
Dynamic Range-Filtering Approximate Nearest Neighbor Search
Zhencan Peng∗
Rutgers University

zhencan.peng@rutgers.edu

Miao Qiao
The University of Auckland
miao.qiao@auckland.ac.nz

Wenchao Zhou
Alibaba Group

zwc231487@alibaba-inc.com

Feifei Li
Alibaba Group

lifeifei@alibaba-inc.com

Dong Deng†
Rutgers University

dong.deng@rutgers.edu

Abstract
Range-filtering approximate nearest neighbor search (RFANNS) has
gained significant attention recently. Consider a set D of high-
dimensional vectors, each associatedwith a numeric attribute value,
e.g., price or timestamp. An RFANNS query consists of a query vec-
tor 𝑞 and a query range, reporting the approximate nearest neigh-
bors of 𝑞 among data vectors whose attributes fall in the query
range. Existing work on RFANNS only considers a static set D
of data vectors while in many real-world scenarios, vectors arrive
in the system in an arbitrary order. This paper studies dynamic
RFANNS where both data vectors and queries arrive in a mixed
stream: a query is posed on all the data vectors that have already
arrived in the system. Existing work on RFANNS is difficult to be
extended to the streaming setting as they construct the index in the
order of the attribute values while the vectors arrive in the system
in an arbitrary order. The main challenge to the dynamic RFANNS
lies in the difference between the two orders. A naive approach
to RFANNSmaintains multiple hierarchical navigable small-world
(HNSW) graphs, one for each of the𝑂 (|D|2) possible query ranges
– too expensive to construct and maintain. To design an index
structure that can integrate new data vectors with a low index size
increment for efficient and effective query processing, we propose
a structure called dynamic segment graph. It compresses the set of
HNSW graphs of the naive approach, proven to be lossless under
certain conditions, with only a linear to log |D| new edges in ex-
pectation when inserting a new vector. This dramatically reduces
the index size while largely preserving the search performance.We
further propose heuristics to significantly reduce the index cost of
our dynamic segment graph in practice. Extensive experimental
results show that our approach outperforms existing methods for
static RFANNS and is scalable in handling dynamic RFANNS.

PVLDB Reference Format:
Zhencan Peng, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng.
Dynamic Range-Filtering Approximate Nearest Neighbor Search. PVLDB,
14(1): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

∗This author takes part in this work as a research intern at Alibaba Cloud.
†Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/rutgers-db/DynamicSegmentGraph/tree/release_version.

1 Introduction
Consider a collection D of high-dimensional data vectors (or data
points), each carrying an attribute with a total order. A range-
filtering approximate nearest neighbor search (RFANNS) query con-
sists of a query vector𝑞 and a query range. It finds the approximate
nearest neighbors of 𝑞 among all the data vectors whose attribute
values fall in the query range. RFANNS has applications in vec-
tor databases [29], retrieval-augmented generation [19], document
retrieval [20], and person or vehicle re-identification [37]. Two
straightforward approaches for RFANNS, pre-filtering and post-
filtering, do not work well when query range size shifts [39]. To
address this issue, specialized index structures have been proposed
recently, including SeRF [39], iRange [35], and WinFilter [5] on a
static set D. In other words, they require sorting vectors in D in
the order of their attribute values before constructing the index.

In many real-world scenarios, however, data vectors stream into
the system in an arbitrary order of their attribute values. For exam-
ple, on e-commerce platforms where products are represented as
high-dimensional vectors, products are often searched with a price
filter. In this case, new products with varying prices are constantly
added, necessitating effective updates to the index for RFANNS.
This paper studies the dynamic range-filtering approximate nearest
neighbor search problem. Specifically, the data vectors andRFANNS
queries mix in a stream where each RFANNS query is performed
over all data vectors that have arrived before the query is posed.

Existing methods are designed for static datasets, i.e., they need
the data vectors to be sorted by their attribute values before index-
ing. Thus, they cannot effectively handle new data vectors with an
arbitrary attribute value. Specifically, both iRange and WinFilter
build a segment tree over the attribute values of all data vectors.
For each tree node in the segment tree, a graph-based approximate
nearest neighbor search (ANNS) index (such as the de facto state-
of-the-art hierarchical navigable small world (HNSW) graph [23])
is created. When a query arrives, WinFilter performs ANNS over
a few segments (i.e., nodes) covered by or overlapped with the
query range. The approximate nearest neighbors in each segment
are merged to produce the final result. In contrast, iRange merges
the indexes in these segments on-the-fly and performs a single

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX
https://github.com/rutgers-db/DynamicSegmentGraph/tree/release_version

ANNS over the merged index to find the results. They cannot han-
dle new data vectors as they need to know all attribute values be-
forehand to build the segment tree and graph-based indexes. Seg-
mentGraph is constructed incrementally, by inserting the data
vectors to the graph one by one, in the order of their attribute val-
ues. Thus SegmentGraph functions well when the attribute val-
ues of the data vectors are monotonically increasing/decreasing
with their arriving time. Nevertheless, SeRF is unable to manage
dynamic RFANNS when the attribute values of data vectors are
unrelated to their arriving time.

A simple way to handle dynamic RFANNS is to build an HNSW
graph for every possible range of attribute values pairs ofD. How-
ever, as new data vectors arrive, the number of HNSW graphs
and the number of new edges grow quadratically to |D|. We ob-
serve that the neighboring ranges often share similar edges in their
HNSW graphs, allowing effective compression. To formalize this
insight, we introduce rectangle tree, a structure that answers three
key questions: How can we compactly represent all query ranges
affected by a new data point? Is this representation canonical? And
how complex is it tomanage the representation?The rectangle tree
provides a clear framework for efficiently organizing and merging
overlapping ranges. Building on this, we propose the dynamic seg-
ment graphG, where each data vector is a node, and edges between
nodes are labeled with rectangles which specify the query ranges
for which the corresponding edges can be used for approximate
nearest neighbor search. This design ensures efficient updates, i.e.,
the expected number of new edges upon the insertion of a new
vector is linear to log |D| as opposed to |D|2. The design also
largely maintains query performance under the compression. We
also introduce optimizations to reduce storage costs while preserv-
ing search performance as new vector arrives.

In summary, we make the following contributions in this paper.

• To the best of our knowledge, this paper is the first to study
the dynamic range-filtering approximate nearest neighbor
search problem.

• We design a dynamic segment graph structure to address
the dynamic RFANNS problem.We prove the dynamic seg-
ment graph is a lossless compression ofmanyHNSWgraphs
and rigorously analyze the time and space complexity of
the dynamic segment graph.

• We design a few optimizations to significantly reduce the
index cost of dynamic segment graph in practice.

• We conduct extensive experiments and show our method
outperforms existing methods significantly for both static
and dynamic RFANNS.

The paper is organized as follows. Section 2 defines the problem
and introduces the solution SeRF [39]. Section 3 proposes the struc-
ture of the rectangle tree and the dynamic segment graph construc-
tion algorithms. Section 4 proposes our optimization techniques.
Section 5 evaluates our methods against baselines. Section 6 shows
related work. Section 7 concludes the paper.

2 Preliminary
2.1 Problem Definition
Consider 𝑑-dimensional space of R𝑑 with a distance metric 𝛿 , i.e.,
for any two points (vectors) 𝑢, 𝑣 ∈ R𝑑 , their distance is 𝛿 (𝑢, 𝑣) ≥ 0.

Definition 1 (NeaRest NeighboR SeaRch). Given a query vec-
tor 𝑞 ∈ R𝑑 , an integer 𝑘 > 0, and a set D of vectors in R𝑑 , the
𝑘-nearest neighbors of 𝑞, denoted as kNN𝛿 (𝑞,D), is the set of 𝑘 vec-
tors in D with the smallest distances to 𝑞 under metric 𝛿 . Formally,
kNN𝛿 (𝑞,D) is a set R ⊆ D of 𝑘 vectors inD such that ∀𝑢 ∈ R and
∀𝑣 ∈ D \ R, 𝛿 (𝑢, 𝑞) ≤ 𝛿 (𝑣, 𝑞).

We omit the subscription 𝛿 when the context is clear.
Let A be an attribute whose domain Dom(A) has a total order,

i.e., operator < exists between any pair of attribute values. A vec-
tor 𝑣 ∈ R𝑑 associated with an A-attribute value att(𝑣) ∈ Dom(A)
is called an A-attributed vector, or attributed vector when the at-
tributeA is clear in the context. For the simplicity of our discussion,
we introduce −∞A as a placeholder that is smaller than any at-
tribute value in Dom(A) and +∞A a placeholder that is larger than
any value in Dom(A). Define −∞A < +∞A and use (−∞A, +∞A)
to denote a range that contains all the attribute values in Dom(A).

Definition 2 (Range-FilteRingNeaRestNeighboR SeaRch [39]).
LetD be a set of A-attributed vectors inR𝑑 . A range-filtering nearest
neighbor search query 𝑄 = (𝑞, [𝑙, 𝑟], 𝑘) has 𝑞 ∈ R𝑑 , 𝑙, 𝑟 ∈ Dom(A),
and 𝑘 a positive integer. Define D[𝑙, 𝑟] � {𝑣 |𝑣 ∈ D, att(𝑣) ∈ [𝑙, 𝑟]}.
The query returns kNN(𝑞,D[𝑙, 𝑟]), a𝑘-sized subsetR ofD[𝑙, 𝑟] such
that ∀ 𝑢 ∈ R and ∀ 𝑣 ∈ D[𝑙, 𝑟] \ R, 𝛿 (𝑢, 𝑞) ≤ 𝛿 (𝑣, 𝑞).

For simplicity, assume there are always at least 𝑘 vectors in
D[𝑙, 𝑟], i.e., |D[𝑙, 𝑟] | ≥ 𝑘 . Due to the “curse of dimensionality” [13],
a large body of existing research on nearest neighbor search fo-
cuses on approximate nearest neighbor search (ANNS), which re-
ports a set kANN(𝑞,D) of 𝑘 vectors aiming at an optimized recall
1
𝑘 |kANN(𝑞,D) ∩ kNN(𝑞,D)| for a vector 𝑞.

Definition 3 (RFANNS [39]). Given a set D of attributed vec-
tors in R𝑑 , a range-filtering approximate nearest neighbor search
query𝑄 = (𝑞, [𝑙, 𝑟], 𝑘) aims at reporting kANN(𝑞,D[𝑙, 𝑟]), a set of 𝑘
vectors inD[𝑙, 𝑟], with an optimized recall |kANN(𝑞,D[𝑙,𝑟])∩kNN(𝑞,D[𝑙,𝑟]) |𝑘 .

Consider RFANNS on a stream of A-attributed data vectors.

PRoblem 1 (Dynamic Range-FilteRing AppRoximate NeaR-
est NeighboR SeaRch (DRFANNS)). Let 𝑣1, 𝑣2, · · · be a sequence
of attributed data vectors in R𝑑 arriving the system one at a time. For
each integer 𝑡 > 0, 𝑣𝑡 arrives at the system at time 𝑡 and is associated
with an A-attribute value att(𝑣𝑡); denote by D𝑡 = {𝑣1, 𝑣2, · · · , 𝑣𝑡 }
the set of vectors arrived the system by time 𝑡 . Design a structure that
can handle, at each time 𝑡 , the insertion of 𝑣𝑡 , and for any RFANNS
query𝑄 (𝑞, [𝑙, 𝑟], 𝑘) raised at time 𝑡 , efficiently report kANN(𝑞,D𝑡 [𝑙, 𝑟]).

Themain difficulty ofDRFANNS is that the data vectors arriving
the system have an arbitrary ordering of their attribute values.

Example 1. Figure 1 shows the snapshot of the system at time
𝑡 = 9where a setD9 = {𝑣1, 𝑣2, · · · , 𝑣9} of 9 attributed data vectors
arrived the system. Consider theRFANNS query𝑄 = (𝑞, [34, 63], 𝑘 =
2). The distances between the query vector 𝑞 and the data vectors

2

data points in a stream
v1

28

v4v2 v3 v5 v8v6 v7 v9 v10

36 38 36 28 66 37 55 22
!(vi, q):

35

k = 2, query range [34, 63]

dynamic segment tree

att(vi):
2 18 11 8 4 17 9 13 1410

…

data points in a stream
v1

28

v4v2 v3 v5 v8v6 v7 v9

36 68 37 43 56 57 66
!(vi,q):

35att(vi):
2 18 17 8 4 11 9 13 10

…

k = 2, query range [34, 63]

Figure 1: An example of DRFANNS.
Algorithm 1: 2DSegmentANNSeaRch(G, 𝑞, range, 𝑒𝑝,K)
Input: G: 2D segment graph; range: a query range (𝑥,𝑦) or

[𝑥,𝑦]; 𝑒𝑝 : entry vector, K: the parameter
efsearch/efconstruction in HNSW.

Output: ann: K approximate nearest neighbors of 𝑞 in range.
if range is (𝑥,𝑦) then open = true; else open = false;1

mark 𝑒𝑝 as visited;2

push 𝑒𝑝 to the min-heap pool in the order of distance to 𝑞;3

push 𝑒𝑝 to the max-heap ann in the order of distance to 𝑞;4

while pool is not empty do5

𝑣 ← the vector nearest to 𝑞 in pool, pop pool;6

𝑢 ← the vector farthest to 𝑞 in ann;7

if 𝛿 (𝑞, 𝑣) > 𝛿 (𝑞,𝑢) then continue;8

foreach unvisited 𝑜 with (𝑙, 𝑟 , 𝑜, 𝑏, 𝑒) ∈ G[𝑣] do9

if 𝑥 ∈ (𝑙, 𝑟] or (open and 𝑥 = 𝑙) then10

if 𝑦 ∈ [𝑏, 𝑒) or (open and 𝑦 = 𝑒) then11

mark 𝑜 as visited;12

𝑢 ← the vector farthest to 𝑞 in ann;13

if |ann| < K or 𝛿 (𝑞, 𝑜) < 𝛿 (𝑞,𝑢) then14

push 𝑜 to pool and ann;15

if |ann| > K then pop ann;16

return ann;17

are shown in the figure.We haveD9 [34, 63] = {𝑣2, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣9}
(i.e., the shadowed vectors are not in the query range). The query
aims to report kNN(𝑞,D9 [34, 63]) = {𝑣4, 𝑣5}. Note that although
𝑣1 is closer to 𝑞 than 𝑣4 and 𝑣5, they should not be reported as its
attribute values att(𝑣1) = 28 is outside of the query range [34, 63].

