graph d and pattern

graph p, this paper focuses on two problems below.

Problem 1. Given Ip of a pattern graph p, is there a
d-optimal compression approach for Ip with a high ρ(Ip)?

Problem 2. Given a target graph d and a pattern graph
p, how to efficiently compute code(Ip)?

Problem 2 is dependent on the solution of Problem 1: the
cost for exporting code(Ip) to the disk in Problem 2 is solely
determined by the compression ratio ρ(Ip) in Problem 1.
Thus, we partition the overall cost of Problem 2 into:

• Output cost: the cost on exporting the final results.

• Enumeration cost: the overall cost assuming that
the export of the final results is for free.

3. VC BASED COMPRESSION
This section provides a positive answer to Problem 1 by

devising a vertex-cover based compression (VCBC) technique.

VCBC is a compression of Ip based on a vertex cover of
the pattern graph p. A vertex cover of p is a set Vc of
nodes in V (p) that jointly cover all the edges in E(p) — a
vertex v covers an edge e if e is incident to v. Formally, Vc
is a vertex cover of p if for ∀e(u, v) ∈ E(p), Vc ∩ {u, v} 6= ∅.

To explain VCBC, we define the helve of an instance of p.

Definition 4 (Helve). Let Vc = {u1, u2, . . . , uk} be a
vertex cover of p. Let g be an instance of p. The helve of g
is the vectored images of Vc under the instance-bijection fg:

HVc(g) = (fg(u1), fg(u2), . . . , fg(uk)).

It is also denoted as H(g) if Vc is obvious in the context.
Similarly, the helves of an instance set I is defined as

H(I) = {H(g)|g ∈ I}.



Table 2: code(Ip|h) with h = (v1, v2, v3).

u ∈ V (p) u1 u2 u3 u4 u5 u6

Imgp(u|h) v1 v2 v3 v4, v5, v6 v5, v6, v7 v4, v5, . . . , v9

Example 4. In Figure 1, the pattern graph p has a vertex
cover Vc = {u1, u2, u3}. In Example 2, the instance-bijection
fg maps, for a instance g with V (g) = {vi|i ∈ [1, 6]}, ui ∈
V (p) to vi. The helve of g is therefore the images of Vc under
g, H(g) = (g(u1), g(u2), g(u3)) = (v1, v2, v3).

3.1 Compression
Recall that Definition 4 definesH(Ip) = {H(g)|g ∈ Ip} for

instance set Ip under a vertex cover Vc. Let h1, h2, . . . , hl be
the l = |H(Ip)| helves in H(Ip). For each helve hi, i ∈ [1, l],
VCBC compresses Ip|hi to code(Ip|hi) in 3 steps:

C1 Group the instances in Ip by their helves. Define the
conditional instance set Ip|hi of hi as

Ip|hi = {g|H(g) = hi}.

C2 Identify, for conditional instance set Ip|hi, the condi-
tional image set Imgp(u|hi) for each node u ∈ V (p):

Imgp(u|hi) = {fg(u)|g ∈ (Ip|hi)}.

C3 Compress Ip|hi with the concatenation of the condi-
tional images Imgp(u|hi) over all nodes u in p:

code(Ip|hi) = {Imgp(u|hi)| for u ∈ V (p)}.

Finally, VCBC compress code(Ip) by concatenation:

code(Ip) = {code(Ip|hi)|i ∈ [1, l]}.

Example 5. In Figure 1, Vc = {u1, u2, u3} is a vertex cover
of p. Let h = (v1, v2, v3) be a helve. Table 2 shows the con-
ditional image sets of nodes under h. Step C3 concatenates
code(Ip|h) = {v1}{v2}{v3}{v4, v5, v6}{v5, v6, v7}{v4, v5, · · · ,
v9}. The instance g which maps ui to vi, i ∈ [1, 6], is coded.

The compression ratio can be calculated via Equation 1.

Example 6. For Figure 1, the conditional instance set Ip|h
of h = (v1, v2, v3) has 24 instances under ordp and is stored
with 6×24 = 144 integers. code(Ip|h) consists of 15 integers.
The compression ratio ρ(Ip|h) is 144÷ 15 = 9.6.

Remarks. Given an instance set Ip, the compression can

be done in a sorting time of Ip, that is, in Õ(
|Ip|
B

) I/Os.

3.2 Decompression
As a reverse process of compression, decompression re-

stores Ip from code(Ip) by restoring, for each helve hi,
i ∈ [1, l], in H(Ip) = {h1, h2, . . . , hl}, the conditional in-
stance set Ip|hi from code(Ip|hi), respectively, in 3 steps.

D1 Load code(Ip|hi) = {Imgp(u|hi)|u ∈ V (p)} in memory.

D2 Let S be the Cartesian product over the np image sets

S = Πu∈V (p)Imgp(u|hi).

D3 Let I′p|hi be the set of tuples in S without duplicated
vertexes that are validated by ordp.

Finally, report I′p =
⋃
i∈[1,l](I

′
p|hi).

Theorem 1 (d-optimal). The vertex-cover based com-
pression is d-optimal. In other words, the decompression

restores Ip in a streamed manner in O(
|Ip|
B

) I/Os.

Proof. In step D1, code(Ip|hi) consists of np conditional
images sets. For each u in V (p), image set Imgp(u|hi) ⊆
V (d), thus |Imgp(u|hi)| ≤ |V (d)|. Therefore, code(Ip|hi)
does not exceed M

σ
× σ = M words — fits into the memory.

Besides, step D2 and D3 can be pipelined, that is, one can
generate a tuple t of S then immediately test t via Step D3.
If t passes, stream t out right away.

Theorem 2 (Lossless). The vertex-cover based com-
pression is lossless, that is, for a given Vc, I′p = Ip.

Proof. We prove Ip = I′p in two directions.

1. Ip ⊆ I′p. For any instance g ∈ Ip, g will be recovered
in the Cartesian product of S in step D2 and pass the
validation of ordp in step D3, and thus, g ∈ I′p.

2. I′p ⊆ Ip: I′p|h ⊆ Ip|h for all helve h. Let t = {v1, v2,
. . . , vnp} be a tuple in I′p|h. To prove t ∈ Ip|h, it
suffices to show that for any edge (ui, uj) ∈ E(p),
(vi, vj) ∈ E(d) as t survived through step D3. From
the origin of t (D2), there must be an instance g0 ∈ Ip
with helve h, and for each ui 6∈ Vc, there must be
an instance gi ∈ Ip|h with fgi(ui) = vi. There is
no edge between two nodes in Vc. If ui and ui are
both in Vc then (vi, vj) ∈ E(g0) ⊆ E(d); if ui is in Vc
and uj is in Vc then (vi, vj) ∈ E(gi) ⊆ E(d). Thus,
I′p|h ⊆ Ip|h.

