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Abstract: Shortest distance queries are essential not only in graph analysis and graph mining
tasks but also in database applications, when a large graph needs to be dealt with.
Such shortest distance queries are frequently issued by end-users or requested as a
subroutine in real applications. For intensive queries on large graphs, it is impractical to
compute shortest distances on-line from scratch, and impractical to materialize all-pairs
shortest distances. In the literature, 2-hop distance labeling is proposed to index the
all-pairs shortest distances. It assigns distance labels to vertices in a large graph in a
pre-computing step off-line, and then answers shortest distance queries on-line by
making use of such distance labels, which avoids exhaustively traversing the large
graph when answering queries. However, the existing algorithms to generate 2-hop
distance labels are not scalable to large graphs. Finding an optimal 2-hop distance
labeling is NP-hard, and heuristic algorithms may generate large size distance labels
while still  needing to pre-compute all-pairs shortest paths. In this paper, we propose a
multi-hop distance labeling approach, which generates a subset of the 2-hop distance
labels as index off-line. We can compute the multi-hop distance labels efficiently by
avoiding pre-computing all-pairs shortest paths. In addition, our multi-hop distance
labeling is small  in size to be stored. To answer a shortest distance query between two
vertices, we first generate the query-specific small set of 2-hop distance labels for the
two vertices based on our multi-hop distance labels stored, and compute the shortest
distance between the two vertices based on the 2-hop distance labels generated on-
line. We conducted extensive performance studies on large real graphs, and confirmed
the efficiency of our multi-hop distance labeling scheme.

Response to Reviewers: We would like to thank the editor and the reviewers for their insightful and invaluable
comments. We have revised the paper based on the comments, and we summarize
the revision below.

1.We conducted additional testing, and show in Figure 15 the limitations of our current
approach when dealing with dense graphs.
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2.We read the paper carefully, and fixed several typos.

The point-to-point feedbacks are given below.
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1. Comments:
What are the limitations of m-hop? In what kind of graphs you would expect it to
perform bad? Any empirical/theoretical/intuitive discussions?
The authors explain in the response that when the graph gets denser, the index size
gets significantly larger. However the experiments in section 8.5 do not suggest that
conclusion. Is it possible to expand this experiment so that it shows index size
becomes prohibitively large with increasing densities? This would just make the paper
more comprehensive. Also I suggest mentioning about the limitations and the related
future work in the conclusion section.
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information can be easily separated into |C| parts with each part saved in the label of a
corresponding vertex. This could be an implementation choice of TEDI.

To be on the safe side, I would suggest doing two minor changes (to speed up the
publication process, I do not request a minor revision).
(1)  Update the sentence in the first paragraph of Section 7:
"these existing works cannot be applied to generate distance labels *as discussed* in
this paper".  (this may mean TEDI cannot generate any distance labels)
 --> "these existing works cannot be applied to generate distance labels *that are
discussed* in this paper". (the restrictive clause sounds better)
 (2) Delete the sentence "The information stored in TEDI cannot be encoded to a
distance labeling." in the second paragraph of Section 6.

Response:
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1. Comments:
One minor notational issue: the paper repeatedly talks about T(I,F) (mostly around
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to see one sentence explaining the difference of "m-hop" and "multi-hop" in the paper.

 Final syntactical comments:
* Page 13 has an unlabeled algorithm in the upper left corner that needs to be labeled
and referenced.
 * Page 1, second paragraph of the Introduction: "how close friendship to person are"
needs reformulation. "In a travel agent, it needs" may better read "A travel agency
needs". "In other applications, ..., they also involve" should read "Other applications, ...,
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Abstract Shortest distance queries are essential not

only in graph analysis and graph mining tasks but also

in database applications, when a large graph needs to be
dealt with. Such shortest distance queries are frequently

issued by end-users or requested as a subroutine in real

applications. For intensive queries on large graphs, it is

impractical to compute shortest distances on-line from
scratch, and impractical to materialize all-pairs short-

est distances. In the literature, 2-hop distance labeling

is proposed to index the all-pairs shortest distances. It

assigns distance labels to vertices in a large graph in a

pre-computing step off-line, and then answers shortest
distance queries on-line by making use of such distance

labels, which avoids exhaustively traversing the large

graph when answering queries. However, the existing

algorithms to generate 2-hop distance labels are not
scalable to large graphs. Finding an optimal 2-hop dis-

tance labeling is NP-hard, and heuristic algorithms may

generate large size distance labels while still needing to

pre-compute all-pairs shortest paths. In this paper, we

propose a multi-hop distance labeling approach, which
generates a subset of the 2-hop distance labels as index

off-line. We can compute the multi-hop distance labels

efficiently by avoiding pre-computing all-pairs shortest

paths. In addition, our multi-hop distance labeling is
small in size to be stored. To answer a shortest distance

query between two vertices, we first generate the query-

specific small set of 2-hop distance labels for the two

vertices based on our multi-hop distance labels stored,

and compute the shortest distance between the two ver-
tices based on the 2-hop distance labels generated on-

line. We conducted extensive performance studies on

large real graphs, and confirmed the efficiency of our

multi-hop distance labeling scheme.