Note that a special case of DRFANNS which we call Ordered-
DRFANNS, assumes that the data vectors arriving the system are
in the ascending order 1 of theirA-attribute values.Ordered-DRFANNS
can be addressed by an existing technique SeRF [39]. In its settings,
for any two positive integers 𝑖 and 𝑗 with 𝑖 < 𝑗 , att(𝑣𝑖) < att(𝑣 𝑗).

For the simplicity of our discussion, assume that for a vector 𝑣𝑡
in the stream, all the other stream vectors have different distances
to 𝑣𝑡 . In fact, we break ties using the arrival time of the vectors.

2.2 Graph-based RFANNS Structure SeRF
We introduce SeRF [39], the state-of-the-art RFANNS method on
static datasets, which also serves as a solution toOrdered-DRFANNS.

Given an attributed vector set D, SeRF constructs a graph G,
called 2DSegmentGraph.G’s nodes are the vectors inD; for each
node 𝑢 in G, its neighbor list consists of tuples in the form of
(𝑙, 𝑟 , 𝑣, 𝑏, 𝑒). Given a RFANNS query (𝑞, [𝑥,𝑦], 𝑘), 𝑣 is a neighbor of
𝑢 only if there is a tuple (𝑙, 𝑟 , 𝑣, 𝑏, 𝑒) in the neighbor list of 𝑢 such
that the query attribute range [𝑥,𝑦] has 𝑥 ∈ (𝑙, 𝑟] and 𝑦 ∈ [𝑏, 𝑒).
Note that it is always true that 𝑟 ≤ att(𝑣) ≤ 𝑏. The working edges
of G for search are subjected to the query range.
1or descending order. We restrict our discussion to the ascending order for simplicity.

Algorithm 2: PRune(𝑜, ann,M)
Input: 𝑜 : a vector; ann: a set of 𝑜’s approximate nearest neighbors;

M: the max number of neighbors to keep.
Output: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ⊆ ann: 𝑜’s neighbors after pruning.
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← ∅;1

foreach 𝑣 ∈ ann in the ascending order of 𝛿 (𝑜, 𝑣) do2
not_dominated← true;3

foreach 𝑢 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do4
if 𝑢 dominates 𝑣 as 𝑜’s neighbors then5

not_dominated← false and break;6

if not_dominated then add 𝑣 to 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ;7

if |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | ≥ M then break;8

return 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ;9

Algorithm 1 details the search process. Specifically, the search
starts from an entry vector 𝑒𝑝 and keeps two initially empty heaps,
amin-heap pool recording all the visited yet explored nodes (Line 3)
and a max-heap ann keeping K visited nodes that are closest to
𝑞. The search is prioritized by the distance to 𝑞 (Line 6) and ends
when depleting the nodes in pool (Line 5)2. For node 𝑣 that is be-
ing explored, select the neighbors whose tuples fit the query range
(Lines 9-10) for visiting. If a newly visited node has distance to 𝑞
smaller than the K-th node in ann, update the heaps (Lines 14-16).

What makes SeRF suitable for Ordered-DRFANNS is its con-
struction process (Algorithm 3). It inserts the nodes to an initially
empty graph G in the ascending order of their attribute values. The
insertion of every node 𝑣 𝑗 (Lines 1-2) triggers a number of ANNS
for 𝑣 𝑗 with different ranges (Lines 3-4) on the partially constructed
graph G. The aim is to identify the range (att(𝑣𝑖), att(𝑣𝑖′)] that for
all query ranges [𝑥,𝑦] with 𝑥 ∈ (att(𝑣𝑖), att(𝑣𝑖′)] and 𝑦 ≥ att(𝑣 𝑗),
the neighbor list of 𝑣 𝑗 would be the same; we call (att(𝑣𝑖), att(𝑣𝑖′)]
an interval for sharing neighbor lists. Specifically, to identify these
intervals for 𝑣 𝑗 , SeRF first calls Algorithm 1 to find a set ann of K
approximate nearest neighbors of 𝑣 𝑗 for the range (att(𝑣𝑖), +∞A)
(Line 4), here 𝑖 is initially 0 and 𝑣0 is a dummy vector (Line 2). For
𝑖′ being the index of the vector with the smallest attribute value
in ann, (att(𝑣𝑖), att(𝑣𝑖′)] is an interval for sharing neighbor lists.
Line 6 prunes the ann (same as in HNSW [23]) to prepare the neigh-
bour list, and then Lines 7-8 add the edges and reverse edges with
intervals to G. In the next iteration, 𝑖 jumps to 𝑖′ (Line 9) and the
process is repeated. It terminates when 𝑖 meets 𝑗 − 1 (Line 3).
Remark. If assuming that 2DSegmentANNSeaRch in Line 4, Algo-
rithm 3 returns exact nearest neighbors, and disabling reverse edges
in HNSW to trigger pruning, SeRF proves that G is a lossless com-
pression of all the 𝑂 (𝑛2) HNSW graphs, one for each set of data
vectorsD[att(𝑣𝑖), att(𝑣 𝑗)], where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. Both the correct-
ness of SeRF and the compression technique are heavily based on
the strict ordering on the attribute values of the inserted nodes.

We updated Algorithm 1 to accommodate an open query range
(𝑥,𝑦) in Lines 10-12. In other words, an edge with label (𝑙, 𝑟 , 𝑜, 𝑏, 𝑒)
is active under (𝑥,𝑦) if (𝑥 ∈ (𝑙, 𝑟] or 𝑥 = 𝑙) and (𝑦 ∈ [𝑏, 𝑒) or 𝑦 = 𝑒).

2K is essentially the efsearch/efconstruction in the original HNSW algorithm [23].
Same as in HNSW search, one can return the 𝑘 vectors in ann closest to 𝑞 as the
final results.

3

Algorithm 3: 2DSegmentGRaphConstRuction
Input: D = {𝑣1, 𝑣2, · · · , 𝑣𝑛 }; K: an integer; M: the max degree.
Output: G: 2D segment graph for D.
foreach 1 < 𝑗 ≤ 𝑛 do1

For dummy vector 𝑣0, let att(𝑣0) ← −∞A; 𝑖 = 0;2

while 𝑖 < 𝑗 − 1 do3
ann←2DSegmentANNSeaRch(G, 𝑣𝑗 , (att(𝑣𝑖), +∞A), 𝑣𝑗−1,K);4

𝑖′ = min{𝑥 |𝑣𝑥 ∈ ann};5

foreach 𝑣 ∈ PRune(𝑣𝑗 , ann,M) do6
add (att(𝑣𝑖), att(𝑣𝑖′), 𝑣, att(𝑣𝑗), +∞A) to G[𝑣𝑗];7

add (att(𝑣𝑖), att(𝑣𝑖′), 𝑣𝑗 , att(𝑣𝑗), +∞A) to G[𝑣];8

𝑖 = 𝑖′ ;9

return G;10

3 Rectangle Tree and Dynamic Segment Graph
To deal with DRFANNS, we design a structure called the dynamic
segment graph. Similar to the 2DSegmentGraph, each data vec-
tor is a node in the graph and each edge has a “rectangle” label
(𝑙, 𝑟] × [𝑏, 𝑒). We aim to build the dynamic segment graph such
that for any query range [𝑥,𝑦], the subgraph induced by the edges
whose labels (𝑙, 𝑟] × [𝑏, 𝑒) satisfy 𝑥 ∈ (𝑙, 𝑟] and 𝑦 ∈ [𝑏, 𝑒) is exactly
the HNSW graph on D𝑡−1 [𝑥,𝑦] where D𝑡−1 = {𝑣1, · · · , 𝑣𝑡−1} in-
cludes data vectors arrived when the query is issued.

Consider the next vector 𝑣𝑡 in the stream. To insert 𝑣𝑡 into the
dynamic segment graph (by creating edges from/to it) , one way
is to find all the tuples (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist) such that for any query
range [𝑥,𝑦] there is one and only one tuple (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist) such
that 𝑥 ∈ (𝑙, 𝑟] and 𝑦 ∈ [𝑏, 𝑒). Moreover, KNNlist is the K-nearest
neighbors of 𝑣𝑡 in D𝑡−1 [𝑥,𝑦]. We can then create edges for 𝑣𝑡 in
the dynamic segment graph by visiting every tuple (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist)
in the structure, applying the pruning strategy inHNSW toKNNlist
to get a neighbor list, and create an edge (𝑙, 𝑟 , 𝑣, 𝑏, 𝑒) from 𝑣𝑡 and
another edge (𝑙, 𝑟 , 𝑣𝑡 , 𝑏, 𝑒) to 𝑣𝑡 for every data vector 𝑣 in the neigh-
bor list. We design a structure called the “rectangle tree” in this
section, whose leaf nodes are all the tuples (𝑙, 𝑟 , 𝑏, 𝑒,KNNlist).

The rectangle tree is defined based on the exact nearest neigh-
bors of each vector 𝑣𝑡 among its predecessorsD𝑡−1 = {𝑣1, 𝑣2, · · · , 𝑣𝑡−1}
on the stream of 𝑣1, 𝑣2, · · · , 𝑣𝑡 , · · · . We define the structure and
show its fine properties in Section 3.1. Section 3.2.1 uses the rectan-
gle tree structure to redesign the solution to Ordered-DRFANNS.
Such a redesign leads us to a solution to DRFANNS (Problem 1), as
shall be seen in Section 3.2.2. To distinguish from the graph con-
structed by SeRF, we use G to denote the dynamic segment graph
we build for DRFANNS.

For the readers who are not interested in the complexity analy-
sis, skipping Sections 3.1.2 and 3.1.3 directly works.

3.1 Rectangle Tree Structure
A rectangle tree is built for a newly arrived vector 𝑣𝑡 . Let K be an
integer parameter. The tree has K + 1 levels.

3.1.1 Definitions

xNN sequence. Given a vector 𝑣𝑡 , an integer 𝑥 and an attribute
pair (𝑙, 𝑟) with att(𝑣𝑡) ∈ [𝑙, 𝑟], the 𝑥NNlist sequence includes the 𝑥
nearest neighbors of 𝑣𝑡 inD𝑡−1 [𝑙, 𝑟] –we define 𝑥NNlist sequence

only on closed ranges for simplicity. The 𝑥 nearest neighbors are
ordered by their distances to 𝑣𝑡 ascendingly. Formally, the data
vectors sequence 𝑣𝑖1 , 𝑣𝑖2 , · · · , 𝑣𝑖𝑥 is the 𝑥NNlist sequence of [𝑙, 𝑟]
if

(1) They all arrive before 𝑣𝑡 , i.e., time 𝑖1, 𝑖2, · · · , 𝑖𝑥 < 𝑡 ;
(2) Their attribute values att(𝑣𝑖1), att(𝑣𝑖2), · · · , att(𝑣𝑖,𝑥) ∈ [𝑙, 𝑟];
(3) Their distances to 𝑣𝑡 ascend, i.e.,𝛿 (𝑣𝑖1 , 𝑣𝑡) < · · · < 𝛿 (𝑣𝑖𝑥 , 𝑣𝑡);
(4) There does not exist a vector 𝑣𝑖 in the stream that satisfies

both (1) and (2) and has 𝛿 (𝑣𝑖 , 𝑣𝑡) < 𝛿 (𝑣𝑖𝑥 , 𝑣𝑡).
We denote by + the concatenation of a sequence and a vector
where the vector would be the last vector in the sequence.

Short Attribute Pair.Given an integer 𝑥 , an attribute pair 𝑙, 𝑟 may
not even have a 𝑥NNlist sequence before inserting 𝑣𝑡 – if there are
less than 𝑥 vectors in D𝑡−1 [𝑙, 𝑟] – we call such a pair (𝑙, 𝑟) a short
attribute pair to 𝑥 . On the other hand, as long as |D𝑡−1 [𝑙, 𝑟] | ≥ 𝑥 ,
𝑙, 𝑟 has an 𝑥NNlist sequence. Define sap𝑡−1 (𝑥) as the set of all the
short attribute pairs to 𝑥 . Formally,

sap𝑡−1 (𝑥) = {(𝑙, 𝑟) |𝑙, 𝑟 ∈ Dom(𝐴) 𝑎𝑛𝑑 |D𝑡−1 [𝑙, 𝑟] | < 𝑥}.

Nodes. A node 𝑣𝑇 of a rectangle tree is a tuple in the form of

𝑣𝑇 = (L, L′, R, R′, 𝑥,N𝑥)
where L ≤ L′ ≤ att(𝑣𝑡) ≤ R ≤ R′ are attribute values; 𝑥 is an
integer in [0,K]; N𝑥 is the 𝑥NNlist sequence of 𝑣𝑡 , 𝑥 , and all the
possible [𝑙, 𝑟] with 𝑙 ∈ (L, L′] and 𝑟 ∈ [R, R′). In other words,
for all possible attribute ranges [𝑙, 𝑟] with (𝑙, 𝑟) in the rectangle of
(L, L′] × [R, R′), they share the same 𝑥NNlist sequence N𝑥 under
𝑣𝑡 and 𝑥 . We call rect(𝑣𝑇) = (L, L′] × [R, R′) the rectangle of 𝑣𝑇 .
The tree ensures that any child 𝑢𝑇 of 𝑣𝑇 has rect(𝑢𝑇) ⊆ rect(𝑣𝑇).
Levels. The nodes in the rectangle tree is leveled by the 𝑥 values.
The root is the only node with 𝑥 = 0. The children are one level
deeper than the father. All nodes with 𝑥 = K are leaves.