Remarks. Theorems 1 and 2 provide an insight in the
instance set Ip, that is, when the images of a vertex cover
Vc of the pattern graph p is fixed, all corresponding instances
can be represented as a Cartesian product of the image sets
of nodes in V (p) \ Vc. This insight guarantees that VCBC is
a d-optimal compression for the instance set Ip.

3.3 Compression Ratio
A Cartesian product over sets indicates a multiplication

over set sizes. This reversely implies a high compression
ratio. Below, we investigate the compression ratio of VCBC.

Lemma 1. The highest compression ratio of an instance
set Ip of pattern p is given by a minimum vertex cover of p.

Proof. Let Vc and V ′c with Vc ⊆ V ′c be two vertex covers
of p. We show that the length of code(Ip) under Vc is not
longer than that under V ′c . Assume, without loss of gen-
erality, Vc = {vi|i ∈ [1, x]} and V ′c = {vi|i ∈ [1, y]} where
x ≤ y. Let h be a helve of Vc. Ip|h is a disjoint union
of Ip|h′ for ∀h′ ∈ pre(h). Here pre(h) is the set of all the
helves of V ′c with prefix equal to h. The Cartesian prod-
uct (Step C2) suggests that for each u ∈ Vc and v ∈ V (d)
with v ∈ Imgp(u|h) under Vc, there must be an h′ ∈ pre(h)

such that v ∈ Imgp(u|h′) under V ′c . Therefore, the length of
code(Ip|h) is no longer than the summation of the lengths of
code(Ip|h′), for ∀h′ ∈ pre(h), which completes the proof.

When the pattern graph p is a clique, any vertex cover of
p has ≥ |V (p)| − 1 vertexes. Therefore, we have Lemma 2.

Lemma 2. When the pattern graph is Ck, the compression
ratio of the vertex-cover based compression is O(k).
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Remarks. This subsection provides two findings on the
compression ratio of VCBC, Lemma 1 and 2. However, it
remains hard to quantify the compression ratio for general
cases. Empirical results in Table 5 confirm that the Carte-
sian product of VCBC brings a significant compression ratio
on real graphs. Moreover, the VCBC introduced in this sec-
tion, together with general compression techniques such as
LZO, bzip2, or snappy, provides an effective storage solu-
tion for subgraph matching, as shall be seen in Section 6.1.

4. CRYSTAL-BASED COMPUTATION
Based on VCBC, this section focuses on Problem 2. The

aim is to find an approach to an efficient computation of
code(Ip) from the target graph d and the pattern graph p.

This section will introduce a Crystal-Based computation
Framework (CBF). CBF computes code(Ip) by computing
code(Ip|hi), for each helve hi in helves H(Ip) = {h1, h2, · · ·
hl} with l = |H(Ip)|, respectively. Specifically, CBF

• Decompose p into a “core” and several basic constructs
called “crystals”. The “core” is used to generate the
helves hi of Ip while the crystals are used to generate
the image sets for each helve.

• Compute the instances of the “core” by recursively
calling CBF, since “core” is itself a pattern graph.

• Precompute the code of the “crystal”s’ instance sets.

• Assemble code(Ip|hi) with instance hi of the “core”
and the corresponding codes of the crystals.

4.1 Framework Overview
CBF adopts a core-crystal decomposition to reduce the

intermediate results. This enables a one-off assembly of the
targeted code(Ip). Start with three key components of CBF:

1. Crystals: a group of pattern graphs whose instance
sets are precomputed and coded using VCBC.

2. Core-crystal decomposition: decompose the pattern
graph into a “core” and crystals in a particular way.

3. One-off assembly: compute code(Ip) by assembling the
each instance of the “core” with the code of crystals.

Crystals. A crystal is a special pattern graph that is de-
rived from cliques, defined as below.

Definition 5 (Crystal). Let x and y be two positive
integers. A crystal Qx,y is a graph g with x+ y nodes such
that there exists a set V ′ ⊆ V (g) of x nodes and V ′ = V (g)\
V ′ with y nodes satisfying the following conditions.

• The induced subgraph g(V ′) is a clique. g(V ′) is called
the core of the crystal, denoted as core(Qx,y)

• The induced subgraph g(V ′) is an independent set. The
nodes in V ′ are called bud nodes. The edges incident
to bud nodes are called bud edges.

Table 3: Codes of conditional instance sets.

Conditional Helves on Vc Image sets on Vc
instance set u1 u2 u3 u4 and u5 u6

Ip1 |h1 v1 v3, v4, v5, v6, v7
Ip2 |h2 v2 v3 v4, v5, v6, v7
Ip3 |h3 v2 v3, v4, · · · , v9
Ip|h v1 v2 v3 v4, v5, v6, v7 v3, v4, · · · , v9

h1 = (v1), h2 = (v2, v3), h3 = (v2), h = (v1, v2, v3)

• Each bud node v is fully connected to the core, that is,
(u, v) ∈ E(g) for ∀u ∈ V ′.

Lemma 3. core(Qx,y) is the induced subgraph of a vertex
cover of Qx,y, that is, core(Qx,y) covers all edges in Qx,y.

Example 7. Figure 2 shows three crystals with cores marked
in bold cycles. p1 is a Q1,2 with core u1. p2 is a Q2,2

with core (u2, u3). u4 and u5 are bud nodes with bud edges
(u2, u4), (u2, u5), (u3, u4) and (u3, u5). p3 is a crystal Q1,1.

A crystal Qx,y is a pattern graph itself. As such, concepts
subject to a pattern graph introduced in Section 3 apply:
Qx,y has its own instance set IQx,y , its own helvesH(IQx,y ),
its own conditional instance sets and conditional image sets.

The instance set of a crystal Qx,y can be coded by VCBC
with the instances of Cx+1 — the clique of x+1 vertexes. Let
Cx be a clique with nodes v1, v2, · · · , vx in increasing iden-
tifiers. Let Qx,y be a crystal with core nodes u1, u2, . . . , ux
and bud nodes u1, u2, . . . , uy. Define the partial order sets.

Definition 6. Let ordCx include the orders of v1 ≺ v2 ≺
· · · ≺ vx. Let ordQx,y include the following orders:

u1 ≺ u2 ≺ · · · ≺ ux, and u1 ≺ uj ≺ · · · ≺ uj .

Lemma 4. Given the instance set of clique Cx+1, the code
of the instance sets of crystals Qx,1 and Qx,y can be obtained
in a sorting time of I(Cx+1), if x and y are O(1).