1 Introduction

With the rapid growth of Internet, more and more large
datasets are collected and archived. Among them, graph

data are of great importance. As turning data into profit

is essential in the fiber age, efficiently querying and an-

alyzing graph data have drawn a lot of attention in the
database community.

Shortest path query is one of the fundamental op-
erations on graph data. In a social network, users are

considered as vertices and edges represent friend rela-

tionship between them, and a common question to ask

is how close the friendship is. Erdős distance is a well-

known tongue-in-cheek measurement of mathematical
prominence of researchers in scientific circles, which is

the distance between a person and the mathematician

Paul Erdős in a collaboration network. In biological

networks, shortest paths and distance information are
employed to identify optimal pathways and valid con-

nectivity in metabolic networks [20]. A travel agency

needs to find the cheapest route from one place to an-

other destination. Other applications, such as keyword

search [32], twig pattern matching [13], and graph pat-
tern matching [10], also involve a lot of shortest distance

computations, or even the all-pairs shortest distances.

Shortest distance queries have been extensively stud-

ied. The most well-known main memory algorithms are

BFS for unweighted graphs and Dijkstra’s algorithm for

weighted graphs [8], which compute shortest distances

by traversing the original graph from scratch. The time
complexity of BFS and Dijkstra’s algorithm are O(|V |+
|E|) and O(|E| + |V | log |V |), where |V | is the num-

ber of vertices and |E| is the number of edges, respec-

tively. Therefore, it is impractical to compute short-
est distances from scratch for intensive queries on large

graphs. On the other extreme, a naive solution is to

pre-compute and materialize the all-pairs shortest dis-

1

Manuscript
Click here to download Manuscript: submit.pdf Click here to view linked References

http://www.editorialmanager.com/vldb/download.aspx?id=47282&guid=049af0db-d3b7-40f8-b359-d9058d4b59a6&scheme=1
http://www.editorialmanager.com/vldb/viewRCResults.aspx?pdf=1&docID=1054&rev=2&fileID=47282&msid={B6AC4BF0-7257-4BA8-98DC-5A0EB4270EC0}


tances. This will needO(|V |2) space, which is prohibitive

for large graphs.

Cohen et al. [7] propose a family of labelings over
graphs to support reachability and shortest distance

queries. In the distance-aware 2-hop distance labeling,

it assigns distance labels to vertices in the graph, then

shortest distances can be computed using the distance

labels directly while avoiding exhaustively traversing
the large graph. It is conjectured in [7] that the size

of the optimal 2-hop distance labels is O(|V | · |E|1/2).
Though it is appealing for the theoretical bound on

the space complexity, unfortunately, computing opti-
mal 2-hop distance labels is challenging. First, it needs

to pre-compute the all-pairs shortest paths, which is

prohibitive for large graphs. Second, for the all-pairs

shortest paths, it needs to find the optimal 2-hop cover,

which is NP-hard [7]. Several reported studies show that
the cost of computing 2-hop cover over directed graphs

is high [24,25,6].

In this paper, we focus on answering the exact dis-

tance over an undirected graph based on the label-

ing approach. The problem becomes harder because

all vertices in an undirected graph are possibly con-

nected pairwise, and the existing approaches [24,25,6]
developed over directed graphs cannot be directly ap-

plied. We propose a new multi-hop distance labeling

approach, which encodes the shortest paths compactly

and can answer the exact shortest distance between two
vertices in an undirected graph efficiently. In the multi-

hop distance labeling, we relax the condition that all

shortest paths should be covered in 2-hops, and we gen-

erate multi-hop distance labeling efficiently by avoiding

both pre-computing all-pairs shortest paths and finding
a 2-hop cover for all such pairs computed. To answer a

shortest distance query for u and v, we first generate

on-line the necessary but small set of 2-hop distance la-

bels for u and v based on our multi-hop distance labels,
and then compute the exact shortest distance between

u and v based on the 2-hop distance labels generated

on-line.