A rectangle tree must satisfy two conditions, disjoint condition
and covering condition, defined as below.

Disjoint condition. For any two nodes at the same level 𝑥 ∈
[0,K], their 𝑥NNlist sequences must be different.
Covering condition. For a node 𝑣𝑇 = (L, L′, R, R′, 𝑥,N𝑥) in the
rectangle tree with 𝑝 children at level 𝑥 + 1. Denote the set of its
children’s rectangles as S = {𝑆1, 𝑆2, · · · , 𝑆𝑝 }. S covers all the at-
tribute pairs in rect(𝑣𝑇) that have an (𝑥 + 1)NNlist sequence, i.e.,

rect(𝑣𝑇) \ sap𝑡−1 (𝑥 + 1) ⊆ ∪𝑖∈[1,𝑝]𝑆𝑖 .

Example 2. Figure 2 on the right shows a rectangle tree for the
newly arrived vector 𝑣10 in the stream of vectors on the left side of
the figure. The 𝑥NNlist sequences are inside the nodes. The levels
𝑥 are 0 for the root, 1 for the four children of the root, and 2 for the
grandchildren of the root. The rectangles of the nodes are adjacent
to the nodes. To be more clear, we also plot the rectangles of the
nodes in the figure. The second subfigure shows the rectangles of
all the nodes at level 2, while the third subfigure shows the rectan-
gles of all the nodes at level 1. The root node has the entire plane
as its rectangle. The bottom-right corners in shadow represent the
sets of all short attribute pairs. As we can see, the rectangle tree
satisfies both the disjoint condition and the covering condition.

4

att(vt)LBA a1 a2 a5

a6

a7

a8

a9

a3 a4

UBAv1v5
v1v5
v1v5
v1v5
v1v5

v5v4
v5v4
v5v4
v5v4
v5v4

v5v4
v5v4
v5v4
v5v4
v5v4

v5v4
v5v4
v5v4
v5v4
v5v4

v5v7
v5v7
v5v7

v7v9

v5v6

v7v8
v7v6

data points in a stream
v1

28

v4v2 v3 v5 v8v6 v7 v9 v10

36 68 37 43 56 57 66 54
!(vi,v10):

35att(vi):
2 18 17 8 4 11 9 13 10

…

(43, 54, 57, +∞A)

(−∞A, 54, 54, +∞A)

(43, 54, 57, +∞A)

(−∞A, 28, 54, +∞A)

v1v5

∅

v1 v5

(28, 43, 54, +∞A)

v7 (43, 54, 56, 57)v6

(−∞A, 28, 54, +∞A)

(28, 37, 54, +∞A)

(37, 43, 57, +∞A)

(37, 43, 56, 57)

v5v4 v5v7 v5v6 v7v6

v1 v5

v7

v6

−∞A 28 37 4335 36
54

56

57

66

68

+∞A

sap
9 (1)

data points in a stream
v1

28

v4v2 v3 v5 v8v6 v7 v9 v10

36 68 37 43 56 57 66 54
!(vi,v10):

35att(vi):
2 18 17 8 4 11 9 13 10

…

54
−∞A 28

56

57

66

68

v1v5 v5v4

v5v7

v5v6

v7v6

+∞A

37 4335 36

sap9(2)

Figure 2: A running example of the rectangle tree.

3.1.2 Properties
Lemma 1. The rectangles of all the nodes at the same level are dis-

joint. In other words, there is no attribute pair that is in the rectangles
of two distinct tree nodes at the same level at the same time.

PRoof. Consider two distinct nodes 𝑣𝑇 and𝑢𝑇 at the same level
𝑥 . 𝑣𝑇 has rectangle 𝑆𝑣 and list N𝑥 . 𝑢𝑇 has 𝑆𝑢 and list N′𝑥 . Let (𝑙, 𝑟)
be an attribute pair in both 𝑆𝑣 and 𝑆𝑢 . Thus, the 𝑥NNlist sequence
of range [𝑙, 𝑟] = N𝑥 = N′𝑥 since the 𝑥NNlist sequence of [𝑙, 𝑟]
is unique, conflicting the distinct condition that N𝑥 ≠ N′𝑥 . Thus
attribute pair (𝑙, 𝑟) does not exist. Thus 𝑆𝑣 and 𝑆𝑢 are disjoint. □

Lemma 2. For a non-leaf rectangle-tree node with a rectangle 𝑆0
at level 𝑥−1, the rectanglesS = {𝑆1, 𝑆2, · · · , 𝑆𝑝 } of all its children (at
level 𝑥) form a disjoint partitioning of 𝑆0 \sap𝑡−1 (𝑥). In other words,
for every attribute pair (𝑙, 𝑟) ∈ 𝑆0 that is not a short attribute pair to
𝑥 , there is one and only one rectangle 𝑆 in S such that (𝑙, 𝑟) ∈ 𝑆 .

PRoof. From the definition of the rectangle tree node, we have
𝑆𝑖 ⊆ 𝑆0 for each 𝑖 ∈ [1, 𝑝]. For every attribute pair (𝑙, 𝑟) ∈ 𝑆0 \
sap𝑡−1 (𝑥), there is one (covering condition) and only one (Lemma 1)
rectangle 𝑆 in S such that (𝑙, 𝑟) ∈ 𝑆 . □

TheoRem 3 (Canonical PaRtitioning). Given a vector 𝑣𝑡 and
a rectangle 𝑆 on Dom(𝐴). For all the rectangle trees for 𝑣𝑡 whose
root has the rectangle of 𝑆 , for any level 𝑥 ∈ [0,K], the rectangles
of all the tree nodes on level 𝑥 form a canonical partitioning of the
attribute pairs in 𝑆 \sap𝑡−1 (𝑥). Specifically, letS = {𝑆1, 𝑆2, · · · , 𝑆𝑝 }
be the rectangles of all the tree nodes at level 𝑥 . Let the corresponding
collections of sets of the attribute pairs be

S′ = {{(𝑙, 𝑟) |𝑙, 𝑟 ∈ Dom(𝐴) 𝑎𝑛𝑑 (𝑙, 𝑟) ∈ 𝑆𝑖 }|𝑖 ∈ [1, 𝑝]}.
Thenwe haveS′ = S′′ whereS′′ is the grouping of all attribute pairs
(𝑙, 𝑟) ∈ 𝑆 \ sap𝑡−1 (𝑥) by their corresponding 𝑥NNlist sequences.

PRoof. Firstly, for any two integers 0 ≤ 𝑥 ′′ < 𝑥 ′ ≤ K, we
have sap𝑡−1 (𝑥 ′′) ⊆ sap𝑡−1 (𝑥 ′) based on the definition of short
attribute pair. Apply Lemma 2 top down from the root to the tree
nodes at level 𝑥 − 1 level by level, thus the rectangles of all the rec-
tangle tree nodes at level 𝑥 is a disjoint partitioning of 𝑆\sap𝑡−1 (𝑥).
Secondly, we prove that the partitioning is canonical. Consider all
the attribute pairs in 𝑆 \ sap𝑡−1 (𝑥) that have 𝑥NNlist sequences.
Since each rectangle 𝑆𝑖 ∈ S ensures that all pairs (𝑙, 𝑟) ∈ 𝑆𝑖 have
the same 𝑥NNlist sequence; Distinct condition ensures that pairs
from different rectangles in S have different 𝑥NNlist sequences.
Therefore, S′ must be a grouping of all the attribute pairs (𝑙, 𝑟) in
𝑆 based on their 𝑥NNlist sequences which is S′′ and is thus canon-
ical. □

Our following average case analysis assumes the independence
between the attribute values and distances, i.e., the attribute values

of vectors in {𝑣1, 𝑣2, · · · , 𝑣𝑡 } are distinct and if fixing the ordering
of vectors inD𝑡−1 based on their distances to 𝑣𝑡 , and then reorder
all the vectors based on their attribute values, then each of 𝑡 ! per-
mutations has an equal probability to appear.

Lemma 3. Consider a rectangle tree for a vector 𝑣𝑡 with att(𝑣𝑡) >
att(𝑣1), att(𝑣2), · · · , att(𝑣𝑡−1) and let the rectangle of the root be
(−∞, att(𝑣𝑡)] × [att(𝑣𝑡), +∞) . The number of leaf nodes of the rec-
tangle tree at level K is in the worst case𝑂 (𝑡) and𝑂 (K ln 𝑡) expected.

PRoof. According toTheorem 3, the number of nodes at level K
(the leaf nodes) is the same as the number of different KNNlist se-
quences. As the indexes of vectors 𝑣1, · · · , 𝑣𝑡−1 do not affect the
construction of the rectangle tree when inserting 𝑣𝑡 , assume in
this proof that 𝛿 (𝑣1, 𝑣𝑡) < 𝛿 (𝑣2, 𝑣𝑡) < · · · < 𝛿 (𝑣𝑡−1, 𝑣𝑡) . For each
𝑖 ∈ [1, 𝑡], denote by 𝑆𝑖 = {𝑣1, · · · , 𝑣𝑖 } the set of the first 𝑖 vec-
tors. Let 𝑆 ′𝑖 be the set of K vectors in 𝑆𝑖 with the largest attribute
values. 𝑆 ′K = 𝑆K is a KNNlist sequence of all ranges (𝑙, 𝑟) with 𝑙 ≤
min𝑣∈𝑆 ′K att(𝑣) ≤ att(𝑣𝑡) ≤ 𝑟, i.e., in rectangle (−∞A,min𝑣∈𝑆 ′K att(𝑣)]×
[att(𝑣𝑡), +∞A). For each 𝑣𝑖 , 𝑖 > K, 𝑣𝑖 can enter 𝑆 ′𝑖 with probability
𝑖
K based on the independence assumption. 𝑆 ′𝑖 is the KNNlist se-
quence of ranges (𝑙, 𝑟) with 𝑙 ∈ (min𝑣∈𝑆 ′𝑖−1 att(𝑣),min𝑣∈𝑆 ′𝑖 att(𝑣)]
and 𝑟 ∈ [att(𝑣𝑡), +∞A) . Therefore, different sets among 𝑆 ′𝑖 , 𝑖 ∈
[K, 𝑡], cover the rectangle of (−∞A, att(𝑡)] × [att(𝑡), +∞A) jointly.
The total number of different KNNlist sequences is thus 𝑂 (𝑡) in
the worst case, and𝑂 (∑𝑗∈[K,𝑡]

K
𝑡) = 𝑂 (K ln 𝑡) in expectation.This

concludes the proof. □

TheoRem 4. When inserting 𝑣𝑡 and the root node has rectangle
(−∞A, att(𝑣𝑡)] × [att(𝑣𝑡), +∞A), the number of leaf nodes at level K
is in the worst case 𝑂 (K𝑡), and 𝑂 (K2 ln 𝑡) in expectation.

3.1.3 Proof of Theorem 4
According to Theorem 3, the number of nodes at level K (the leaf
nodes) is the same as the number of different KNNlist sequences of
all attribute pairs in the rectangle (−∞A, att(𝑣𝑡)] × [att(𝑣𝑡), +∞A).
As the indexes of vectors 𝑣1, · · · , 𝑣𝑡−1 do not affect the construc-
tion of the rectangle tree when inserting 𝑣𝑡 , we rename the vec-
tors in D𝑡−1 such that 𝛿 (𝑣1, 𝑣𝑡) < 𝛿 (𝑣2, 𝑣𝑡) < · · · < 𝛿 (𝑣𝑡−1, 𝑣𝑡) .
For ∀𝑖 ∈ [1, 𝑡 − 1], denote by 𝑆𝑖 = {𝑣1, · · · , 𝑣𝑖 } the set of 𝑖 vectors
closest to 𝑣𝑡 .

For an attribute value 𝑣𝑎𝑙 , define its predecessor in 𝑆𝑖 as pred𝑖 (𝑣𝑎𝑙) =
−∞A, if 𝑣𝑎𝑙 ≤ min𝑣∈𝑆𝑖 att(𝑣)
max𝑣∈𝑆𝑖 ,att(𝑣)<𝑣𝑎𝑙 att(𝑣), if min𝑣∈𝑆𝑖 att(𝑣) < 𝑣𝑎𝑙 ≤ att(𝑣𝑡)
att(𝑣𝑡) if 𝑣𝑎𝑙 > att(𝑣𝑡).

5

Define the successor of 𝑣𝑎𝑙 in 𝑆𝑖 as succ𝑖 (𝑣𝑎𝑙) =
+∞A, if 𝑣𝑎𝑙 ≥ max𝑣∈𝑆𝑖 att(𝑣)
min𝑣∈𝑆𝑖 ,att(𝑣)>𝑣𝑎𝑙 att(𝑣), if max𝑣∈𝑆𝑖 att(𝑣) > 𝑣𝑎𝑙 ≥ att(𝑣𝑡)
att(𝑣𝑡) if 𝑣𝑎𝑙 < att(𝑣𝑡).

Let 𝑆𝐿𝑖 be the set of at most (depends on the availability) K vec-
tors in 𝑆𝑖 with the largest attribute values that are smaller than
att(𝑣𝑡); 𝑆𝑅𝑖 that in 𝑆𝑖 with the smallest attribute values that are
larger than att(𝑣𝑡). Denote by 𝑤 the size |𝑆𝐿𝑖 | and𝑚 the size |𝑆𝑅𝑖 |,
i.e.,𝑤,𝑚 ≤ K.

For each 𝑖 ≥ K, we sort all nodes in 𝑆𝐿𝑖 ∪ 𝑆
𝑅
𝑖 based on their

attribute values as the following sequence called the LR sequence.

𝑣𝑙1, 𝑣
𝑙
2, · · · , 𝑣

𝑙
𝑧 , · · · , 𝑣𝑙𝑤 , · · · , 𝑣𝑙𝑤 , 𝑣𝑟1, · · · , 𝑣

𝑟
𝑚 .