Proof. If symmetry breaking is not considered, IQx,1 =
ICx+1 since Qx,1 is Cx+1; besides, for each helve of IQx,y , the
image sets of y bud nodes are identical to the image set of the
bud node of the same helve in IQx,1 . Next, we impose the
orders defined in Definition 6 to the three pattern graphs
and then compute their codes. code(IQx,1) is obtained in
two steps in a sorting time of ICx+1 :

• Generate x + 1 instances of Qx,1 from an instance g
in I(Cx+1) by mapping the bud node of Qx,1 to each
node of Cx+1, respectively;

• Group the instances of I(Qx,1) by their images on
core(Qx,1). The group of an image h of core(Qx,1) and
an image set of the bud node constitutes code(Qx,1|h).

code(IQx,y ) is obtained by scanning code(IQx,1) y times.
Specifically, let u be the bud node ofQx,1, and u1, u2, · · · , uy
be the bud nodes of Qx,y. Let h be a helve of IQx,1 . As-
sume that ImgQx,1(u|h) has l nodes {v1, v2, . . . , vl} where

v1 < v2 < · · · < vl. If l < y then h is not a helve of
code(IQx,y ); otherwise, code(IQx,y |h) consists of image sets:
ImgQx,y (ui|h) = {vi, vi+1, . . . , vl−y+i} for i ∈ [1, y].

Example 8. Table 3 shows the codes of the conditional
instance sets of crystals in Figure 2. Note that p1 is a crystal



Q1,2. When the core of p1, u1, sticks to the helve h1 of node
v1 ∈ V (d), all instances of p1|h1 are coded in two image
sets Imgp1(u4|h1) = {v3, · · · v6}, Imgp1(u5|h1) = {v4, · · · v7}.
These can be derived from the C2 instances on v1 which is
coded as a set of {v3, · · · , v7}. Similarly, the code for p2, a
crystal of Q2,2, can be derived from the instance set of C3.

Core-Crystal Decomposition. A core-crystal decompo-
sition of pattern graph p is a triple {Vc, λ,P} that satisfies:

DC1 Vc ⊆ V (p) is a vertex cover of p. The induced subgraph
p(Vc), is called the core of p, denoted as core(p).

DC2 λ ≤ σ is an integer. P is a set {p1, p2, . . . , pλ} of λ
subgraphs of p, such that

(a) For each subgraph pi, i ∈ [1, λ]:

i. pi is a crystal Qxi,yi for some integers xi, yi.
Denote the core of Qxi,yi as core(pi).

ii. pi intersects with core(p) exclusively on pi’s
core, that is, core(p) ∩ pi = core(pi).

(b) The union of the subgraphs and the core is exactly
p, that is, (

⋃
i∈[1,λ] pi) ∪ core(p) = p.

The above core-crystal decomposition conditions are de-
signed for reducing the intermediate results, and facilitate
an efficient one-off assembly. Astute readers may have no-
ticed a redefinition of “core” on both a pattern graph and a
crystal. Actually, Lemma 3 indicates their consistency.

Lemma 5. The induced subgraph p(Vc) has no edge.

Example 9. For the pattern p in Figure 1, Vc = {u1, u2, u3}
is a vertex cover of p. The three subgraphs p1, p2 and
p3 of p in Figure 2 are crystals Q1,2, Q2,2 and Q1,1, with
cores u1, (u2, u3) and u2 respectively. The triple {Vc, 3,P =
{p1, p2, p3}} is a valid core-crystal decomposition.

One-Off Assembly. For a core-crystal decomposition of
{Vc, λ,P}, the one-off assembly computes code(Ip) with in-
stances of core p(Vc) and code(pi) for each pi ∈ P, i ∈ [1, λ].

The core-crystal decomposition is designed such that the
core and the subgraphs are connected in a particular way.
For example, p(Vc) is a subgraph of p; the core(pi) of pi is
a subgraph of both pi and core(p) (recall the word “exclu-
sive” in Condition ii, (a), DC2). The subgraph relationships
among the pattern graphs are mapped to their instances.

An instance g of the pattern graph p brings an instance-
bijection which maps node ∀u ∈ V (p) to node g(u) ∈ V (d).

Definition 7 (Subgraph Projection). Let p′ and p′′

be two pattern graphs with p′ ⊆ p′′. Let g′′ be an instance of
p′′. The projection of g′′ on p′, denoted as g′′(p′), is defined
as a graph with vertex set {g′′(v)|v ∈ V (p′)} and edge set
{(g′′(u), g′′(v))|(u, v) ∈ E(p′)}. g′′(p′) is a subgraph of g′′.

Lemma 6. g′′(p′) is an instance of p′.

Proof. For any edge (u, v) ∈ E(p′), (u, v) ∈ E(p′′) since
p′ is a subgraph of p′′, thus, (g′′(u), g′′(v)) ∈ E(d) because
g′′ is an instance of p′′. Therefore, g′ is an instance of p′.

Now we are ready to unveil the assembly of the instances.

Definition 8. Given a core-crystal decomposition, let h
be an instance of core(p). For a subgraph pi in P, h(core(pi))

Algorithm 1: Assembly

Input: An instance h of core(p) with, for each
subgraph pi ∈ P, i ∈ [1, λ], projections hi on
pi and conditional code(Ipi |hi).

Output: code(Ip|h).
1 for each u ∈ V (p) do
2 Img′p(u|h)←

⋂
i∈[1,λ] with u in pi

Imgpi(u|hi);
3 code′(Ip|h)← apply step C3 on Img′p(u|h), u ∈ V (p);

4 code′′(Ip|h)← Trim code′(Ip|h): remove a node v in
an image set Img′p(u|h) if v cannot generate, via

step D2, any tuple that survives step D3;
5 return code′′(Ip|h);

is the projection of h on core(pi). For simplicity, h(core(pi))
is denoted as hi and called the projection of h on pi

2.

Algorithm 1 shows the one-off assembly under a decom-
position {Vc, λ,P}. For an instance h of core(p), the aim
is to generate the image sets of code(Ip|h). Obviously, it
is not necessary to load the entire instance set of each sub-
graph pi ∈ P. All we need are conditional code(Ipi |hi), for
∀i ∈ [1, λ], where hi is the projection of h on pi (Defini-
tion 8). Line 2 obtains the tentative image set of v ∈ Vc in
Ip|h by intersecting over corresponding image sets of Ipi |hi,
i ∈ [1, λ]. With these image sets, Line 3 simulates the com-
pression step C3 to generate a tentative code′(I|h). Line 4
trims code′(I|h) by simulating decompression step D2 and
D3 to ensure that code′′(I|h) returned in Line 5 is compact.