The main contributions of this work are summarized

below. First, we propose a new multi-hop distance la-

beling. The unique features of our multi-hop distance

labeling are: it can be generated efficiently and is small

in size, and it can be efficiently used to compute the ex-
act shortest distances for any pair of vertices for a large

undirected graph. Second, we give efficient algorithms

to generate multi-hop distance labels based on vertex

separators. Third, we propose efficient algorithms to
compute shortest distances based on the 2-hop distance

labels generated on-line using our multi-hop distance la-

bels. Finally, we conducted extensive performance stud-

v3 v4

v5

v8v7v6

v1 v2

Fig. 1: An Example Graph G

ies using large real and synthetic graphs, and confirmed
the efficiency of our multi-hop distance labeling scheme.

The remainder of the paper is organized as follows.

We discuss distance labeling and our problem definition

in Section 2. In Section 3, we define multi-hop distance

labeling, and show general steps to compute shortest
distances based on our distance labels. The algorithm to

generate multi-hop distance labels is introduced in Sec-

tion 4. We give efficient algorithms to compute shortest

distances based on distance labels in Section 5. The re-
lated works are discussed in Section 7. We conducted

experimental studies and discuss our findings in Sec-

tion 8. Section 9 concludes the paper.

2 Problem Statement

We consider an unweighted and undirected graph, G =

(V,E), with a vertex set V = {v1, · · · , vn} and an edge

set E = {e1, · · · , em}, where an edge ei = (u, v) is
a pair of unordered vertices. A path connecting u and

v is an ordered list of vertices, denoted as P (u, v) =

(w0, · · · , wl), where w0 = u, wl = v, and every pair

of vertices (wi−1, wi) is an edge in E, for 1 ≤ i ≤ l.
The length of a path P (u, v) is the number of edges

in P (u, v). The shortest distance between u and v is

the smallest length among all the paths connecting u

and v, denoted as δ(u, v). Without loss of generality,

we assume that G is a simple graph, i.e., there are no
self loops nor multiple edges. The numbers of vertices

and edges of G, are denoted as n = |V | and m = |E|,
respectively.

Definition 1 Distance Labeling ([11,7]): A distance

labeling of a graph G = (V,E) is a pair (L, F ). Here, L
is a distance labeling function that assigns a label to ev-

ery vertex v ∈ V , and F is a distance decoding function

that computes shortest distance for a pair of vertices

(u, v) using the labels in a way such as F (L(u), L(v)) =
δ(u, v).

In this paper, we focus on a 2-hop distance label-

ing [7], which assigns a vertex u a label in the form of
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Vertex 2-hop Distance Label

v1 {(v2, 1), (v3, 1)}
v2 {(v1, 1), (v3, 1), (v4, 1), (v5, 1)}
v3 {(v1, 1), (v2, 1), (v4, 1)}
v4 {(v2, 1), (v5, 1)}
v5 {(v2, 1)}
v6 {(v1, 1), (v2, 2)}
v7 {(v2, 1)}
v8 {(v5, 1), (v2, 2)}

Table 1: 2-hop Distance Labels

L(u) = {(w1, δ(u,w1)), · · · , (wl, δ(u,wl))}. Here, every
pair of (wi, δ(u,wi)) implies that the shortest distance
between vertex u itself and another vertex wi is δ(u,wi)

in G. In the 2-hop distance labeling, for every u and v,

the distance decoding function is defined to be as fol-

lows.

F (L(u), L(v)) = min
w∈L(u)∩L(v)

δ(u,w) + δ(v, w) (1)

The 2-hop distance labeling ensures that F (L(u), L(v)) =

δ(u, v). In other words, the distance labeling function

ensures that the shortest distance between u and v

equals to the shortest distance between u and wi plus
the shortest distance between wi and v, if there is a

vertex wi which appears in both L(u) and L(v) (L(u)∩
L(v)). Otherwise, u and v are not reachable.

Example 1 Table 1 shows the 2-hop distance labels for

the graph G in Fig. 1. The shortest distance between

v6 and v8 is F (L(v6), L(v8)) = δ(v6, v2)+ δ(v8, v2) = 4.

The framework of 2-hop distance labeling approach

consists of two phases: an off-line preprocessing phase

which generates 2-hop distance labels for all vertices

in G, and an on-line querying phase which computes

shortest distances for (u, v) queries. The off-line pre-
processing phase is only done once. The distance labels

are used to answer any (u, v) queries.

Problem Statement: Our problem is to efficiently
compute distance labels for all vertices with small space

where possible, for a given graph G(V,E) in a prepro-

cessing step, in order to compute F (·) for answering

shortest distance queries for any two vertices u and v

in G online.
Below we discuss our techniques for an unweighted

and undirected graph. Our techniques can be easily ap-

plied to weighted undirected graphs and weighted di-

rected graphs (see Section 6).