Report Process. For each 𝑖 ≥ K, we report rectangles with their
KNNlist sequences when 𝑣𝑖 enters the LR sequence. 𝑣𝑖 can appear
in any position, for example, 𝑣𝑖 could be 𝑣𝑙𝑧 . Consider each window
𝑊 of size K in this sequence that contains a consecutive K vectors
including 𝑣𝑖 – note that the windowmay include both vectors from
𝑆𝐿𝑖 and 𝑆𝑅𝑖 , and there are at most𝑤 +𝑚−K ≤ K such windows. Let
𝑣𝑙 be the leftmost vector in the window and 𝑣𝑟 the rightmost vector
in the window.𝑊 is the KNNlist sequence (after sorted based on
distances to 𝑣𝑡) exclusively to the rectangle below

rect = (pred𝑖 (att(𝑣𝑙)), att(𝑣𝑙)] × [att(𝑣𝑟), succ𝑖 (att(𝑣𝑟))) .

To see the reason, 𝑣𝑖 is the node in the window𝑊 with the longest
distance to 𝑣𝑡 and there are exactly K − 1 vectors in the window
whose distances are smaller than that of 𝑣𝑖 . To include the nodes
in𝑊 in [𝑙, 𝑟], we must have 𝑙 ≤ att(𝑣𝑙) and att(𝑣𝑟) ≤ 𝑟 . Since
𝑟 ≥ att(𝑣𝑟), once 𝑙 goes to the left of pred𝑖 (att(𝑣𝑙)), [𝑙, 𝑟] includes
the vector that holds the predecessor attribute of 𝑣𝑙 in 𝑆𝑖 , then there
will be at least K vectors in [𝑙, 𝑟] whose distance to 𝑣𝑡 is smaller
than that of 𝑣𝑖 , then 𝑣𝑖 will not appear in the KNNlist sequence,
contradiction. Thus, 𝑙 > pred𝑖 (att(𝑣𝑙)). Similarly, we have 𝑟 <
succ𝑖 (att(𝑣𝑟)).
Completeness. Next we show that for any attribute interval [𝑙, 𝑟]
with att(𝑣𝑡) ∈ [𝑙, 𝑟], their KNNlist sequence and the corresponding
rectangle are reported in the above process. Find the KNNlist se-
quence 𝑆 of the interval and let 𝑣𝑖 be the last node in the sequence
(farthest to 𝑣𝑡), and let 𝑣𝑙 be the vector in the sequence with the
smallest attribute value and 𝑣𝑟 the vector the largest. Note that
KNNlist should be a subset of 𝑆𝑖 (based on the distance ordering).
Note that all vectors in 𝑆𝑖 with attribute values in [att(𝑣𝑙), att(𝑣𝑟)]
should be in 𝑆 because if otherwise, 𝑣𝑖 will not be the K-th vector in
the KNNlist sequence – there are more than K − 1 vectors in [𝑙, 𝑟]
whose distance to 𝑣𝑡 is smaller than 𝑣𝑖 . Therefore, 𝑆 corresponds
to a window on the sorted sequence of 𝑆𝐿𝑖 ∪ 𝑆

𝑅
𝑖 , and thus has been

reported in the above reporting process.
Complexity. In the worst case, a total of 𝑂 (K𝑡) windows will be
reported each corresponding to a KNNlist sequence. In expecta-
tion, for each 𝑣𝑖 , 𝑖 ≥ K, 𝑣𝑖 enters 𝑆𝐿𝑖 with probability K

𝑖 ; so does in
𝑆𝑅𝑖 . Once 𝑣𝑖 gets in 𝑆𝐿𝑖 ∪ 𝑆

𝑅
𝑖 , there will be at most K windows to

be reported. Therefore, the total number of windows reported in
expectation is 𝑂 (K2 ln 𝑡). This concludes the proof.

Algorithm 4: ORdeRedInseRtion(G, 𝑣𝑡 ,M,K)
Input: G: the dynamic segment graph constructed for

D𝑡−1 = {𝑣1, 𝑣2, · · · , 𝑣𝑡−1}; 𝑣𝑡 : a vector arriving at time 𝑡 ; M
and K: the parameters in HNSW construction

Output: G: the dynamic segment graph for {𝑣1, 𝑣2, · · · , 𝑣𝑡 }.
// 𝑞𝑢𝑒𝑢𝑒 is a min-heap of tuples in the form of

(L, L′, R, R′, 𝑥, 𝑥NNlist) in the order of 𝑥 ; the tuple means
for all the attribute ranges (𝑥, 𝑦) with (𝑥 = L or
𝑥 ∈ (L, L′]) and (𝑦 = R′ or ∈ [R, R′)), 𝑣𝑡 has the same set of
the 𝑥 nearest neighbors on D𝑡−1, which is 𝑥NNlist.

𝑞𝑢𝑒𝑢𝑒.push(−∞A, att(𝑣𝑡), att(𝑣𝑡), +∞A, 0, ∅) ;1

while 𝑞𝑢𝑒𝑢𝑒 is not empty do2
(L, L′, R, R′, 𝑥,N𝑥) ← 𝑞𝑢𝑒𝑢𝑒.pop() ;3

if 𝑥 = K then4
foreach 𝑣 ∈ PRune(N𝑥 , M, 𝑣𝑡) do5

add (L, L′, 𝑣, R, R′) to G[𝑣𝑡];6

add (L, L′, 𝑣𝑡 , R, R′) to G[𝑣];7

continue;8

while L < L′ and R < R′ do9
ann← 2DSegmentANNSeaRch(G, 𝑣𝑡 , (L, R′) , 𝑣1, K);10

if ann ⊆ N𝑥 then goto Line 5;11

// When the # of vectors in attribute range (L, R′) is
≤ 𝑥 , call this node a sap node.

𝑣𝑐 ← argmin𝑣∈ann\N𝑥 𝛿 (𝑣, 𝑣𝑡) ;12

if att(𝑣𝑐) < L′ then13
𝑞𝑢𝑒𝑢𝑒.push(L, att(𝑣𝑐), R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐) ;14

L← att(𝑣𝑐) ;15

else16
𝑞𝑢𝑒𝑢𝑒.push(L, L′, R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐) ;17

break;18

return G;19

3.2 Dynamic Segment Graph
3.2.1 Ordered Insertion
Consider the problem of Ordered-DRFANNS where the attributes
of data vectors have att(𝑣1) < att(𝑣2) < · · · < att(𝑣𝑡). We main-
tain an initially empty graph called dynamic segment graph G for
nearest neighbor search. Call ORdeRedInseRtion(G, 𝑣𝑡 , M, K) (Al-
gorithm 4) for every newly arrived vector 𝑣𝑡 at time 𝑡 , from 𝑡 = 1.

We analyze our algorithms under the Accurate Search Assump-
tion (ASA), i.e., the nearest neighbors returned by Algorithm 1 are
exact.Wemake this assumption because if otherwise, we could not
find a method in assessing the impact of the approximation of the
nearest neighbor search to the index complexity.

Lemma 4. Algorithm 4 builds a rectangle tree with root rectangle
(−∞A, att(𝑣𝑡)]×[att(𝑣𝑡), +∞A) when inserting 𝑣𝑡 under ASA, i.e.,
each tuple (L, L′, R, R′, 𝑥,N𝑥) of the queue in the algorithm corre-
sponds to a rectangle tree node at level 𝑥 with 𝑥NNlist sequence N𝑥 .

Explanations to Algorithm 4 and Proof Sketch to Lemma 4.
The root has level 𝑥 = 0, ∅ is the 0NNlist sequence of the rectangle
of (−∞A, att(𝑣𝑡)] × [att(𝑣𝑡), +∞A). The rectangle tree is generated
level by level because the queue is a min-heap based on 𝑥 . Each
iteration (Lines 2-18) pops a tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥,N𝑥) with
the smallest 𝑥 from the queue (Line 3). If 𝑣𝑇 is a leaf node with
𝑥 = K, lodge the rectangle with the edge (𝑣𝑡 , 𝑣) to the graph G for

6

each pruned vector 𝑣 in the N𝑥 sequence (Lines 4-8). Otherwise,
generate all the children (Lines 9-18) of 𝑣𝑇 and enqueue them.

Next we show that if 𝑣𝑇 ensures that for all the attribute pairs
(𝑙, 𝑟) with 𝑙 ∈ (L, L′], 𝑟 ∈ [R, R′), the 𝑥NNlist sequence of interval
[𝑙, 𝑟] is N𝑥 , then under ASA, the properties below hold for all the
𝑣𝑇 ’s children (L𝑐 , L′𝑐 , R𝑐 , R′𝑐 , 𝑥 + 1,N𝑥+1) generated in Lines 9-18.

• N𝑥+1 is the (𝑥 + 1)NNlist sequence for all the attribute in-
tervals [𝑙, 𝑟] with 𝑙 ∈ (L𝑐 , L′𝑐] and 𝑟 ∈ [R𝑐 , R′𝑐).

• The rectangles of the children of 𝑣𝑇 are a partitioning of
rect(𝑣𝑇) \ sap𝑡−1 (𝑥 + 1).

• The (𝑥 + 1)NNlist sequences of the children of 𝑣𝑇 are dif-
ferent, but they have a common prefix of N𝑥 .

The children are generated in a sequence of jumps of L values
(Line 15) until L reaches/exceeds L′ (Line 9). We first find 𝑣𝑐 , the
(𝑥+1)-th nearest neighbor of 𝑣𝑡 on attribute range (L, R′) using
nearest neighbor search (Lines 11-12). If 𝑣𝑐 does not exist (Line 11),
then all the intervals [𝑙, 𝑟] with 𝑙, 𝑟 ∈ (L, R′) are short to 𝑥 + 1, we
shall add edges to G and proceed to the next iteration (Line 8).

If 𝑣𝑐 has attribute value in [L′, R] (Lines 16-18), then all the
ranges [𝑙, 𝑟] with (𝑙, 𝑟) in the rectangle (L, L′] × [R, R′) share not
only the 𝑥NNlist sequence but also the (𝑥 +1)-th nearest neighbor.
Thus they share the same sequence N𝑥+1 = N𝑥 + 𝑣𝑐 . We can safely
break the search (Line 18) after enqueue the child tuple (Line 17).

If 𝑣𝑐 has attribute value in (L, L′) (Lines 13-15), the two attribute
ranges [att(𝑣𝑐), L′] and [𝑟, L′], att(𝑣𝑐) < 𝑟 , will not share their
(𝑥 + 1)-th nearest neighbor, as that of [att(𝑣𝑐), L′] will be 𝑣𝑐 which
is missing from range [𝑟, L′]. Therefore, we partition the rectan-
gle into two on att(𝑣𝑐), the left one (L, att(𝑣𝑐)] × [R, R′) which
shares the (𝑥 + 1)NNlist sequence N𝑥+1 = N𝑥 + 𝑣𝑐 (enqueued
in Line 14) while the remaining rectangle (att(𝑣𝑐), L′] × [R, R′)
will be processed in the next loop (Line 15). The loop terminates
when the remaining rectangle is enqueued entirely (Line 17).There-
fore, the rectangles of the children of 𝑣𝑇 form a partitioning of
rect(𝑣𝑇) \ sap𝑡−1 (𝑥 + 1).

The above two cases are sufficient since by assumption, att(𝑣𝑡) >
att(𝑣𝑖) for all 𝑖 < 𝑡 , so att(𝑣𝑐) can never be larger than R = att(𝑣𝑡).
Besides, att(𝑣𝑐) cannot go equal or below L since it was generated
by the nearest neighbor search in the attribute range (L, R′).

Therefore, each child (L𝑐 , L′𝑐 , R𝑐 , R′𝑐 , 𝑥 + 1,N𝑥+1) of 𝑣𝑇 ensures
that for any (𝑙, 𝑟) ∈ rect(𝑣𝑇) \ sap𝑡−1 (𝑥 + 1), the interval [𝑙, 𝑟] has
(𝑥 +1)NNlist sequence equal toN𝑥+1. The (𝑥 +1)NNlist sequences
of all the children are different (distinct) and all the rectangles of
the children form a partitioning of rect(𝑣𝑇) \ sap𝑡−1 (𝑥 + 1) (cov-
ering).

Apply the above results level-by-level to the tuples popped from
the queue, we verify that these tuples form a rectangle tree. □

Lemma 5. When Line 11, Algorithm 4 tests true, take a snapshot of
L, L′, R, R′, 𝑥 . Denote by 𝑦 the number of vectors in the range (L, R′)
on D𝑡−1, then 𝑥 = 𝑦.

PRoof. Let 𝑣𝑇 be the tree node that was popped in the cor-
responding iteration. As all attribute pairs in rect(𝑣𝑇) share the
same 𝑥NNlist sequence, 𝑦 ≥ 𝑥 ; as Line 11 tests true, 𝑦 ≤ 𝑥 . Thus
𝑦 = 𝑥 . □

TheoRem 5 (Complexity of AlgoRithm 4). Under ASA, when
the 𝑡-th vector is inserted, 𝑡 ≥ K, Algorithm 4 has the worst case space

Algorithm 5: UnoRdeRedInseRtion(G, 𝑣𝑡 ,M,K)
// Replace Lines 13-18 of Algorithm 4 with code:
if att(𝑣𝑐) < L′ then1

𝑞𝑢𝑒𝑢𝑒.push(L, att(𝑣𝑐), R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐) ;2

L← att(𝑣𝑐) ;3

else if R < att(𝑣𝑐) then4
𝑞𝑢𝑒𝑢𝑒.push(L, L′, att(𝑣𝑐), R′, 𝑥 + 1,N𝑥 + 𝑣𝑐) ;5

R′ ← att(𝑣𝑐) ;6

else7
𝑞𝑢𝑒𝑢𝑒.push(L, L′, R, R′, 𝑥 + 1,N𝑥 + 𝑣𝑐) ;8

break;9

complexity𝑂 (M𝑡) and the average case space complexity𝑂 (KM ln 𝑡);
the number of calls of ANN search, i.e., Algorithm 1, is in the worst
case 𝑂 (K𝑡) and in the average case 𝑂 (K2 ln 𝑡).