Example 10. For the pattern p in Figure 1, let the de-
composition have Vc = {v1, v2, v3} and P = {p1, p2, p3} in
Figure 2. The helve h = (v1, v2, v3) of pattern p is projected
to h(p1) = v1, h(p2) = (v2, v3) and h(p3) = v2. The image
sets of conditional instance sets of crystals and p are shown
in Table 2. The image sets of Ip|h is obtained by intersect-
ing the image sets column by column (Line 2, Algorithm 1).

Theorem 3 demonstrates the correctness of Algorithm 1.

Theorem 3 (One-off assembly). For a given decom-
position {Vc, λ,P} of p, Algorithm 1 assembles code(Ip|h)
for each helve h of Ip with the codes of subgraphs in P.

The proof of Theorem 3. To prove, we need to step
into the technique of SimB [15]. Recall that SimB specifies a
partial order set ordp to avoid duplicated enumeration (Sec-
tion 2). Actually, SimB identifies ordp from the equivalences
among nodes in Vp: two nodes are equivalent if there is an
automorphism of p that maps one node to the other. The
equivalence relationship is transitive, which draws equiva-
lence classes in V (p). SimB determines ordp in rounds. Ini-
tially, ordp = ∅. Each round, SimB identifies an equivalence
class—a set of nodes V ′ ⊆ V (p) that are mutually equiva-
lent under ordp. SimB breaks the class by imposing partial
orders on V ′: pick a node v ∈ V ′ as the anchor node and
then add (v, v′) to ordp for every v′ ∈ V ′ \{v}. SimB repeats
the rounds until no equivalence class exists.

CBF, though has a single pattern graph p, decomposes p
into a core and subgraphs in P; each of which is a pattern

2Safe abuse since pi intersects core(p) exclusively on core(pi).



graph itself. The problem is to consist the orders in CBF
for all decomposed pattern graphs. This can be achieved by
levering SimB’s freedom in choosing the anchor node for an
equivalence class. Given a pattern p and its decomposition
{Vc, λ,P}, CBF imposes extra rules to SimB in anchor node
selection in determining ordp, ordcore(p), and the partial or-
ders of subgraphs in P, crystals and cliques in preprocessing.

Specifically, CBF identifies nodes in V (p) with integers
from 1 to np such that the identifiers of Vc nodes are smaller
than that of non-Vc nodes. Then compute ordp with SimB:
in each round, the anchor node of an equivalence class is
designated to the node with the smallest identifier. For any
(u, v), or equivalently, u ≺ v, in ordp, the identifier of u is
smaller than v. Let ordcore(p) = ordp ∩ {u ≺ v|∀u, v ∈ Vc}.

Lemma 7. Given a pattern p, its decomposition {Vc, λ,P},
the partial order sets for p, core(p), crystals, and cliques are
defined by CBF as above, respectively. Let g be an instance
of p under ordp. 1) The projection g(pi) of g on pi ∈ P is an
instance of pi under ordpi , for i ∈ [1, λ]. 2) The projection
of g on core(p) is an instance of core(p) under ordcore(p). 3)
g can be restored from code′(Ip|h) in Line 3, Algorithm 1.

Proof. 1) pi is a crystal Qxi,yi . ordp indicates that for a
core node u and a bud node v of pi, g(u) < g(v). Note that,
there is a hidden mapping from core (bud, resp.) nodes in
pi to the core (bud, resp.) nodes crystal Qxi,yi . Let this
mapping to be instance dependent, that is, map nodes u in
core(pi) to core(Qxi,yi) in ascending order of g(u); and do
the same for bud nodes. In this way, g(pi) follows ordQx,y
and thus is in I(pi). 2) g(core(p)) is an instance of core(p)
since ordcore(p) is a subset of ordp. 3) g can be restored from
code′(Ip|h) since for each u ∈ V (p), g(u) is in the image
set of u over all subgraphs that contains u, and is thus in
Img′p(u|h) =

⋂
i∈[1,λ] with u in pi

Imgpi(u|hi) (Line 2).

Lemma 8. In Algorithm 1, code′′(Ip|h) reported in Line 5
is exactly code(Ip|h).

Proof. We first show that any tuple t decompressed from
code′(Ip|h) via step D2 and D3 is an instance of p.

Recall that t was decompressed from the Cartesian prod-
uct over the image sets of Img′(u|h) (step D2), namely, every
node in t is an image of a node in p. Denote by t(v) the im-
age of v ∈ V (p) in t. Mapping t is a bijection and follows
ordp since t had survived through decompression step D3.

To show that t is isomorphic to p, that is, for every edge
(u, v) ∈ E(p), (t(u), t(v)) ∈ E(d), consider the intersection
in Line 2. If u, v ∈ Vc, then t(u) and t(v) are specified by
h. Since h is an instance of core(p), (t(u), t(v)) ∈ E(d).
If u ∈ Vc and v ∈ Vc, due to condition 2(b), there exists
pi with (u, v) ∈ E(pi), thus (t(u), t(v)) ∈ E(d). Lemma 5
guarantees that there is no edge between two nodes in Vc.
Therefore, t is isomorphic to p and is thus an instance of p.

For any instance g in Ip|h, g is in the decompression
of code′(Ip|h) (Lemma 7). Note that removing any node
in code′′(Ip|h) will lead to a different decompression set
(Line 4), violating the fact that the decompression sets of
code′(Ip|h), code′′(Ip|h) and code(Ip|h) are identical. There-
fore, code′′(Ip|h) is exactly code(Ip|h).

This subsection has explained the essence of the frame-
work, that is, decompose the pattern graph p into a core

and λ crystals, compute their instances/codes respectively,
and assemble their instances back to the code of Ip in a
one-off manner. Section 4.2 to 4.5 describe each compo-
nent in details under external memory model. Section 4.2
shows the preprocessing step which codes the instances of
crystals. Section 4.3 shows the computation of core(p) in-
stances. Section 4.4 elaborates the one-off assembly (Algo-
rithm 1). Section 4.5 shows how to decompose the pattern
graph. Section 4.6 parallelizes the one-off assembly.

4.2 Preprocessing: Clique Listing
Based on Lemma 4, to code the instance set of a crystal

of Qx,y, it suffices to list the instances of clique Cx+1. This
can be trivially done for C1 and C2 whose instance sets are
the vertex and edge sets, respectively, of the target graph.
The instances of a clique of Ck can be either computed
from scratch using the hypercube approach [1] or inductively
by resorting to Loomis-Whitney Join (LW-Join) [24]. The
worst-case complexity of these approaches conforms when
the target graph is a clique: the complexity for computing
ICk is dominated by the output cost Θ( 1

B
|E(d)|k/2).

This preprocessing step aims at computing, for a param-
eter k0, the instance sets of all cliques Ck with k from 1 to a
certain k0. LW-join suits sparse graphs whose total number
of instances of clique Ck is far less than |E(d)|k/2. LW-join

scan ICk for (
|ICk |
M

)
1
k times to obtain ICk+1 (Lemma 10).