3 Multi-Hop Distance Labeling

Different from the 2-hop distance labeling, which di-

rectly generates 2-hop distance labels for all vertices

to answer any possible (u, v) queries based on Eq. (1),

in this paper, we propose a multi-hop distance label-

ing. In other words, we do not generate all 2-hop dis-

tance labels for all vertices like [7] in the preprocess-

ing step, which is time-consuming even for moderately-
sized graphs. Instead, we generate a small subset of

2-hop distance labels, which are our multi-hop distance

labels, in the preprocessing step. When answering, we

generate sufficient 2-hop distance labels needed on-line
for answering a specific (u, v) query efficiently using our

multi-hop distance labels and then compute the short-

est distance for the (u, v) query. This is motivated by

the fact that for a (u, v) query only a small subset of

2-hop distance labels is needed. For example, in order
to compute the shortest distance between v3 and v6
in Table 1, only the distance labels to v1 are needed.

Therefore, we can generate the sufficient 2-hop distance

labels efficiently. Our multi-hop distance labeling is de-
fined as follows.

Definition 2 Multi-hop distance labeling:Amulti-hop

distance labeling of a graph G is a triple (L, p,F). Here,
L is a distance labeling function that assigns a vertex
u a label in the form of L(u) = {(w1, δ(u,w1)), . . . ,

(wl, δ(u,wl))}. p is a parent function that assigns a

parent vertex to every vertex. F is a distance decod-

ing function that computes shortest distance for a pair

of vertices (u, v) using the labels in a way such as
F(L(u), p(u),L(v), p(v)) = δ(u, v).

The main difference between 2-hop and multi-hop is

that multi-hop relaxes the condition on L(u) and L(v)
and does not request δ(u, v) = minw∈L(u)∩L(v) δ(u,w)+

δ(v, w) like Eq. (1). The main advantage is that we can

generate the multi-hop distance labels efficiently while

avoiding precomputing all-pairs shortest paths, because

there is no need that all shortest paths are covered by
L(·). However, it implies two things. (1) There may not

exist common vertices for u and v (L(u)∩L(v) = ∅). (2)
There are common vertices for u and v (L(u) ∩ L(v) 6=
∅), but δ(u, v) = minw∈L(u)∩L(v) δ(u,w) + δ(v, w) does
no longer hold. In order to turn our multi-hop into a

distance labeling, the parent functions play a very im-

portant role. The parent functions on-line determine a

small subset of vertices inG for the two vertices u and v,

denoted as Suv, such that δ(u, v) = minw∈Suv
δ(u,w)+

δ(v, w).

We explain the main idea behind our multi-hop dis-

tance labeling using an example. Consider the example

graph in Fig. 1. Table 2 shows our multi-hop distance

labels. We call a vertex v ancestor of another vertex
u, if and only if there is a sequence of parent relation-

ships (w1, w2, · · · , wl) from u to v such that u = w1 and

v = wl, and p(wi) = wi+1 for 1 ≤ i < l. Here, u is a

3



Vertex Distance Label Parent

v1 {(v2, 1), (v3, 1)} v2

v2 {(v3, 1), (v4, 1)} v3

v3 {(v4, 1)} v4

v4 ∅ ∅

v5 {(v2, 1), (v4, 1)} v2

v6 {(v1, 1)} v1

v7 {(v2, 1)} v2

v8 {(v5, 1)} v5

Table 2: Multi-hop Distance Labels

descendant of v if v is an ancestor of u. There exists one

and only one vertex (the root) having p(v) = ∅ in our
multi-hop distance labeling. First, consider answering

a (v6, v3) query. Here, v3 is an ancestor of v6 because

of the existence of the sequence of (v6, v1, v2, v3). The

distance labels of v6 contain only L(v6) = {(v1, 1)}.
The distance labels of the parent of v6 are L(v1) =
{(v2, 1), (v3, 1)}. The shortest distance between v6 and

v3 is δ(v6, v3) = δ(v6, v1)+δ(v1, v3) = 2, where δ(v6, v1)

is encoded in L(v6) and δ(v1, v3) is encoded in L(v1).
Next, consider answering a (v6, v7) query. Here, there
does not exist an ancestor/descendant relationship be-

tween v6 and v7. Instead, v6 and v7 have a least common

ancestor v2 because the ancestors of v6 are (v1, v2, · · · )
and the ancestors of v7 are (v2, · · · ). Via the least com-

mon ancestor v2, the shortest distance between v6 and
v7 is δ(v6, v7) = δ(v6, v2)+δ(v7, v2) = 3, because δ(v6, v2) =

δ(v6, v1) + δ(v1, v2) = 2 and δ(v7, v2) = 1. All the dis-

tance labels needed are encoded in v6, v7, v1, and v2,

and they are identified by the parent function.