PRoof. Algorithm 4 writes tuples to G either on leaves at level
K (Lines 4-8) or on tree nodes on any level 𝑥 < K such that Line 11
tests true– we call these nodes sap nodes. Each time, we write at
most 2M edges to G. From Lemma 3, the total number of leaves at
level K is𝑂 (𝑡) in the worst case for 𝑣𝑡 , and𝑂 (K ln 𝑡) in expectation.
Next, we show that the total number of sap nodes on each level
𝑥 < K is at most 1 and thus the total number of sap node is 𝑂 (K).

When Line 11, Algorithm 4 tests true, take a snapshot L, L′, R, R′, 𝑥 .
Lemma 5 proves that range (L, R′) has exactly 𝑥 vectors in D𝑡−1.
Note R′ = +∞A and R = att(𝑣𝑡) are larger than the attribute
values of all vectors, L must be the (𝑥 + 1)-th largest attribute
value on D𝑡−1 and L′ the 𝑥-th. As all nodes on level 𝑥 have dis-
joint rectangles, no node other than 𝑣𝑇 has rectangle intersecting
(L, L′] × [R, R′) and thus Line 11 is tested true at most once at level
𝑥 .

Thus, the space complexity is𝑂 (M(𝑡 +K)) = 𝑂 (M𝑡) in the worst
case and𝑂 (KM ln 𝑡) in expection. Besides, since each ANN search
either labels a node as sap node or generates a node, the total num-
ber of ANN search is at most K + the total number of nodes. Thus,
the worst case number of calls of ANN search is 𝑂 (K𝑡) and the
expected number of ANN calls is 𝑂 (K2 ln 𝑡). □

3.2.2 Unordered Insertion
The benefit of the rectangle tree is that adapting Algorithm 4 to un-
ordered insertion, i.e., removing the assumption that all the vectors
inserted are in ascending order of their attribute values, is easy.

Algorithm 5 shows the algorithm of unordered insertion. Com-
pared to ordered insertion, when a vector 𝑣𝑐 is found, in addition
to cope with the case when L < att(𝑣𝑐) < L′, and L′ ≤ att(𝑣𝑐) ≤
att(𝑣𝑡), Lines 4-6 cope with an additional case of R < att(𝑣𝑐) < R′
in a way symmetric to that of the case of L < att(𝑣𝑐) < L′.

Example 6. Figure 2 on the left shows a stream of attributed
data vectors and their distances to 𝑣10. Consider inserting 𝑣10 to
the dynamic segment graph G using Algorithm 5 with K = 2. The
algorithm first processes the tuple (L = −∞A, L′ = 54, R = 54, R′ =
+∞A, 𝑥 = 0,N0 = ∅) in the queue. For this purpose, it first finds
the 2-nearest neighbors of 𝑣10 in (−∞A, +∞A), which is ann =
{𝑣1, 𝑣5}, and has 𝑣𝑐 = 𝑣1. Since att(𝑣1) = 28 < L′ = 54, a tuple
(−∞A, 28, 54, +∞A, 1, 𝑣1) is added to the queue and L becomes 28.
Next, it finds ann in (28, +∞A), which is {𝑣5, 𝑣4}, and has 𝑣𝑐 = 𝑣5.

7

Since att(𝑣5) = 43 < L′ = 54, another tuple (28, 43, 54, +∞A, 1, 𝑣5)
is added to the queue and L becomes 43. Then, it finds ann in
(43, +∞A), which is {𝑣7, 𝑣3}, has 𝑣𝑐 = 𝑣7, adds (43, 54, 57, +∞A, 1, 𝑣7)
to the queue as R = 54 < att(𝑣7) = 57, and sets R′ as 57. Af-
ter that, it finds ann in (43, 57), which is {𝑣6} (note that this is
the only vector in D9 whose attribute value is within (43, 57)),
has 𝑣𝑐 = 𝑣6, adds a tuple (43, 54, 56, 57, 1, 𝑣6) to the queue as
R = 54 < att(𝑣6) = 56, and sets R′ = 56. Finally, it finds ann
in (43, 56), which is ∅ as there is no vector in D9 whose attribute
value is within (43, 56). Thus it goes to the edge generation steps,
whic results in no edges as N0 = ∅. The above process essentially
builds a level below the root node in the rectangle tree as illustrated
in Figure 2 on the right.

Next, tuple (L = −∞A, L′ = 28, R = 54, R′ = +∞A, 𝑥 = 1,N1 =
𝑣1) is popped from the queue. It finds ann in (−∞A, +∞A), which
is {𝑣1, 𝑣5}. Since 𝑣1 ∈ N1, it has 𝑣𝑐 = 𝑣5. As L′ = 28 ≤ att(𝑣5) =
43 ≤ R = 54, (−∞A, 28, 54, +∞A, 2, 𝑣1𝑣5) is added to the queue and
the while loop breaks. The process stops when the queue depletes.

Lemma 6. Algorithm 5 builds a rectangle tree 𝑇 with root rectan-
gle (−∞A, att(𝑣𝑡)] × [att(𝑣𝑡), +∞A) when inserting 𝑣𝑡 under ASA.
Specifically, each tuple (L, L′, R, R′, 𝑥,N𝑥) in 𝑞𝑢𝑒𝑢𝑒 of the algorithm
corresponds to a node at level 𝑥 on 𝑇 whose 𝑥NNlist sequence is N𝑥 .

Proof Sketch. The proof adds additional discussions on the case
of R < att(𝑣𝑐) < R′ compared to the proof sketch of Lemma 4.
It means that all the attribute ranges [𝑙, 𝑟] with (𝑙, 𝑟) ∈ (L, L′] ×
[R, R′) share the same𝑥NNlist sequence. However, when 𝑟 ≥ att(𝑣𝑐)
the (𝑥+1)NNlist should beN𝑥 +𝑣𝑐 (Line 4), while when 𝑟 < att(𝑣𝑐),
some other vectors in (L, 𝑟), not including 𝑣𝑐 , will be the (𝑥 + 1)-
th nearest neighbor of 𝑣𝑡 . In this case, we generate a tuple with
rectangle (L, L′] × [att(𝑣𝑐), R′) for (𝑥 + 1)NNlist sequence N𝑥 + 𝑣𝑐
(Line 5), and the remaining rectangle will be left for the next round
of the while loop (Line 9 of Algorithm 4).Therefore, the three prop-
erties listed in the second paragraph of the proof of Lemma 4 hold.
Note that removing the assumption that the attribute values of 𝑣𝑡 is
larger than the vectors inD𝑡−1 only adds this additional casewhile
the other discussions in the proof of Lemma 4 hold here.Therefore,
Algorithm 5 constructs a rectangle tree. □

TheoRem 7 (Complexity of AlgoRithm 5). When the 𝑡-th vec-
tor is inserted, 𝑡 ≥ K, the worst-case index size of Algorithm 5 is
𝑂 (KM𝑡). The average-case index size of Algorithm 5 is𝑂 (K2M ln 𝑡).
The worst number of calls of ANN search is𝑂 (K2𝑡) and the expected
number of ANN search calls is 𝑂 (K3 ln 𝑡).

PRoof. Algorithm 5 only writes tuples to G either on leaves at
level K (Lines 4-8, Algorithm 4) or on tree nodes on any level 𝑥 < K
such that Line 11 tests true – we call these nodes sap nodes. Each
time we add 2M edges to the graph. From Theorem 4, the total
number of leaves at level K is 𝑂 (K𝑡) in the worst case for 𝑣𝑡 , and
𝑂 (K2 ln 𝑡) in expectation. Next, we show that the total number of
sap nodes on each level 𝑥 < K is at most K and thus the total
number of sap nodes is 𝑂 (K2).

When Line 11, Algorithm 4 tests true, take snapshot of L, L′, R, R′, 𝑥 .
Lemma 5 proves that range (L, R′) has exactly 𝑥 vectors in D𝑡−1.
Note that att(𝑣𝑡) ∈ (L, R′), L, R′ are attribute values ofD𝑡−1 if they
are not −∞A or +∞A, so the total number of possible attribute val-
ues that L could take is no more than 𝑥 + 1 ≤ K and each value of
L uniquely determines R′ as the interval has 𝑥 vectors.

Thus, the space complexity is 𝑂 (KM𝑡) in the worst case and
𝑂 (K2M ln 𝑡) in expection. Besides, since each ANN search either
labels a node as sap node or generates a node, the total number of
ANN search is at most K2 + the total number of nodes. Therefore,
the worst case number of calls of ANN search is 𝑂 (K2𝑡) and the
expected number of ANN calls is 𝑂 (K3 ln 𝑡). □

TheoRem 8. Denote by a1 ≤ a2 ≤ · · · ≤ a𝑡−1 the attribute
values of the vectors inserted by time 𝑡 . When inserting 𝑣𝑡 under ASA,
the new edges of G created by Algorithm 5 is a lossless compression
of the edges from/to 𝑣𝑡 on the 𝑂 (𝑡2) HNSW graphs, one for each
attribute range [a𝑖 , a𝑗], i.e., on D𝑡 [a𝑖 , a𝑗] with 𝑖 ≤ 𝑗 .

PRoof. Define a0 be−∞A and a𝑡 be +∞A. Consider an attribute
range of [𝑙, 𝑟]. We only consider 𝑙 ≤ att(𝑣𝑡) ≤ 𝑟 as otherwise
𝑣𝑡 is not in the corresponding HNSW graph and there will be no
working edges among the newly added edges to G on 𝑣𝑡 . Let 𝑖, 𝑗 be
such that a𝑖−1 < 𝑙 ≤ a𝑖 ≤ a𝑗 ≤ 𝑟 < a𝑗+1. Let 𝑆 be the K nearest
neighbors of 𝑣𝑡 in D𝑡−1 [a𝑖 , a𝑗] = D𝑡−1 [𝑙, 𝑟]. The HNSW edges
from/to 𝑣𝑡 under search range [𝑙, 𝑟] are the 𝑣𝑡 edges on the HNSW
graph built on attribute range [a𝑖 , a𝑗]. Under ASA, these edges are
between 𝑣𝑡 and the pruned (w.r.t. 𝑣𝑡) vectors 𝑆𝑝 of 𝑆 . Consider the
rectangle tree 𝑇 constructed for 𝑣𝑡 by Algorithm 5. It suffices to
show that all the working edges under search range [𝑙, 𝑟] from 𝑣𝑡
that are added by 𝑇 to the graph of G are exclusively between 𝑣𝑡
and 𝑆𝑝 . Our proof has two cases, |𝑆 | < K and |𝑆 | ≥ K.

When |𝑆 | < K, let 𝑥 � |𝑆 |. According to Theorem 3, there is
exactly one node 𝑣𝑇 on𝑇 at level 𝑥 such that (𝑙, 𝑟) ∈ rect(𝑣𝑇). Fur-
thermore, since (𝑙, 𝑟) belongs to sap𝑡−1 (𝑥 +1), it will not appear in
any rectangle at level higher than 𝑥 and thus there must be a time
when processing 𝑣𝑇 , Line 11 Algorithm 4 tests true: snapshot the
values of (L, L′, R, R′) and thusD𝑡−1 on both (L, R′) and [L′, R] are
𝑆 (as all attribute pairs in rect(𝑣𝑇) share the same 𝑥NNlist sequence
which is 𝑆), thus L = a𝑖−1, L′ = a𝑖 , R = a𝑗 , and R′ = a𝑗+1 (as they
all align to attribute values ofD𝑡−1). The edges between 𝑣𝑡 and 𝑆𝑝
are thus added to G under rectangle 𝑈 = (a𝑖−1, a𝑖] × [a𝑗 , a𝑗+1).
Thus the working edges of 𝑣𝑡 under [𝑙, 𝑟] ∈ 𝑈 are exclusively with
𝑆𝑝 . Moreover, as this rectangle 𝑈 will not join with any rectangle
in higher levels, the edges between 𝑣𝑡 to 𝑆𝑝 will not work under
an interval which has more than 𝑥 vectors in D𝑖−1.

When |𝑆 | ≥ K, there is exactly one node 𝑣𝑇 (L, L′, R, R′,K,NK)
on 𝑇 among level K nodes such that (𝑙, 𝑟) ∈ rect(𝑣𝑇) (Theorem 3).
That is, for 𝑣𝑡 , only edges added by 𝑣𝑇 can work under [𝑙, 𝑟]. Also,
we haveNK = 𝑆 due to the definition of rectangle tree. Since edges
between 𝑣𝑡 and 𝑆𝑝 are added to G with rectangle rect(𝑣𝑇) by this
node, they are the exclusive working edges from 𝑣𝑡 under [𝑙, 𝑟].

Therefore, the newly added edges to G form a lossless compres-
sion of the edges from/to 𝑣𝑡 on the 𝑂 (𝑡2) HNSW graphs. □

3.3 Early Prunning
Realizing that we perform pruning of the 𝐾NNlist sequence on
leaf nodes before adding edges to the dynamic segment graph, we
would like to explore if pruning the 𝐾NNlist early can reduce both
the index time and index size.