Definition 9 (Loomis-Whitney Join(LW-Join)[24]).
Denote by A attributes {a1, a2, · · · , ak+1}. Loomis-Whitney
Join on A is a join of k + 1 relations, R1, . . . , Rk+1, where
each relation Ri has a schema of A\ {ai}, for i ∈ [1, k+ 1].

For example, when k = 2, the schema of k+1 = 3 relations
are R1(a2, a3), R2(a1, a3), and R3(a1, a2).

Lemma 9. Given the instance set of clique Ck, the prob-
lem of computing the instance set of Ck+1 is a LW-Join.

Proof. Let relation Ri, i ∈ [1, k+ 1], be the instance set
ICk . Compute the instance set ICk+1 via the LW-join

./i∈[1,k+1]Ri.

The algorithm and analysis in [16] show the overall com-
plexity (Lemma 10) where Θ( 1

B
|ICk+1 |) is the output cost.

Lemma 10 ([16]). The worst-case I/O complexity for
computing the instance set of clique Ck+1 from that of Ck is

Θ̃

(
1

B
|ICk |

(
|ICk |
M

) 1
k

+
1

B
|ICk+1 |

)
.

4.3 Core Instance Computation
The core of p is a pattern graph itself. CBF can com-

pute the instances of core(p) recursively until p is a crystal.
Lemma 11 shows that such a recursion terminates in con-
stant rounds if a minimum vertex cover is chosen by each
core-crystal decomposition. Specifically, if each recursion
reduces the pattern size by at least 2 then the total number
of recursions is at most |V (p)|/2 ≤ σ/2, a constant.

Lemma 11. Let Vc be a minimum vertex cover of p. If p
is not a clique, then |Vc| ≤ |V (p)| − 2.

Proof. p is not a clique, there is an edge (u, v) 6∈ E(p)
with u, v ∈ V (p), then V (p)\{u, v} is a vertex cover of p.



Remarks. When core(p) has multiple connect components,
the instance set of each connected components are computed
respectively. CBF combines the instances from different con-
nected components with the one-off assembly, as shall be
introduced in the next subsection.

4.4 One-off Assembly
We now adapt Algorithm 1 to EM model. Recall that

given a core-crystal decomposition {Vc, λ,P} with P = {p1,
p2, · · · , pλ}, each pi is crystal Qxi,yi for i ∈ [1, λ]. Algo-
rithm 1 assembles code(Ip). Specifically, an instance h of
the core(p) is recursively computed (Section 4.3); code(Ipi)
is pre-computed for each pi ∈ P (Section 4.2). With the
projection hi of h on each pi (Definition 8), Algorithm 1
assembles code(Ip|h) with code(Ipi |hi) for all pi ∈ P.

The performance of Algorithm 1 under EM model is largely
affected by fractional disk accesses — even if Ipi |hi has only
one instance, Line 2 has to pay one I/O for hi. In other
words, each helve in H(Ip) consumes at least λ I/Os, ren-
dering at least λ|Ip| I/Os in the worst-case. Alike the hash-
joins in external memory, we resort to hash functions.

4.4.1 Hash-Assembly
The aim of a hash-assembly is to partition the instances of

the core and each subgraph in P into buckets, a bucket can
be held in main memory such that the one-off assembly can
be performed by enumerating the combinations of buckets.
In this way, fractional disk accesses can be avoided.

Hash function on clique instances. Lemma 4 suggests
that a helve h of IQx+1,y is a helve of IQx+1,1 and an instance
of clique Cx. We define, for h, a weight w(h), as the total
number of instances ofQx+1,1 under helve h. Note that w(h)
is also the size of the only image set of code(IQx+1,1 |h).

Example 11. Table 3 shows the codes of the three crystals
p1, p2 and p3 in Figure 2, respectively. For p1, h1 = v1 is
an instance of core(p1), the weight w(h1) is therefore 5 =
|{v3, v4, v5, v6, v7}| — the size of the image set of the bud
node of p1. Similarly, for crystal p2, the weight w(h2) with
h2 = (v2, v3) is 4; for p3, the weight of helve v2 is 7.

Lemma 12. Consider clique Cx−1 and its instances ICx−1 .
There exists a mapping function ξx with cx = O (|ICx |/M)

ξx : ICx−1 7→ {1, 2, · · · , cx}, such that

for each j ∈ [1, cx],Σh with ξ(h)=jw(h) ≤ (η/σ)M.

Proof. Let L = η
σ
M . The mapping function can be ob-

tained with a greedy algorithm. Consider a conceptual se-
quence of buckets numbered 1, 2, · · · with capacity L initially
labeled empty. Scan instances of Cx−1 in non-increasing or-
der of their weights. For each instance h, find the largest
non-empty bucket, or the first bucket if all buckets are empty.
If this bucket can hold the current instance without exceed-
ing the capacity limit, add the instance to the bucket; oth-
erwise, label the bucket as full and insert the instance to
the next bucket. After scanning all the instances of Cx, we
denote the total number of used bucket as c. To bound c,
we notice that each used bucket except the last one has a

weight in [L/2, L]. Thus, c ≤ 2x|ICx |
L

+ 1 = O(
|ICx |
L

).

Hash function on core instances. For each crystal pi =
Qxi,yi ∈ P, its helve hi is an instance of clique Cxi−1. There-
fore, hash function ξxi defined above can map hi to a num-
ber in [1, cxi ]. For an instance h of the core(p), recall that

h determines its projections hi on each subgraph pi (Defini-
tion 8). The hash function over the core instances is derived:

ξ(h) = (ξx1(h1), ξx2(h2), . . . , ξxλ(hλ)).

Hash-Assembly. Raise an assembly-job for each vector

vec = (s1, s2, . . . , sλ) ∈ [1, cx1 ]× [1, cx2 ]× · · · × [1, cxλ ].

An assembly-job of vec loads, for each i ∈ [1, λ] and each
instance hi of Cxi−1 with ξxi(hi) = si, the code(I(Qxi,1|hi))
in main memory in the entirety. This is doable since all these
codes fit in the main memory, as suggested by Lemma 12.
After that, scan over all the core instances h with ξ(h) = vec
and run Algorithm 1 for each of such instances.

Lemma 13. A hash-assembly has O(Πi∈[1,λ](|ICxi+1 |/M))
total number of assembly jobs. Each core instance is scanned
exactly once in exactly one assembly-job. Each job entails
O(M

B
) I/Os in loading the clique instances into the memory.

Theorem 4. The enumeration cost of the hash assembly
of the instance set Ip:

Õ

(
|Icore(p)|
B

+
M

B
×Πi∈[1,λ]

( |ICxi |
M

))
I/Os.