3.1 Vertex Separator, Tree Decomposition, and 2-hop
Distance Labeling

Cohen et al. [7] prove that the problem of computing

an optimal 2-hop distance labeling is NP-hard, and pro-

pose an approximate algorithm. The approximate algo-
rithm computes all-pairs shortest paths, and then re-

duces the problem to a set cover problem. However,

both steps are time-consuming even for moderately-

sized graphs. In this paper, we propose a new approach
to generate 2-hop distance labels. We discuss several

issues that are related to our 2-hop distance labeling

computing, namely, vertex separator and tree decom-

position, which then result in our multi-hop distance

labeling.

Vertex Separator: For a graph G(V,E), a subset of
vertices S ⊂ V is a vertex separator if its deletion splits

G into multiple connected components. A vertex sepa-

rator S ⊂ V is said to be a vertex separator of u, v ∈ V ,

v2

v7v3

v5v1

v6 v4 v8

Fig. 2: Example Vertex Separators

if u and v are in different connected components by the

deletion of the separator S.

A 2-hop distance labeling can be generated using

vertex separators. Given a graph G(V,E), without loss
of generality, assume that the deletion of a vertex sep-

arator S splits G into two connected components with

vertex sets A and B, respectively, i.e., A ∩ B = ∅,
A ∪ B ∪ S = V , there is no path between any vertex
in A and any vertex in B without passing through any

vertices in S. We can add labels to vertices as follows.

For each vertex v ∈ A ∪ B, add {(w, δ(v, w)) | w ∈ S}
to L(v), and for each vertex v ∈ S, add {(w, δ(v, w)) |
w ∈ S \ v} to L(v). Then, we can add labels to vertices
recursively by applying the above procedure to the two

subgraphs induced by A and B, respectively. It is easy

to verify that the resulting labeling is a 2-hop distance

labeling.

Example 2 Consider G in Fig. 1. A rooted tree in Fig. 2

shows the vertex separators. Each node in the tree in-
dicates a vertex subset of G. This tree is constructed

by a process of finding a vertex separator and divid-

ing the graph recursively. Initially, the vertex separator

{v2} is selected to divide G into two connected compo-
nents, then {v3} is selected to further divide the left

components into two connected components {v1, v6}
and {v4, v5, v8}, for example. Note that a subtree in

Fig. 2 represents a connected component of G in Fig. 1.

For example, the subtree rooted at v3 denotes the con-
nected subgraph induced by vertex set {v1, v3, v4, v5,
v6, v8} in G. Based on this tree, the labels of a ver-

tex u are assigned in a way to include (w, δ(u,w)) for

every vertex w in the nodes in the rooted tree that
either contain u or are ancestors of the node contain-

ing u. For example, L(v6) = {(v1, 1), (v3, 2), (v2, 2)},
L(v8) = {(v5, 1), (v3, 2), (v2, 3)}. The shortest distance

between v6 and v8 can be computed as min{δ(v6, v3) +
δ(v8, v3), δ(v6, v2) + δ(v8, v2)}, by Eq. (1).

It is important to note that we illustrate a method to

compute 2-hop distance labels using vertex separators

4



X0 v3, v2, v4

X3 v7, v2 X4 v5, v2, v4v1, v2, v3X1

X2 v6, v1 X5 v8, v5

Fig. 3: Example Tree Decomposition

which is hard to compute in general. Next, we show

tree decomposition which assists us to compute vertex

separators.

Tree Decomposition [22]: A tree decomposition of
a graph G(V,E) is a pair ({Xi | i ∈ I}, T ), where

T = (I, F ) is a tree (I are the set of nodes and F

are the set of tree edges) and {Xi | i ∈ I} is a collec-

tion of subsets of V such that: (1)
⋃

i∈I Xi = V . (2)
For every (u, v) ∈ E, there is an i ∈ I, s.t., u ∈ Xi and

v ∈ Xi. (3) For every v ∈ V , the set Iv = {i | v ∈ Xi}
forms a connected subtree of T . Here, a tree node i ∈ I

(or equivalently Xi) represents a subset of vertices in

V , i.e., Xi ⊂ V , and F represents the set of edges of
the tree decomposition. The 1st condition requires that

every vertex in V must occur in at least one tree node,

and it possibly appears in multiple tree nodes. The 2nd

condition requires that for every edge in E, both ver-
tices of its end points must occur together in at least

one tree node. The 3rd condition requires that, for every

vertex v ∈ V , all the tree nodes which contain v must

be connected. This is known to be the continuity con-

dition, and can be replaced by the following equivalent
condition: for all i0, i1, i2 ∈ I, if i1 is on the undirected

path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆ Xi1 .

The width of a tree decomposition ({Xi | i ∈ I}, T =

(I, F )) is maxi∈I |Xi| − 1. The treewidth of a graph G,

denoted as tw(G), is the minimum width among all tree

decompositions of G.

Example 3 Fig. 3 shows a tree decomposition for the
graph G shown in Fig. 1, where Xi indicates tree nodes,

the vertices enclosed in a rectangle indicate the con-

tent of a tree node, e.g., X1 = {v1, v2, v3}. For the 1st

condition,
⋃

0≤i≤5 Xi = V . For the 2nd condition, for

example, for edge (v3, v4) ∈ E, both vertices are in
X0; for edge (v2, v3) ∈ E, both vertices are in X0 and

X1. For the 3rd condition, for example, v2 appears in

{X0, X1, X3, X4} which forms a connected subtree in

T . Or equivalently, X3 ∩ X4 = {v2} and {v2} is sub-
set of all tree nodes on the path from X3 to X4, i.e.,

{v2} ⊂ X0. The width of this decomposition is 2. The

treewidth of G shown in Fig. 1 is 2, i.e., tw(G) = 2.

From now on, we refer to a vertex in graph G as ver-

tex, and refer to a node in tree decomposition as node.

We refer to both i and Xi as tree node. For simplicity,

we also call the resulting tree T in a tree decomposi-

tion as tree decomposition, when {Xi | i ∈ I} can be
inferred from the context. The tree T in a tree decom-

position is undirected. We can choose an arbitrary node

to make T directed.

A tree decomposition T (I, F ) is minimal if, for all

i, j ∈ I, Xi * Xj and Xj * Xi. We can transform
a non-minimal tree decomposition into a minimal one

by deleting nodes. The idea is that, if a T (I, F ) is not

minimal, there must exist at least one pair (i, j) with

i, j ∈ I and (i, j) ∈ F such that Xi ⊂ Xj , then we can

delete i from I and connect all the neighbors of i (except
j) to be reconnected to j. The deletion step continues

until the resulting tree decomposition is minimal.

Below, we give a lemma to show the relationships

between Xi in the tree decomposition and the vertex

separator.

Lemma 1 Given a graph G and a minimal tree de-

composition ({Xi | i ∈ I}, T (I, F )) of G, an arbitrary

non-leaf tree node Xi is a vertex separator of G, and
the resulting subtrees by excluding vertices from Xi are

also tree decompositions of connected components.

Proof Sketch: Without loss of generality, we assume

that the deletion of a non-leaf node Xi splits T into two

connected subtrees T1 and T2.

We first prove that Xi is a vertex separator. Let

A be the set of vertices contained in nodes of T1 ex-
cluding vertices in Xi, and B be the set of vertices

contained in nodes of T2 excluding vertices in Xi, i.e.,

A =
⋃

j∈T1
Xj \ Xi and B =

⋃
j∈T2

Xj \ Xi. Then

A ∩B = ∅ based on the third condition of tree decom-

position, and A∪B∪Xi = V . For any vertex u ∈ A and
any vertex v ∈ B, (u, v) /∈ E based on the second con-

dition of tree decomposition. Therefore, Xi is a vertex

separator of G.

Now, we prove that T1 and T2 by excluding vertices

from Xi are tree decompositions of the corresponding
connected components. Let T ′

1 and T ′
2 be the results

of deleting vertices of Xi from nodes in T1 and T2,

respectively, and let X ′
j be the corresponding result-

ing vertices in nodes. Then, we have X ′
j 6= ∅ for any

j ∈ T1∪T2, because T is a minimal tree decomposition.
In the previous paragraph, we have shown that Xi sep-

arates G into disjoint sets A and B. Now, we only need

to show that T ′
1 and T ′

2 are tree decomposition of the

subgraphs induced by A and B, respectively. Note that,
the subgraph induced by A or B may be disconnected.

First, A =
⋃

j∈T1
Xj \Xi =

⋃
j∈T1

X ′
j . Second, for any

u, v ∈ A with (u, v) ∈ E, there must exist a j ∈ T1 such
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that u, v ∈ Xj , because u, v /∈ Xi, we have u, v ∈ X ′
j .

Third, for any v ∈ A, let T ′
v be the set of nodes that

contain v, we have T ′
v = Tv, therefore T ′

v forms a con-

nected subtree of T ′
1. So, T

′
1 is a tree decomposition of

the subgraph induced by vertex set A. Similarly, T ′
2 is a

tree decomposition of the subgraph induced by vertex

set B. ✷

As an example, the tree node X0 = {v3, v2, v4} in

Fig. 3 is a vertex separator of the graph G in Fig. 1.