Algorithm 6 revises the random insertion process in two aspects.
Consider 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist) popped from the queue. As

8

Algorithm 6: PRunedInseRtion(G, 𝑣𝑡 ,M,K)
Input: G: the dynamic segment graph constructed for

D𝑡−1 = {𝑣1, 𝑣2, · · · , 𝑣𝑡−1}; 𝑣𝑡 : a point arriving at time 𝑡 ; M
and K: the parameters in HNSW construction

Output: G: the dynamic segment graph for {𝑣1, 𝑣2, · · · , 𝑣𝑡 }.
𝑞𝑢𝑒𝑢𝑒.push(−∞A, att(𝑣𝑡), att(𝑣𝑡), +∞A, 0, ∅) ;1

while 𝑞𝑢𝑒𝑢𝑒 is not empty do2
(L, L′, R, R′, 𝑥, 𝑥NNlist) ← 𝑞𝑢𝑒𝑢𝑒.pop() ;3

if 𝑥 ≠ 0 then4
𝑣𝑒 ← the last point in 𝑥NNlist;5

add (L, L′, 𝑣𝑒 , R, R′) to G[𝑣𝑡];6

add (L, L′, 𝑣𝑡 , R, R′) to G[𝑣𝑒];7

If 𝑥 = K then continue;8

while 𝐿 ≤ 𝐿′ and 𝑅 ≤ 𝑅′ do9
while 𝑥 < 𝐾 do10

ann← 2DSegmentANNSeaRch(G, 𝑣𝑡 , (L, R′) , 𝑣1, K);11

𝑣𝑐 ← argmin𝑣∈ann\𝑥NNlist 𝛿 (𝑣, 𝑣𝑡) ;12

if 𝑣𝑐 is dominated by any point in 𝑥NNlist then13
(𝑥 + 1)NNlist← 𝑥NNlist + 𝑣𝑐 ; 𝑥 + +;14

else break;15

if 𝑣𝑐 is in 𝑥NNlist then break;16

Lines 1-9 of Algorithm 5;17

return G;18

opposed to either generating a child/terminate the children gen-
eration based on 𝑣𝑐 in Lines 1-9 of Algorithm 5, we keep generat-
ing 𝑣𝑐 until either 𝑣𝑐 is not be pruned by the existing 𝑥NNlist se-
quence (Lines 15), or a total of 𝐾 points are accumulated (together
with the points in the sequence) for the rectangle (Line 10). If 𝑣𝑐
is not pruned, split the rectangle as usual (Line 17). For each tuple
in queue (except for the root), the last point 𝑣𝑐 of the 𝑥NNlist list
must remain after pruning, we lodge edges between 𝑣𝑡 and 𝑣𝑐 as
after-prune edge (Lines 5-7).
Prunednearest neighbors sequence of attribute interval [𝑙, 𝑟].
Define on setD𝑡−1 [𝑙, 𝑟] the points that arrived before 𝑣𝑡 whose at-
tribute values falling in [𝑙, 𝑟], the pruned sequence below.

(1) Sort all the points inD𝑡−1 [𝑙, 𝑟] in ascending order of their
distances to 𝑣𝑡 . The resulting sequence is denoted as ann.

(2) Prune, usingAlgorithm 2, by calling PRune(𝑜, ann, 𝑀), and
call the resulting sequence the Pruned Nearest Neighbors
Sequence (PNNS) of [𝑙, 𝑟].

Lemma 7. For each tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist), if 𝑥 > 0,
then the last point 𝑣𝑐 of 𝑥NNlist cannot be pruned by any point in
𝑥NNlist \ {𝑣𝑐 }.

PRoof. Because Line 16 indicates that if 𝑣𝑐 is in 𝑥NNlist, i.e., 𝑣𝑐
is dominated by any other point in 𝑥NNlist, then break. In other
words, if a tuple is generated in Line 17, then 𝑥𝑐 cannot be pruned
by any other point in attribute range (L, R′) and 𝑥𝑐 will be the end
of the (𝑥 + 1)NNlist lists enqueued. □

Lemma 8. For each tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist) in the
queue of Algorithm 6, let 𝑆 be the rectangle (L, L′] × [R, R′), let se-
quence 𝑃 = PRune(𝑥NNlist,M, 𝑣𝑡), let𝑚 = |𝑃 |. We show that for all
attribute pair (𝑙, 𝑟) ∈ 𝑆 , 𝑃 is the𝑚-prefix of the PNNS of [𝑙, 𝑟].

PRoof. As the base case, it is trivial to verify that the lemma
holds on the root tuple with 𝑥 = 0. We next show that if the lemma
holds on a tuple 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥NNlist) popped in Line 3,
then it holds on all the tuples generated in Line 17.

Lines 10-15 carry out the following steps:
(1) Remove all points in 𝑥NNlist from the underlying point

set.
(2) Get the nearest neighbor 𝑣𝑐 of 𝑣𝑡 in attribute range (L, R′).
(3) If 𝑣𝑐 can be pruned by 𝑥NNlist, remove 𝑣𝑐 from the under-

lying dataset. Extend sequence 𝑥NNlist with 𝑣𝑐 , its length
𝑥 is increased by 1. Go to Step (1).

(4) Terminate otherwise.
This process ensures that at Line 16, by removing 𝑥NNlist from
the underlying dataset, 𝑣𝑐 is the nearest neighbor of 𝑣𝑡 for range
(L, R′) and it cannot be pruned by 𝑥NNlist.

If att(𝑣𝑐) ≤ L′, then for 𝑙 ∈ (L, att(𝑣𝑐)], 𝑟 ∈ [R, R′), there is no
other point with attribute value in [𝑙, 𝑟] and distance to 𝑣𝑡 smaller
than 𝛿 (𝑣𝑐 , 𝑣𝑡), except for the points in 𝑥NNlist. Thus 𝑃 + 𝑣𝑐 is the
prefix of the PNNS of [𝑙, 𝑟]. Besides, 𝑃 is the prefix of the PNNS of
[𝑙, 𝑟] with 𝑙 ∈ (att(𝑣𝑐), L′], 𝑟 ∈ [R, R′), while the PNNS will not
include 𝑣𝑐 .

Symmetrically, if att(𝑣𝑐) ≥ R, then for 𝑙 ∈ (L, L′], 𝑟 ∈ [att(𝑣𝑐), R′)
then 𝑃 + 𝑣𝑐 is the prefix of the PNNS of [𝑙, 𝑟]. Besides, 𝑃 is the
pruned sequence of the nearest neighbour list on all [𝑙, 𝑟] with
𝑙 ∈ (L, L′], 𝑟 ∈ [R, att(𝑣𝑐)) and 𝑣𝑐 will not appear in this PNNS.

If att(𝑣𝑐) ∈ [L′, R], then for 𝑙 ∈ (L, L′], 𝑟 ∈ [R, R′), 𝑃 ∪ {𝑣𝑐 } will
be the prefix of the PNNS of [𝑙, 𝑟].

By induction, we can prove that the lemma holds for all the tu-
ples in the queue. □

TheoRem 9. Algorithm 6 constructs a tree of aggregated rectan-
gles where each aggregated rectangle 𝑆 ensures that all attribute in-
tervals [𝑙, 𝑟] with (𝑙, 𝑟) ∈ 𝑆 share the same PNNS prefix. In other
words, the tree is a prefix tree of the PNNS of different rectangles.

4 Optimizations for Dynamic Segment Graph
Although the dynamic segment graph introduced earlier losslessly
compressesmanyHNSWgraphs, one for each possible query range,
the index cost (i.e., index time and index size) is rather high in prac-
tice. In this section, we present a few optimizations to improve the
practical performance of dynamic segment graph maintenance.
O1: One ANN Search for All. We observe that the procedure
2DSegmentANNSeaRch is invoked an excessive number of times
(one search for each node in the rectangle tree). To reduce the index
time, when a new data point 𝑣𝑡 arrives, we propose to perform a
single search using 2DSegmentANNSeaRch(G, 𝑣𝑡 , (−∞A, +∞A), 𝑣1,Z)
where Z is a parameter to find a set ann of Z approximate nearest
neighbors of 𝑣𝑡 .Then, instead of invoking 2DSegmentANNSeaRch
(G, 𝑣𝑡 , (L, R′), 𝑣1,K) in the algorithms to find the 𝑣𝑐 , we visit the
data points in ann in the ascending order of their distance to 𝑣𝑡
and 𝑣𝑐 is the first one in ann that (1) is not in 𝑥NNlist and (2) has
att(𝑣𝑐) ∈ (L, R′). If no such data point exists in ann, we simply
break the while condition and process the next tuple in the queue.
O2:RemovingDominatedNeighbors.Realizing that the𝐾NNlist
sequence on leaf nodes is pruned before added edges to the dy-
namic segment graph, we propose to prune the 𝐾NNlist early to

9

reduce both the index time and index size. Specifically, instead of
maintaining 𝑥NNlist in the rectangle tree node, we maintain the
neighbor list after pruning 𝑥NNlist, which we denote it as 𝑥PNN.
Then, consider 𝑣𝑇 = (L, L′, R, R′, 𝑥, 𝑥PNN) popped from the queue.
We visit the set ann of Z approximate nearest neighbors and use
the first 𝑣𝑐 that (1) is not dominated by any data point in 𝑥PNN, (2)
is not in 𝑥PNN and (3) has att(𝑣𝑐) ∈ (L, R′). If no such data point
exists in ann, we move on to process the next tuple in the queue.
O3:Merge Rectangles usingMBR.We observe that, between the
same two endpoints in the dynamic segment graph, there might be
multiple edges, each with a distinct rectangle label. To reduce the
index size, we propose to merge them using minimum bounding
rectangles (MBRs) [10]. There are different strategies in merging
the rectangles similar to the construction of the R-tree [10]. For
simplicity, this paper proposes to merge all these rectangles to a
single MBR. Specifically, for each edge G[𝑢] [𝑣] from 𝑢 to 𝑣 in the
dynamic segment graph, a single MBR (𝑙, 𝑟] × [𝑏, 𝑒) is maintained.
Upon the arrival of a new data point, a new edge from 𝑢 to 𝑣 with
label (𝑙 ′, 𝑟 ′, 𝑣, 𝑏′, 𝑒′) may be created in our algorithm. We merge
the edge with the existing one by updating the MBR in G[𝑢] [𝑣] as
(min(𝑙, 𝑙 ′),max(𝑟, 𝑟 ′)] × [min(𝑏, 𝑏′),max(𝑒, 𝑒′)). When a query
with range [𝑥,𝑦] arrives, we use the subgraph induced by the set
of edges whose MBRs containing [𝑥,𝑦] to process the query.
Optimized Dynamic Segment Graph Algorithm. Algorithm 7
shows the pseudo-code of our optimized algorithm for incremen-
tal dynamic segment graph construction. It revises the unordered
insertion process in several aspects. Firstly, it replaces the repeti-
tive ANNS with a single ANNS that finds a set ann of Z approxi-
mate nearest neighbors of 𝑣𝑡 among all existing data points at the
beginning (Line 1). Secondly, in Lines 7-8, instead of adding the
neighbor (L, L′, 𝑣𝑒 , R, R′) to G[𝑣𝑡] and (L, L′, 𝑣𝑡 , R, R′) to G[𝑣𝑒], it
merges the rectangle (L, L′] × [R, R′) with the MBRs G[𝑣𝑡] [𝑣𝑒] and
G[𝑣𝑒] [𝑣𝑡]. Thirdly, it removes the dominated neighbors to prevent
them from generating children in the rectangle trees (Lines 11-14).
Fourth, instead of adding edges to the dynamic graph only at the
leaf nodes “in batches”, when visiting a tuple (L, L′, R, R′, 𝑥, 𝑥PNN)
in the queue (except for the root), as the last point 𝑣𝑒 in the pruned
neighbor list 𝑥PNNmust remain after pruning, we lodge edges be-
tween 𝑣𝑡 and 𝑣𝑒 (Lines 5-8). Lastly, we stop splitting the rectangles
when there are M neighbors in the pruned neighbor list (Lines 9).

Upon the arrival of a query (𝑞, [𝑥,𝑦], 𝑘), we call Algorithm 1,
2DSegmentANNSeaRch(G, 𝑞, [𝑥,𝑦], 𝑣1, efsearch). Among the returned
neighbors, we report the 𝑘 neighbors closest to 𝑞.

5 Experiment
Environment. We implement our methods and baselines in C++
and compiled them using GCC 9.2.0 with -O3 optimization.We ran
all our experiments on a server with an Intel(R) Xeon(R) Platinum
8358 CPU@2.60GHz with 64 cores and 256GB of RAM.
Datasets. We used three real-world datasets. (1) YouTube: each
vector is a 1024-dimensional RGB feature vector of a YouTube video.
This dataset came from YouTube8M3. The attribute value of each
vector is the release time of the corresponding video. (2) WIT4:

3https://research.google.com/youtube8m/download.html
4https://github.com/google-research-datasets/wit

Algorithm 7: DynamicSegmentGRaphInseRtion(G, 𝑣𝑡 ,M,Z)
Input: G, 𝑣𝑡 , M are the same as Algorithm 4; Z: an integer.
Output: G: the dynamic segment graph for {𝑣1, 𝑣2, · · · , 𝑣𝑡 }.
ann←2DSegmentANNSeaRch(G, 𝑣𝑡 , (−∞A, +∞A) , 𝑣1, Z);1

𝑞𝑢𝑒𝑢𝑒.push(−∞A, att(𝑣𝑡), att(𝑣𝑡), +∞A, 0, ∅) ;2

while 𝑞𝑢𝑒𝑢𝑒 is not empty do3
(L, L′, R, R′, 𝑥, 𝑥PNN) ← 𝑞𝑢𝑒𝑢𝑒.pop() ;4

if 𝑥 ≠ 0 then5
𝑣𝑒 ← the last point in 𝑥NNlist;6

merge (L, L′] × [R, R′) with G[𝑣𝑡] [𝑣𝑒];7

merge (L, L′] × [R, R′) with G[𝑣𝑒] [𝑣𝑡];8

If 𝑥 = M then continue;9

while L ≤ L′ and L′ ≤ R′ do10
𝑣𝑐 = null;11

foreach 𝑣 ∈ ann in ascending order of 𝛿 (𝑣, 𝑣𝑡) do12
if 𝑣 ∉ 𝑥PNN and att(𝑣) ∈ (L, R′) and 𝑣 is not13

dominated by any point in 𝑥PNN then
𝑣𝑐 ← 𝑣;14

if 𝑣𝑐 is not null then15
Lines 1-9 of Algorithm 5, replace 𝑥NNlist with 𝑥PNN;16

else break;17

return G;18

each vector is a 2048-dimensional ResNet-50 embedding of an im-
age from Wikipedia. We used the size of the image as the attribute
value. (3) DEEP5: each vector is a 96-dimensional feature vector of
an image, which is acquired from the last fully-connected layer of
the GoogLeNet model [4]. Each vector is assigned a random num-
ber as the synthetic attribute value.
Workloads and Baselines. We design three RFANNS workloads
to evaluate our optimized algorithm DSG (Algorithm 7) against 6
baselines. (a) Unordered Insertion (i.e., Problem 1). Only three base-
lines, Prefiltering, Postfiltering, and Acorn support this workload.
Specifically, (1) Prefiltering builds a self-balanced binary search
tree over the attribute values. When a query arrives, it scans all the
vectorswhose attribute values fall in the query range. (2)Postfiltering
builds a HNSW graph for all the data vectors. To process a query,
it performs ANNS and keeps a returned vector only if its attribute
value is within the query range. It terminates when enough vectors
are collected. (3) Acorn [26] is a graph index for predicate-agnostic
approximate nearest neighbor search. It explores multi-hop neigh-
bors that satisfy the query predicate during greedy search. (b) Or-
dered Insertion (i.e.,Ordered-DRFANNS). (4) Except for the above
methods, the only baseline that supports this workload is SeRF [39]
(as introduced in Section 2.2). (c) Static (i.e., Definition 3).WinFilter
and iRange are designed for static datasets. They cannot support
ordered/unordered insertion. Specifically, (5) WinFilter [5] builds
a segment tree based on the attribute values of all data vectors. A
graph-based index is created for each tree node. When a query ar-
rives, it performs ANNS over a few segments (i.e., nodes) covered
by or overlapping with the query range and merges the results. (6)
iRange [35] also builds a segment tree. However, it merges the in-
dexes on the tree nodes on the fly and performs ANNS only once.