4.5 Core-Crystal Decomposition
A core-crystal decomposition {Vc, λ,P} supports efficient

one-off assembly by restraining itself. Now we are ready to
show how these constraints can be satisfied when only the
pattern graph p is available. The first question is whether
there exists a core-crystal decomposition. We provide a pos-
itive answer with the initial decomposition defined below.

Definition 10 (Initial Decomposition). Let Vc be a
vertex cover of p. Let λ = |Vc|. Denote Vc as {u1, u2, · · · , uλ}.
Create graph pi for each node ui ∈ Vc with E(pi) = {(ui, v) ∈
E(p)|v 6∈ Vc}. Let P = {p1, p2, · · · , pλ}. {Vc, λ,P} is a
core-crystal decomposition: pi is a crystal whose core is ui.

After we found the first core-crystal decomposition, the
next question is how to optimize a core-crystal decomposi-
tion. This goal can be achieved by first setting the objective
of the optimization, and then enumerate core-crystal decom-
positions to optimize the objective.

4.5.1 Optimization Objective
Firstly, Vc should be a minimum vertex cover. Since the

output cost Θ( 1
B
|code(Ip)|) is dependent only on the com-

pression ratio ρ(Ip). ρ(Ip) is determined by Vc: Lemma 1.

Secondly, the “best” decomposition is expecting a con-
nected core p(Vc): the complexity for computing the core
instances affects the recursion efficiency, which is decided by
Vc as well. If p(Vc) is not connected, p(Vc) is the Cartesian
product over the instance set of p(Vc)’s connected compo-
nents. Lemma 14 indicates that when p(Vc) has > 1 con-
nected components, few instances of p(Vc) are helves of p.

Lemma 14. Let p be a connected graph. Let V ′ be a vertex
cover of p with two connected components cc1 and cc2 in
p(V ′). There exist two nodes u ∈ V (cc1) and v ∈ V (cc2)
with u and v that are two-hop away in p.

Proof. Let u′ ∈ V (cc1) and v′ ∈ V (cc2) be the node pair
with the shortest distance in p among all such node pairs. If
the distance from u′ to v′ is more than 2, then there must be
an edge on the shortest path between u′ and v′, uncovered
by V ′, then V ′ is not a vertex cover of p, contradiction.
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Figure 3: The Cover Graph cover-graph((u1, u2, u3)).

Finally, the complexity of one-off assembly (Theorem 4)
instructs the “best” decomposition to minimize the function

f(P) =
M

B
×Πi∈[1,λ]

( |ICxi |
M

)
. (2)

If statistical information on the total number of cliques is
available, one can evaluate the function for each possible
core-crystal decomposition. Otherwise, heuristics apply: λ
should be minimized, then each xi should be minimized.

As a conclusion, core-crystal decomposition should select

1. a minimum vertex cover Vc of p,

2. p(Vc) with the fewest connected components, and

3. P that

• minimizes f(P) in Equation 2, if statistical infor-
mation on the total number of cliques is given;

• minimizes λ and then minimizes xi for each i ∈ λ
if no statistical information is available.

With the three objectives above ready, it remains to
enumerate all possible core-crystal decompositions.

4.5.2 Decomposition Enumeration
It is not hard to image how to optimize Objectives 1 and

2 by enumerating all possible minimum vertex covers Vc in
O(2m) time. This subsection shows how to optimize, given
a vertex cover Vc, Objective 3 by enumerating crystals of P
that satisfy all constraints of a core-crystal composition.

An invariant largely reduces the search space: Equation 2
is independent with the parameter of “yi” of each crystal in
P. Note that all bud edges should cover all edges between
Vc and Vc. Therefore, when the core(pi) of a crystal pi is
fixed, all possible bud nodes in Vc should be added to pi
to minimize λ. Moreover, the cores of the subgraph are
cliques in p(Vc), so it suffices to enumerate all combinations
of cliques in p(Vc) and then check, for each combination, if
the cliques can “cover” all edges between Vc and Vc.

To formally describe the above problem, denote by C′ the
set of all cliques in p(Vc); denote by E′ the set of edges in
E(p) between Vc and Vc. We construct a bipartite graph,
denoted as cover-graph(Vc), over E′ and C′. Specifically, the
vertex set of cover-graph(Vc) is the union E′ ∪ C′; and an
edge between g ∈ C′ and e(v, u) ∈ E′ with u ∈ Vc is linked
if v is fully connected to C′, that is, {v} × V (g) ⊆ E(p).

Example 12. In Figure 1, if Vc = {u1, u2, u3}, E′ includes
all edges in E(p) except (u1, u3) and (u2, u3), whereas C′

includes three nodes u1, u2, u3 and the two edges (u1, u3)
and (u2, u3). For the vertex cover Vc = (u1, u2, u3) of the
pattern graph p in Figure 1, the cover graph cover-graph(Vc)
is shown in Figure 3.

Now the optimization problem is defined as a cover-graph
problem defined as below.

Definition 11 (Optimize-P). Given a vertex cover Vc
of p, enumerate, all subsets of C′ that cover all items in E′

in cover-graph(Vc), to optimize Objective 3.

This is a cover problem on a bipartite graph.

Theorem 5. Optimize-P can be solved with an algorithm
in O(2npmp(2

mp + 2np)) time with space O(2mp).

Proof. Objective 3 has two cases: Case 1 is provided
with statistical information while Case 2 uses heuristics.
Case 1 has a function f(P) to evaluate cost:

log(f(P)) = log(M/B) + Σi∈[1,λ] log(|ICxi |/M),

is decided by the summation of log(|ICxi |/M) over the se-

lected cliques in C′. The problem can then be resolved with
memorized search — a dynamic programing algorithm. Use

an array DP of size 2|E
′| to denote, for each subset E′′ of E′,

the subset C′′ of C′ that covers E′′ with minimum cost—
the summation of log(|ICxi |/M) over Cxi selected by C′′.

DP[E′′] does not have to store C′′. C′′ can be restored by
tracing from DP[E′′] back to the state where the minimum
cost came from. It suffices to progressively add cliques to

C′, each takes O(mp2
|E′|) time to update each state in DP,

until C′ includes O(2n
p

) cliques in Vc. Case 2. To find the
P with the minimum λ, we start our search with λ = |Vc|
provided by the initial decomposition (Definition 10). It re-

mains to enumerate O(|C′||Vc|) = O(22np) combinations of
elements in C′ with no more than |Vc| elements. This can
be implemented as a depth-first-search, with the coverage
status over E′ maintained along the recursion. Each combi-
nation in C′ consumes O(mp) time to update the status.

This section concludes the introduction to CBF in external
memory. Next section extends CBF to parallel platforms.