Next we show that 2-hop distance labels can be gener-
ated from a tree decomposition of the given graph.

Lemma 2 2-hop distance labels for G can be generated

using a tree decomposition of G.

Proof Sketch: This proof sketch is also a construction

algorithm to generate 2-hop distance labels based on a

tree decomposition. It works recursively. Initially, the
labels of all vertices are empty, i.e., L(v) = ∅, for all

v ∈ V .

We consider a graphG(V,E) and its tree decomposi-

tion ({Xi | i ∈ I}, T (I, F )). First, if the tree decomposi-

tion is not minimal, we transform it into a minimal one.
If the tree decomposition contains no more than two

nodes, then for each v ∈ V , add labels {(w, δ(v, w)) |
w ∈ V \v} into L(v). Otherwise, each non-leaf node is a

vertex separator based on Lemma 1, we can choose an

arbitrary one. AssumeXi is chosen as the vertex separa-
tor, then, for each v ∈ V \Xi, add labels {(w, δ(v, w)) |
w ∈ Xi} into L(v), for each v ∈ Xi, add labels {(w, δ(v,
w)) | w ∈ Xi \ w} into L(v). Based on Lemma 1, the

deletion of node Xi splits T into several subtrees, each
of which is a tree decomposition of the corresponding

connected component of G by deleting Xi. This process

continues for each subgraph and its corresponding tree

decomposition. ✷

Lemma 2 shows how to generate 2-hop distance la-

bels using minimal tree decomposition. Related to our
multi-hop distance labeling, we show a specific 2-hop

distance labeling for G(V,E). Our specific 2-hop dis-

tance labeling can be constructed using any tree de-

composition, which does not need to be a minimal tree
decomposition. We will discuss it below. We consider

the tree decomposition T as a rooted tree rooting at

an arbitrary tree node. For example, X0 is selected as

the root for the tree decomposition in Fig. 3. For each

vertex v ∈ V , we define rv as the root node index of the
subtree in T induced by Iv (= {i | v ∈ Xi}), and define

Xrv as the actual node, i.e., Xrv is the node closest to

the root of T among all the nodes containing v. For

example, in Fig. 3, rv1 = 1, rv2 = 0, and rv8 = 5. Let
Ans(i) denote the set of indexes of ancestor nodes of Xi

including Xi itself. For example, Ans(1) = {0, 1} and
Ans(5) = {0, 4, 5}. We assign a label to every vertex

v ∈ V as L(v) = {(w, δ(v, w)) | w ∈
⋃

i∈Ans(rv)
Xi \ v}.

In other words, we maintain the distance from v to all

vertices in tree node Xrv and ancestors of Xrv as labels

of v. For example, L(v1) = {(v2, 1), (v3, 1), (v4, 2)}, and
L(v8) = {(v2, 2), (v3, 3), (v4, 2), (v5, 1)}.

Theorem 1 For a tree decomposition ({Xi | i ∈ I}, T =

(I, F )) of a graph G = (V,E), if L(v) is generated as
{(w, δ(v, w)) | w ∈

⋃
i∈Ans(rv)

Xi \ v} for every v ∈ V ,

then it is a 2-hop distance labeling of G.

Proof Sketch: This labeling can be derived by the

procedure in the proof of Lemma 2, where the root node
of tree decomposition is chosen as a vertex separator in

every recursive step. ✷

3.2 Multi-hop Distance Labels

Theorem 1 proposes one method to compute 2-hop dis-

tance labeling based on tree decomposition, but does
not guarantee the approximate ratio of the 2-hop dis-

tance labels generated to the optimal. The size of labels

computed based on Theorem 1 can be very large. We

propose a new multi-hop distance labeling approach,

which stores only a subset of the 2-hop distance labels.
We compute multi-hop distance labels based on the 2-

hop distance labeling computed by Theorem 1, but do

not directly compute 2-hop distance labels.

In multi-hop distance labeling, we define L(v) =

{(w, δ(v, w)) | w ∈ Xrv \ v}. Recall that Xrv is the

specific node in T that contains vertex v and is closest

to the root of T among all the nodes containing v. We
define the parent of v, p(v), as the parent node of Xrv

in T . More precisely, let rvi = i, a tree decomposition

can be rewritten as ({Xi | i ∈ I}, T = (I, F )), where

I = {1, · · · , n}, Xi = {vi} ∪ {w | w ∈ L(vi)}, and
F = {(i, j) | vi ∈ V, p(vi) = vj}.