5https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
10

https://research.google.com/youtube8m/download.html
https://github.com/google-research-datasets/wit
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search

DSG PostFilter PreFilter ACORN

 0

 2000

 4000

 6000

 2 4 6 8 10

QPS

(a) DEEP (SR)

 0

 1000

 2000

 2 4 6 8 10

QPS

(b) WIT (SR)

 0
 500

 1000
 1500
 2000
 2500

 2 4 6 8 10

QPS

(c) YouTube (SR)

 0

 2000

 4000

 6000

 2 4 6 8 10

QPS

(d) DEEP (MR)

 0

 1000

 2000

 2 4 6 8 10

QPS

(e) WIT (MR)

 0

 500

 1000

 1500

 2 4 6 8 10

QPS

(f) YouTube (MR)

 0

 2000

 4000

 2 4 6 8 10

QPS

(g) DEEP (LR)

 0

 1000

 2 4 6 8 10

QPS

(h) WIT (LR)

 0

 500

 2 4 6 8 10

QPS

(i) YouTube (LR)

 0

 2000

 4000

 2 4 6 8 10

QPS

(j) DEEP (BR)

 0

 1000

 2 4 6 8 10

QPS

(k) WIT (BR)

 0

 500

 2 4 6 8 10

QPS

(l) YouTube (BR)

Figure 3: Comparison with Existing Methods: Unordered Insertion (evaluated after every 100,000 data vectors inserted).

DSG Serf

 0

 8000

 16000

 24000

 2 4 6 8 10

QPS

(a) DEEP (SR)

 0

 4000

 8000

 2 4 6 8 10

QPS

(b) WIT (SR)

 0

 2500

 5000

 2 4 6 8 10

QPS

(c) YouTube (SR)

 0

 4000

 8000

 2 4 6 8 10

QPS

(d) DEEP (MR)

 0

 1000

 2000

 2 4 6 8 10

QPS

(e) WIT (MR)

 0

 800

 1600

 2400

 2 4 6 8 10

QPS

(f) YouTube (MR)

 0

 4000

 8000

 2 4 6 8 10

QPS

(g) DEEP (LR)

 0

 1000

 2 4 6 8 10

QPS

(h) WIT (LR)

 0

 500

 1000

 2 4 6 8 10

QPS

(i) YouTube (LR)

 0

 4000

 8000

 12000

 2 4 6 8 10

QPS

(j) DEEP (BR)

 0

 1200

 2400

 2 4 6 8 10

QPS

(k) WIT (BR)

 0

 700

 1400

 2100

 2 4 6 8 10

QPS

(l) YouTube (BR)

Figure 4: Comparison with Existing Methods: Ordered Insertion (evaluated after every 100,000 data vectors inserted).
DSG iRange WinFilter Serf

 0

 5000

 10000

 15000

0.9 0.95 1.0
Recall

QPS

(a) DEEP (SR)

 0

 1000

 2000

 3000

0.9 0.95 1.0
Recall

QPS

(b) WIT (SR)

 0
 400
 800

 1200
 1600
 2000

0.9 0.95 1.0
Recall

QPS

(c) YouTube (SR)

 0
 3000
 6000
 9000

 12000

0.9 0.95 1.0
Recall

QPS

(d) DEEP (MR)

 0

 1000

 2000

0.9 0.95 1.0
Recall

QPS

(e) WIT (MR)

 0

 400

 800

 1200

0.9 0.95 1.0
Recall

QPS

(f) YouTube (MR)

 0

 3000

 6000

 9000

0.9 0.95 1.0
Recall

QPS

(g) DEEP (LR)

 0

 1000

 2000

0.9 0.95 1.0
Recall

QPS

(h) WIT (LR)

 0

 400

 800

0.9 0.95 1.0
Recall

QPS

(i) YouTube (LR)

 0
 3000
 6000
 9000

 12000

0.9 0.95 1.0
Recall

QPS

(j) DEEP (BR)

 0

 1000

 2000

0.9 0.95 1.0
Recall

QPS

(k) WIT (BR)

 0

 400

 800

 1200

0.9 0.95 1.0
Recall

QPS

(l) YouTube (BR)

Figure 5: Comparison with Existing Methods: Static Workload.

Query Scenarios. All query vectors were selected uniformly at
random from the vectors that were not in the stream of data vec-
tors. For each query vector, the left boundary of its query range
was selected from the attribute values of all the inserted vectors
uniformly at random, while the right boundary was determined
by the query range size. We evaluated small query range size (SR),
medium query range size (MR), and large query range size (LR),
which include 1%, 4%, and 16% of the inserted vectors, respec-
tively. In addition, we evaluated the blended query range size (BR)
that includes 𝑥% of the inserted vectors where 𝑥 was draw from
{1%, 2%, 4%, 8%, 16%, 32%} with equal probability. Note that we
do not test ranges that are too small – Prefiltering could be an ef-
ficient solution. We can build a simple cost model based on the
query range size. The cost model calculates the number of vectors
in the query range. If it is smaller than a threshold, use Prefiltering;
otherwise, use indexes.
Parameters. For DSG, the parameters M and Z were 16 and 500,
respectively, onDEEP, and 32 and 1000 on bothWIT and YouTube,

unless otherwise specified. For SeRF, we used maxleap with M =
16 for DEEP, M = 32 for YouTube and M = 64 for wiki. Besides,
K = 100 for all datasets. Postfiltering used the same M and K as
SeRF. Acorn also used the same M as SeRF, with 𝛾 = 10 and M𝛽
set equal to M for all datasets. ForWinFilter, we used superpostfil-
tering with the parameters 𝛽 = 2, K = 500, and M = 64. We set
efsearch = 80 and the final multiply factor to 1. For iRange, we set
M = 64 and K = 100 for WIT, M = 64 and K = 400 for YouTube,
and M = 32 and K = 100 forDEEP. All baseline parameter settings
were based on their paper or the optimal result from a grid search.

5.1 Comparison with Existing Methods
Exp-1: Unordered Insertion.We compare our method DSG with the
only three baselines that supports unordered insertion:Prefiltering,
Postfiltering, and Acorn. We evaluated the query performance af-
ter every 100,000 data vectors were inserted. We tuned the query
parameters of these methods (except for Prefiltering, whose recall
is always 1.0) such that their recall reached 0.99 onDEEP andWIT,

11

Table 1: Comparison of Index Cost.

Dataset Metric WinF iRange DSG Acorn SeRF PostF

DEEP
time (s) 27968 1052 1489 2504 887 212.6
size (GB) 7.28 3.23 3.08 1.79 0.64 0.53

WIT
time (s) 48471 16253 19449 40988 8532 1624
size (GB) 30.15 13.48 10.65 24.70 8.18 8.20

YouTube
time (s) 71113 6775 31963 18948 6452 1046
size (GB) 18.15 9.48 7.85 12.99 4.15 4.22

and 0.95 on YouTube for all query scenarios and reported the QPS
(query per second). The results were averaged over 1,000 queries.

Figure 3 shows the results (the 𝑥-axis is the number of data vec-
tors inserted in the unit of 100K). As expected, the QPS of all meth-
ods decreased almost logarithmically as more data vectors were
inserted. Nevertheless, DSG consistently and significantly outper-
formed the baselines. For example, on WIT and BR (Figure 3(k)),
DSG achieved 2.5× theQPS of the best-performing baselinePostfiltering
at 100K vectors and 3× at 1M vectors. The advantage was more
obvious for SR, where DSG achieved 3-15× the QPS of the best
baselines throughout the process. This is because Postfiltering and
Acorn only work well when the query range size is very large (i.e.,
when the predicate selectivity is very high). AlthoughPrefiltering’s
recall was always 1.0, its QPS was extremely low. For example,
on SR and LR in WIT, the QPS of DSG was 18× and 87 × that
of Prefiltering at 1M vectors
Exp-2: Ordered Insertion. Next, we compare DSGwith SeRF for the
ordered insertionworkload.We omitPrefiltering,Postfiltering, and
Acorn hereinafter as they were not competitive with DSG as illus-
trated in Exp-1. Note that the data vectors in the stream arrive in
the ascending order of their attribute values in this workload. The
settings are the same as the unordered insertion workload except
that we require the recall of all methods to achieve at least only 0.9
for SR. This is because SeRF cannot achieve a higher recall with its
“max-leap” heuristic [39], which trades off index cost for reduced
query performance.

Figure 4 shows the results. As we can see,DSG consistently out-
performed SeRF in all query scenarios throughout the process. For
example, on DEEP and SR, with 100,000 vectors inserted, the QPS
of DSG was 3× that of SeRF. Besides, it is worth to mention that
DSG is more capable than SeRF as DSG supports unordered inser-
tion whereas SeRF does not. The reason that DSG outperformed
SeRF is that SeRF used the max leap heuristic which resulted in
fewer edges and consequently poorer query performance.
Exp-3: Static.WecompareDSG against iRange, SeRF, andWinFilter
under the static workload. To build the index, iRange andWinFilter
process the entire dataset at once, while SeRF and DSG insert vec-
tors one by one in the order of their attribute values.

Figure 5 shows the recall (0.9 to 1.0) and QPS tradeoffs of all
methods for various query scenarios and datasets. It can be ob-
served thatDSG almost always achieved the best QPS-recall trade-
off. For example, for YouTube and LR, the QPS of DSG was more
than 3× than that of iRange when their recall was around 0.96. It
is worth to mention that DSG is more capable than these baselines
asDSG supports dynamic RFANNSwhereas iRange andWinFilter
do not. This is attribute to the lossless guarantee of DSG and the
effectiveness of the proposed optimizations.

Exp-4: Index Cost.Table 1 shows the index time and index size (mem-
ory footprint) of all methods for 1M vectors. Note that the index
cost of Prefiltering was negligible and was omitted in the table.
A single thread was employed. As we can see, the index size of
WinFilter and iRange were significantly larger than DSG, though
iRange had a lower index time.This is becauseWinFilter and iRange
build multiple HNSW graphs for each segment in the segment tree,
while DSG builds a lossless compression of many HNSW graphs
directly. SeRF had a lower index cost than them as it used the max-
leap heuristic. Although the index cost of Postfilteringwas the low-
est, its query performance (as well as SeRF’s) was extremely low
for small query range sizes.

5.2 Sensitivity and Scalability Tests
Exp-5: Optimization Sensitivity Test. We evaluate the effectiveness
of the three optimizations in Section 4 by comparing the following
four combinations 𝑂1,𝑂12,𝑂13, and 𝑂123 on DEEP with 10, 000
data vectors. Here 𝑂𝑥𝑦 means using the combination of optimiza-
tions 𝑂𝑥 and 𝑂𝑦 as described in Section 4. The optimization 𝑂1

(one ANNS for all) is applied universally as the experiments would
take too long to finishwithout it. Specifically, the index sizes (edges
only) of 𝑂1,𝑂12,𝑂13,𝑂123 were 45700MB, 220MB, 27MB, 27MB,
while the index time was 508s, 8.5s, 288s, 8.1s. As we can see 𝑂3

(merge rectangles using MBR) significantly reduces the number of
edges by merging edges, while 𝑂2 (removing pruned vectors) sig-
nificantly reduces the indexing time. Figure 6 shows the query per-
formance. As we can see, without 𝑂2 and 𝑂3, the QPS was rather
low.This is because the number of edges is huge in the graph. How-
ever, with only 𝑂2, the recall was low as the edges are sparse for
small ranges without edge merging.
Exp-6: Sensitivity Test on M. We tested the sensitivity of DSG on
the parameter of M (from 4 to 32) on DEEP. Figure 7(a) shows the
QPS and recall.With the increase ofM, the recall steadily increased.
This is because the dynamic segment graph is more connectedwith
a large M. The index size (edges only) was 15MB, 26MB, 36MB,
37MB respectively when M was 4, 8, 16, 32, while the index time
was 2.7s, 6.9s, 25s, 34s. The index size did not increase proportion-
ally with M as M is only the max degree (not the actual degree).
Exp-7: Sensitivity Test on Z.We tested the sensitivity of the parame-
terZ onDEEP by varying it from 400 to 1000. Figure 7(b) shows the
query performance. For all query scenarios, the QPS only slightly
decreased with the increase of Z, while the recall remained un-
changed.The index time was 25s, 37s, 47s, 59s respectively when Z
was 400, 600, 800, 1000, while the index size (edges only) was 36MB,
41MB, 45M, 47M. This is because, a large Z adds more edges to the
dynamic segment graph, making the index cost higher, QPS lower,
and potentially recall higher. However, the recall was already very
high (above 0.99) and was hard to be further improved.
Exp-8: Scalability Test.Weused 10K, 100K, 1M, 10Mvectors inDEEP
to test the scalability of our method DSG. Figure 7(c) shows the
query performance. For all query scenarios, theQPS only decreased
sublinearly with the increase of the number of data vectors, while
the recall remained very high (above 0.98). The index sizes (edges
only) were 0.04GB, 0.44GB, 4.58GB, 46.8GB respectively for 10K,
100K, 1M, 10M vectors, while the average insertion latencies were

12

O1 O12 O13 O123

102
103
104
105

16 64 128 256

QPS

 0.4

 0.6

 0.8

 1

16 64 128 256

Recall

(a) DEEP (MR, M = 8, Z = 500, varying efsearch)

101
102
103
104
105

16 64 128 256

QPS

 0.4

 0.6

 0.8

 1

16 64 128 256

Recall

(b) DEEP (LR, M = 8, Z = 500, varying efsearch)

102
103
104
105

16 64 128 256

QPS

 0.4

 0.6

 0.8

 1

16 64 128 256

Recall

(c) DEEP (BR, M = 8, Z = 500, varying efsearch)

Figure 6: Evaluating Optimizations.