4.6 Parallelization
Recall that in Section 4.4, a hash-assembly method is used

to chop the one-off assembly into par = O(Πi∈[1,λ](|ICxi |/M))
assembly-jobs, where each job fits in the memory of O(M).

This partition naturally fits parallel platforms: the jobs
are mutually independent, that is, they don’t communicate
at all. Let M be a number smaller than the memory size of
a slave machine, the parallelism is determined by the total
number of assembly-jobs. The communication complexity
of the one-off assembly conforms to Theorem 4:

Õ

(
|Icore(p)|+M ×Πi∈[1,λ]

( |ICxi |
M

))
.

Besides, the loading process, since each bucket is stored
consecutively, can be completed in λ network reads on the
distributed file system. No shuffle—the most expensive op-
eration on a parallel platform—is required. The practi-
cal performance, therefore, could be superior than the ap-
proaches with the same communication complexity that re-
lies on shuffling, as observed in a recent paper [27]. The
independence between tasks enables a near linear speedup
with the parallelism, as will be confirmed in our experiments.

This section has introduced CBF, a framework that com-
putes, for a subgraph matching, the instance set Ip, in a
compressed form, directly from the pattern graph and tar-
get graph. CBF can be easily deployed on parallel platforms.

5. RELATED WORK



This section first discusses output crisis of subgraph match-
ing computation, then overviews subgraph matching compu-
tation and finally surveys other relevant research.

Compression. This is the first attempt, in the literature,
on resolving the output crisis of subgraph matching using
output compression. In subgraph matching, output com-
pression is vertical to input compression [14, 31, 28]. Input
compression techniques leverage symmetries in the target
graph nodes such that the computation on one node alle-
viates the computation on other nodes. Other existing re-
search either blindly export the instance set Ip entirely to
the disk [1, 20, 2, 29, 19], or choose not to output at all, see
the seminal work of [26]. The former ones, unavoidably, en-

tail Ω(
|Ip|
B

) I/Os for export; whereas the latter ones, suffer
a re-computation cost of Ip upon every following request.

Computation. In main memory, subgraph matching com-
putation has been investigated extensively (see seminar work
[30, 8]). As an instance of multi-join — subgraph matching
is a join over mp binary-relations on np attributes where
each relation is materialized with E(d), the upper and lower
bounds has been matched [24]. Inspired by this, in external
memory, special patterns such as wedges or triangles have
been throughly investigated, see [26, 16] as an entrance.

Subgraph matching on parallel platform can be catego-
rized on how they deal with intermediate results. DFS-style
approaches [1, 2, 19, 27] avoids intermediate results by us-
ing one-round computation while BFS-style approaches, see
recent works [29, 20, 21], shuffle a huge number of inter-
mediate results. BFS-style approaches are expensive for its
size of the intermediate results, which could be larger than
|Ip|.The latest BFS-style approach [21] uses cliques as a unit
of each round of expansion; the defect is still shuffling of the
intermediate results. DFS-style approach [1] avoids the in-
termediate results by replicating the target graph; however,
in comparison of a BFS-style approach, the performance of
a DFS-style approach [1] could be even worse, as reported in
[20]. DFS-style parallelism can be deployed in a single ma-
chine [19]. An empirical study [27] on triangle enumeration
shows the power of network read on DFS-style approaches.

Other Related Works. Subgraph counting reports the
size of |Ip| instead of listing Ip. The computation of an ap-
proximate count can be very efficient [4]. Triangle counting
is an active topic [13] even on dynamic graphs [7].

On labeled data and pattern graphs, subgraph matching
computation allows larger pattern and larger target graphs,
see a recent work [6] as an entrance. In the worst case, that
is, all nodes are marked with the same label, the problem
deteriorates to the unlabeled subgraph matching.

6. EXPERIMENTS
This section evaluates our proposed approaches, including

the compression ratios of VCBC and the performance of CBF.

Environment. Experiments were deployed on an instance
of MapReduce, Apache Hadoop version 2.6.0, upon a cluster
with 1 master node and 20 slave nodes. Each node was
equipped with 12 cores each of 2.6GHz, and 4 hard drives
each of 2 terabytes. The underlying hadoop distributed file
system (HDFS) had available space of 125 terabytes with a
default replication factor of 3. The system was configured
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Figure 4: Query patterns
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to assign each core with one mapper and one reducer and 4
gigabyte memory space unless otherwise specified.

Approaches. Four approaches were examined.

• Crystal and Crystal-1: our approach;

• DualSim[19]: the state-of-the-art DFS-style solution;

• TwigTwin[20]: the state-of-the-art BFS-style solution;

• SEED[21]: the state-of-the-art BFS-style solution.

The core-crystal decomposition (Section 4.5.2) was im-
plemented as a main-memory algorithm in C++ on one of
our slave machines. We assumed no statistical informa-
tion on target graphs in the decomposition optimization.
Crystal is a parallel implementation of CBF in Java 1.6 un-
der MapReduce. Crystal-1 is the single-machine version
of Crystal. Two groups of comparisons were designed:

• Crystal-1 against DualSim as single-machine paral-
lelisms on one slave machines,

• Crystal against TwigTwin, and SEED as multi-machine
parallelisms on the cluster described above.

Pattern Graphs. Experiments used graphs in Figure 4 as
pattern graphs, q1 to q7 have 4-5 nodes, q8 (from [21]) and
q9 (from our running example) have 6 nodes. The minimum
vertex cover computed by the core-crystal decomposition is
marked with bold cycles for each pattern graph.

Target Graphs. Experiments used graphs in Table 4 as
target graphs. UK was downloaded from http://law.di.
unimi.it/datasets.php while other datasets were down-
loaded from https://snap.stanford.edu/data/. The
statistics of the target graphs d include graph size, average

degree (avg-deg) and degeneracy. avg-deg(d) = |2×E(d)|
|V (d)| ,

and degeneracy, the smallest integer k such that any sub-
graph of d has a node with degree ≤ k, measure the sparse-
ness of d. Below, a “testcase” or simply “case” means a pair
of a pattern graph in Figure 4 and a target graph in Table 4.

Metrics. The cost of an algorithm on a testcase is evaluated

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://snap.stanford.edu/data/


Table 4: Datasets

dataset
|V (d)| |E(d)| avg- degen- size(d)
×106 ×106 deg eracy in MB

ego-Gplus(GP) 0.1 12.2 244 1504 390
web-BerkStan(WB) 0.7 6.6 19 402 211

as-Skitter(AS) 1.7 11.1 13 222 355
soc-LiveJournal(LJ) 4.8 42.9 18 746 1373

uk-2002(UK) 18.5 298.1 32 1886 9539

Table 5: The compression ratio of Ip.

d
p

q1 q2 q3 q4 q5 q6 q7 q8 q9

GP 333 1435 1263 409 1016 601 862 636433 23871
WB 17 2031 93 27 107 39 127 176833 93842
AS 23 790 80 9 76 12 66 39979 12724
LJ 19 342 581 201 362 400 440 147317 45336
UK 40 787 350 156 348 315 483 238077 130367
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Figure 7: Enumeration cost of Crystal

in the elapsed time. The enumeration cost is separated from
the output cost, in the overall cost (Section 2.4).

Guideline. Section 6.1 exhibits the compression ratio of
vertex-based compression. Section 6.2 evaluates the perfor-
mance CBF. Section 6.3 compares CBF with other solutions.

6.1 Compression Ratio on Real Datasets
Sensitivity Test. We find that the compression ratio is
closely related to the freedom of the vertex cover Vc of the
compression. Specifically, let Vc = V (p)\Vc be Vc’s comple-
ment. The freedom of Vc is |Vc|. If Vc is a minimum vertex
cover of p, then |Vc| is also called the freedom of p.

Figure 5 shows the compression ratios of Ip when the pat-
tern graph has different degrees of freedom. The 4 pattern
graphs to the left have 5 nodes each and a minimum vertex
cover marked in bold cycles. The compression ratios to the
right have shown an obvious and consistent trend on all of
the 5 target graphs in Table 4, that is, the pattern graph
with a higher freedom enjoys a higher compression ratio.

Compression Ratio Test. Table 5 shows the compression
ratio of Ip over all testcases.

ρ(Ip) is significant: in 98% of the testcases in Table 5, the
compression ratio is more than 10; 73% more than 102, 31%
more than 103, 22% more than 104 and 11% more than 105.
Generally, only a small pattern graph (q1) or a sparse target

Table 6: Preprocessing cost (seconds)

Datasets GP WB AS LJ UK
C2 80 77 76 86 120
C3 339 155 151 204 1584

graph (AS) can refrain ρ(Ip) from a large value ≥ 100.

The compression ratio ρ(Ip) is relevant to freedom of the
pattern graph. Patten graphs q8 and q9 with freedom of 3
have ρ(Ip) ≥ 39979 on all target graphs, significantly higher
than that of the pattern graphs with freedom of 2.

Storage Solution. General compression techniques such as
LZO, bzip2 or snappy further increases the compression ra-
tio. For example, let the pattern graph be q9 and the target
graph be GP. The storage space of Ip is 5.5×104 petabytes,
that of code(Ip) is 245 terabytes; by further applying bzip2,
the space can be brought down to 25 terabytes.

6.2 The Performance of CBF
This section shows the performance of CBF. Table 6 shows

the preprocessing time in coding cliques C2, C3 for all target
graphs. The cost for core-crystal decomposing over all pat-
tern graphs are less than 1 second, conforming Theorem 11.

On Output Crisis. Figure 6 compares the enumeration
cost of Crystal against its overall cost in two settings, i)
vary the target graph d under a fixed pattern graph q9 and
ii) vary the pattern graph under a fixed target graph LJ.

The output is the bottleneck of the subgraph matching:
a shadowed log-scaled bar of enumeration cost takes a small
proportion, less than 0.1 on average, of the entire bar of
the overall cost. In particular, the compression ratio for q9
under setting i) is greater than 104 on all target graphs.
The export of Ip in a compressed form still dominates the
overall cost. This proves the urgency of output crisis and
the effectiveness of CBF in its compressed output.

Sensitivity. Crystal was evaluated on a cluster under dif-
ferent memory sizes of each slave and different parallelisms.
Parameter virtual core (Vcore) of Hadoop adjusts the par-
allelism of a cluster. Only enumeration cost is concerned
since output cost is constant under varying system settings.

Figure 7a shows the enumeration cost of Crystal on q9
and UK when varying the memory size from 1.5 to 4 giga-
bytes. UK was used since its size of 9.5 gigabytes (Table 4)
fitted in the test on memory size. The trend echoes Theo-
rem 4: term |Icore(p)|/B is invariant under different M while

term M/B × Πi∈[1,λ](|ICxi |/M) is linear with 1/M2 since
the core-crystal decomposition of q9 (Figure 2) has λ = 3.

Figure 7b shows the enumeration cost and speedup factor
when varying the Vcore from 1 to 240. Crystal took about
11 hours to finish using a single core; the enumeration cost
was reduced to 309 seconds, gaining a speedup of 128, when
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Figure 8: The enumeration time of Crystal, DualSim, and SEED: vary pattern graph

employing 240 cores. Such a near-linear speedup is due to
the independence among tasks of our serialized algorithm.

6.3 Compare CBF with Existing Approaches
This section compares our approach against DualSim,

TwigTwin and SEED in two groups over all testcases. The
output cost of all approaches was discarded for fairness,
namely, this section concerns only the enumeration cost.

In Figures 8, each cluster of 5 bars compares two groups
of approaches on one testcase. Group 1: the first two bars;
group 2: the last three bars. Missing bars have either the
disk space exceeded the limit of 125 terabytes (SLE) or the
memory space exceeded the limit of 4 gigabytes (MLE). The
bars reaching the frame-top indicates that the running time
exceeded the cut-off time of 1.5 days (RTE). Generally, DFS-
style solution DualSim failed due to RTE while BFS-style
solution TwigTwin and SEED failed in SLE on gigantic in-
termediate results. SEED got an MLE on GP and UK for q7
in loading the C4 instances in memory in a reduce step.

Group 1: DualSim got TLE in 56% cases. In the other
cases, Crystal-1 constantly outperforms DualSim. Group
2: TwigTwin failed on 42% of the cases, SEED failed on 36%
of the cases. Crystal succeeded on all testcases, is the
only survivor on 31% of all cases. Crystal outperformed
TwigTwin in all cases by orders of magnitudes unless the
pattern. Crystal outperformed SEED by a large margin

even in log scale in all but one testcases. In general, our
approach is the clear winner in the two groups.

7. CONCLUSIONS
Subgraph matching has a wide range of applications yet

suffers an expensive computation — partially due to the
immense size of the instance set I. This paper proposes
two techniques for subgraph matching. A vertex-cover based
compression (VCBC) provides a storage solution to subgraph
matching; a crystal-based framework (CBF) facilitates an
efficient subgraph matching computation. VCBC is based
on an insight in the structure of I. CBF benefits from 1)
exporting I in a compressed form of VCBC and 2) a refrained
export of intermediate results, and is well-suited to parallel
computation platforms. Extensive experiments have shown
the effectiveness of VCBC and the efficiency of CBF. We shall
explore the compression technique on directed or labeled
graphs in future.
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