SR MR LR BR

 0

 5000

 10000

 15000

4 8 16 32

QPS

 0.96

 0.98

 1

4 8 16 32

Recall

(a) DEEP (Z = 400, efsearch = 64, varying M)

 0

 4000

 8000

 12000

400 600 800 1000

QPS

 0.96

 0.98

 1

400 600 800 1000

Recall

(b) DEEP (M = 16, efsearch = 64, varying Z)

103

104

104 105 106 107

QPS

 0.96
 0.97
 0.98
 0.99

 1

104 105 106 107

Recall

(c) DEEP (M = 16, Z = 500, efsearch = 128,
varying the # of vectors in the stream)

Figure 7: Sensitivity and Scalability Tests.

3.6ms, 4.1ms, 4.8ms, 6.7ms. Clearly, the index size scaled linearly
while the index time remained almost constant.

6 Related Work
Approximate Nearest Neighbor Search (ANNS). LSH (Locality-
Sensitive Hashing) [1, 7, 12, 13, 21, 27], product quantization [2, 8,
16, 17, 25, 31], and proximity graph [3, 6, 11, 14, 22, 23] are three
classes of indexes for ANNS. Each of them has a rich line of re-
search. At a high level, LSH provides strong theoretical guaran-
tees but does not perform well in practice. Product quantization ef-
fectively compresses the high-dimensional vectors into tiny codes
that are suitable for linear scans, though its query accuracy is often
not high enough. Many graph-based methods, such as HNSW [22,
23], NSG [6], and DiskANN [15], are approximations of the rela-
tive neighborhood graph (RNG), which bears favorable properties
but is expensive to construct [14]. They typically offer low query
latency and high query accuracy, but their index sizes are often
large since the vectors are not compressed.
Attribute-Filtering Approximate Nearest Neighbor Search.
SeRF, iRange, andWinFilter are three recentworks for range-filtering
ANNS. SeRF introduces the segment graph, which is a compres-
sion of multiple HNSW graph, one for each possible query range.
For half-bounded query range, it losslessly compresses 𝑛 HNSW
graphs using nearly the same index cost as building a single HNSW
graph for 𝑛 data points [39]. WinFilter proposes to build a seg-
ment tree over the attribute values of all data points [5]. For each
segment containing a sufficient number of data points, a graph-
based ANNS index is created. When a query arrives, it performs
ANNS over a few segments overlapping with the query range and
merges the results. Instead of performing multiple ANNS, iRange
proposes to build an index based on the segments overlappingwith
the query range on the fly and search that index only [35]. Filtered-
DiskANN [9] is designed to process tag-filtered ANNS, where the
tags of the returned approximate nearest neighbors must contain
a few query tags. It proposes to incorporate the tag information
in edge pruning. A node can only dominate other nodes sharing
the same tags with it. ACORN is designed for predicate-agnostic
ANNS [26], where the predicate is arbitrary (e.g., regex match, key-
word match, etc). It proposes to explore multi-hop neighbors that

satisfying the query predicate during greedy search. A few stud-
ies, including AnalyticDB-V [32] and reconfigurable inverted in-
dex (Rii) [24] propose to design cost models to choose from pre-
filtering and post-filtering for attribute-filter ANNS.Milvus further
proposes to partition the dataset and apply different approaches
for different partitions [29]. NHQ [30] and HQANN [33] propose
to fuse the attribute values into the vectors for attribute-filtering
ANNS. ARKGraph studies how to compress the approximate k-
nearest neighbor graphs of all ranges [38]. Note that it does not dis-
cuss the impact of HNSW pruning. Zhao et al. [36] design a few op-
timizations for attribute-filtering ANNS, including entry point se-
lection, biased priority queue selection, and multi-direction search.
DynamicApproxiamteNearestNeighbor Search. Insertion can
be naturally supported by the HNSW graph as it is constructed
by repeatedly inserting nodes to the graph. FreshDiskAnn [28] de-
signs update rules for the Vamana graph, a variant of the HNSW
graph. The deletion rule can be generalized to maintain the HNSW
graph. Xu et al. propose online product quantization which in-
crementally updates the quantization codebook to accommodate
incoming streaming data [34]. Leng et al. study online sketching
hashing to handle newdata points in data-dependent hashing-based
methods for approximate nearest neighbor search [18].

7 Conclusions
Range-filtering approximate nearest neighbor search (RFANNS) iden-
tifies approximate nearest neighbors for a query vector among data
vectorswhose attributes fall within a specified range. ExistingRFANNS
methods are designed for static datasets and struggle with dynamic
scenarios where data vectors arrive continuously. To address this,
we propose the dynamic segment graph, which losslessly compresses
multiple hierarchical navigable small-world (HNSW) graphs, each
corresponding to a query range. This structure supports efficient
insertion of incoming data vectors. We analyze its time and space
complexity and introduce optimizations to reduce index costs in
practice.

References
[1] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. In FOCS. 459–468.
13

[2] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache
locality is not enough: High-Performance Nearest Neighbor Search with Prod-
uct Quantization Fast Scan. PVLDB 9, 4 (2015), 288–299.

[3] Sunil Arya and David M. Mount. 1993. Approximate Nearest Neighbor Queries
in Fixed Dimensions. In ACM/SIGACT-SIAM. 271–280.

[4] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-
Scale Datasets of Deep Descriptors. In CVPR. 2055–2063. https://doi.org/10.
1109/CVPR.2016.226

[5] Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian
Shun. 2024. Approximate Nearest Neighbor Search with Window Filters. In
Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net. https://openreview.net/forum?id=
8t8zBaGFar

[6] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search With The Navigating Spreading-out Graph. PVLDB
12, 5 (2019), 461–474.

[7] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive
hashing scheme based on dynamic collision counting. In SIGMOD. 541–552.

[8] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized ProductQuan-
tization for Approximate Nearest Neighbor Search. In CVPR. 2946–2953.

[9] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krish-
naswamy, Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahap-
atro, Premkumar Srinivasan, et al. 2023. Filtered-DiskANN: Graph Algorithms
for Approximate Nearest Neighbor Search with Filters. In WWW. 3406–3416.

[10] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD. 47–57.

[11] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest
Neighbour Graphs. In CVPR. 5713–5722.

[12] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor
Search. PVLDB 9, 1 (2015), 1–12.

[13] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality. In STOC. 604–613.

[14] Jerzy W. Jaromczyk and Godfried T. Toussaint. 1992. Relative neighborhood
graphs and their relatives. Proc. IEEE 80, 9 (1992), 1502–1517. https://doi.org/
10.1109/5.163414

[15] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate
Billion-point Nearest Neighbor Search on a Single Node. In NeurIPS, Vol. 32.

[16] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. ProductQuantization
for Nearest Neighbor Search. TPAMI 33, 1 (2011), 117–128.

[17] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quan-
tization for Approximate Nearest Neighbor Search. In CVPR. 2329–2336.

[18] Cong Leng, Jiaxiang Wu, Jian Cheng, Xiao Bai, and Hanqing Lu. 2015. Online
sketching hashing. In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society,
2503–2511. https://doi.org/10.1109/CVPR.2015.7298865

[19] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems 33 (2020),
9459–9474.

[20] Jimmy Lin. 2024. Operational Advice for Dense and Sparse Retrievers: HNSW,
Flat, or Inverted Indexes? arXiv:2409.06464 [cs.IR] https://arxiv.org/abs/2409.
06464

[21] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007.
Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In
PVLDB. 950–961.

[22] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate nearest neighbor algorithm based on navigable small world
graphs. Inf. Syst. 45 (2014), 61–68.

[23] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. TPAMI
42, 4 (2018), 824–836.

[24] Yusuke Matsui, Ryota Hinami, and Shin’ichi Satoh. 2018. Reconfigurable In-
verted Index. In MM. 1715–1723. https://doi.org/10.1145/3240508.3240630

[25] Yusuke Matsui, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2015. PQTable: Fast
Exact Asymmetric Distance Neighbor Search for Product Quantization Using
Hash Tables. In ICCV. 1940–1948.

[26] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN:
Performant and Predicate-Agnostic Search Over Vector Embeddings and Struc-
tured Data. Proc. ACM Manag. Data 2, 3 (2024), 120. https://doi.org/10.1145/
3654923

[27] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublin-
ear Time Maximum Inner Product Search (MIPS). In NeurIPS. 2321–2329.

[28] Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Har-
sha Vardhan Simhadri. 2021. FreshDiskANN: A Fast and Accurate Graph-
Based ANN Index for Streaming Similarity Search. arXiv:2105.09613 [cs.IR]
https://arxiv.org/abs/2105.09613

[29] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing
Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,
Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A
Purpose-Built Vector Data Management System. In SIGMOD. ACM, 2614–2627.
https://doi.org/10.1145/3448016.3457550

[30] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and
Jiongkang Ni. 2022. Navigable Proximity Graph-Driven Native Hybrid Queries
with Structured and Unstructured Constraints. arXiv:2203.13601 [cs.DB]

[31] Runhui Wang and Dong Deng. 2020. DeltaPQ: Lossless Product Quantization
Code Compression forHighDimensional Similarity Search. PVLDB 13, 13 (2020),
3603–3616. https://doi.org/10.14778/3424573.3424580

[32] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. PVLDB 13, 12 (2020), 3152–
3165. https://doi.org/10.14778/3415478.3415541

[33] WeiWu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. 2022. HQANN: Effi-
cient and Robust Similarity Search for Hybrid Queries with Structured and Un-
structured Constraints. In CIKM. 4580–4584. https://doi.org/10.1145/3511808.
3557610

[34] Donna Xu, Ivor W. Tsang, and Ying Zhang. 2018. Online Product Quantization.
IEEE Trans. Knowl. Data Eng. 30, 11 (2018), 2185–2198. https://doi.org/10.1109/
TKDE.2018.2817526

[35] Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S. Jensen.
2024. iRangeGraph: Improvising Range-dedicated Graphs for Range-filtering
Nearest Neighbor Search. CoRR abs/2409.02571 (2024). https://doi.org/10.48550/
ARXIV.2409.02571 arXiv:2409.02571

[36] Weijie Zhao, Shulong Tan, and Ping Li. 2022. Constrained Approximate Simi-
larity Search on Proximity Graph. CoRR abs/2210.14958 (2022). https://doi.org/
10.48550/ARXIV.2210.14958 arXiv:2210.14958

[37] Liang Zheng, Liyue Shen, Lu Tian, ShengjinWang, JingdongWang, and Qi Tian.
2015. Scalable person re-identification: A benchmark. In Proceedings of the IEEE
international conference on computer vision. 1116–1124.

[38] Chaoji Zuo and Dong Deng. 2023. ARKGraph: All-Range Approximate K-
Nearest-Neighbor Graph. PVLDB 16, 10 (2023), 2645–2658. https://doi.org/
10.14778/3603581.3603601

[39] Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF:
Segment Graph for Range-Filtering Approximate Nearest Neighbor Search. Proc.
ACM Manag. Data 2, 1 (2024), 69:1–69:26. https://doi.org/10.1145/3639324

14

https://doi.org/10.1109/CVPR.2016.226
https://doi.org/10.1109/CVPR.2016.226
https://openreview.net/forum?id=8t8zBaGFar
https://openreview.net/forum?id=8t8zBaGFar
https://doi.org/10.1109/5.163414
https://doi.org/10.1109/5.163414
https://doi.org/10.1109/CVPR.2015.7298865
https://arxiv.org/abs/2409.06464
https://arxiv.org/abs/2409.06464
https://arxiv.org/abs/2409.06464
https://doi.org/10.1145/3240508.3240630
https://doi.org/10.1145/3654923
https://doi.org/10.1145/3654923
https://arxiv.org/abs/2105.09613
https://arxiv.org/abs/2105.09613
https://doi.org/10.1145/3448016.3457550
https://arxiv.org/abs/2203.13601
https://doi.org/10.14778/3424573.3424580
https://doi.org/10.14778/3415478.3415541
https://doi.org/10.1145/3511808.3557610
https://doi.org/10.1145/3511808.3557610
https://doi.org/10.1109/TKDE.2018.2817526
https://doi.org/10.1109/TKDE.2018.2817526
https://doi.org/10.48550/ARXIV.2409.02571
https://doi.org/10.48550/ARXIV.2409.02571
https://doi.org/10.48550/ARXIV.2210.14958
https://doi.org/10.48550/ARXIV.2210.14958
https://doi.org/10.14778/3603581.3603601
https://doi.org/10.14778/3603581.3603601
https://doi.org/10.1145/3639324

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Graph-based RFANNS Structure SeRF

	3 Rectangle Tree and Dynamic Segment Graph
	3.1 Rectangle Tree Structure
	3.2 Dynamic Segment Graph
	3.3 Early Prunning

	4 Optimizations for Dynamic Segment Graph
	5 Experiment
	5.1 Comparison with Existing Methods
	5.2 Sensitivity and Scalability Tests

	6 Related Work
	7 Conclusions
	References