Given multi-hop distance labeling (Definition 2) with

L(·) and p(·), we explain how the multi-hop distance la-
beling is used for answering distance queries and how

the multi-hop distance labeling can be small in size. All

the issues are closely related to the parent function p(·).
In brief, let u and v be two vertices in G, and Xru

and Xrv be two nodes in T . The parent function u =

p(v) is designed to indicate the parent relationship be-

tween u and v as well as the fact that Xru is the parent
node of Xrv in T . The idea behind is to use such p(v)

to trace distance labels online instead of maintaining

all the required distance labels. To ensure such corre-

spondence, we restructure T in a way that ru 6= rv for
any u 6= v, or in other words, rv is unique for a specific

vertex v in V . T can be restructured as follows. For a

tree decomposition, if there are two vertices u and v

6



Xl vl, · · ·

Xi vi, · · · Xj vj, · · ·

Fig. 4: Query Answering

with ru = rv, we create a new node X in T to be the

child of the parent of Xru and to be the parent of Xru .

By letting X = Xv \ v, we assign the new X to u and
the old Xv to v. We can repeat this process until all

vertices in G correspond to a unique node in T . In this

way, a vertex u is an ancestor of a vertex v in G if and

only if Xru is an ancestor of Xrv in T . It is important
to note that the restructuring of T does not change the

properties of T .

When querying (u, v), we use both L(·) and p(·)
to generate the query-specific small set of necessary 2-

hop distance labels for computing the shortest distance
between vertex u and v on-line. We explain query an-

swering using Fig. 4. Here, Xi and Xj in the tree de-

composition T are for two vertices, vi and vj , in G,

respectively. Xl is for a vertex vl in G which is the
least common ancestor of Xi and Xj in T . (Case-1)

In order to compute a distance query (vi, vl) on G, we

only need a linear scan of the multi-hop distance labels

of L(vi), · · · ,L(vl) as defined by p(.) along the path of

Xi, · · · , Xl in T . There are only 4 nodes in T from Xi to
Xl. Therefore, we only need to use 4 multi-hop distance

labels at most. (Case-2) In order to compute another

distance query (vi, vj) on G, let S be the vertices of G

in Xl, δ(vi, vj) is equal to minw∈S δ(vi, w) + δ(vj , w).
We can compute the shortest distance between vi and

w, and between vj and w, which are the necessary 2-

hop distance labels to compute the shortest distance

between vi and vj .

We give two lemmas below. Lemma 3 and Lemma 4
explain the correctness of Case-1 and Case-2, respec-

tively, based on vertex separators.

Lemma 3 In the rooted tree decomposition T , for any
two nodes Xi and Xl where Xl is an ancestor of Xi,

consider the path P (Xi, Xl) connecting Xi and Xl in

T . For each Xk ∈ P (Xi, Xl), if vl /∈ Xk, then Xk \ vk
is a vertex separator of vi and vl.

Proof Sketch: We have vi /∈ Xk for Xk ∈ P (Xi, Xl)

and k 6= i, due to the fact that Xl is an ancestor of Xi.

Therefore, for Xk ∈ P (Xi, Xl) and k 6= i, if vl /∈ Xk,

then Xk is a vertex separator of vi and vl based on

Lemma 1. Due to the second condition of tree decom-

position, vk is not adjacent to any vertex contained in

nodes in the path from Xk to Xl except those vertices
contained in Xk\vk. Therefore, Xk\vk is a vertex sepa-

rator of vi and vl. Similarly, Xi \vi is a vertex separator

of vi and vl if vl /∈ Xi. ✷

Lemma 4 In the rooted tree decomposition T , for any

two nodes Xi and Xj, where Xi and Xj do not have

ancestor-descendant relationships, Let P (Xi, Xj) be the

path connecting Xi and Xj, and let Xl be the least com-
mon ancestor of Xi and Xj. For each Xk ∈ P (Xi, Xj)

with k 6= l, Xk \ vk is a vertex separator of vi and vj.

Xl is also a vertex separator of vi and vj.

Proof Sketch: Due to our construction algorithm of

T , for each Xk ∈ P (Xi, Xj) with k 6= i and k 6= j, we

have vi, vj /∈ Xk. Therefore Xk with k 6= i and k 6= j
is a vertex separator of vi and vj . Because Xi and Xj

do not have ancestor-descendant relationships, we have

i 6= l and j 6= l. Similar as the proof of Lemma 3, each

Xk \ vk with k 6= l is a vertex separator of vi and vj
because we have vi /∈ Xj and vj /∈ Xi. ✷

Theorem 2 For a tree decomposition ({Xi | i ∈ I}, T =

(I, F )) of a graph G = (V,E), if we define L(v) =

{(w, δ(v, w)) | w ∈ Xrv\v} for each v ∈ V , and p(v) as
the parent node of Xrv in T , then the multi-hop distance

labeling, (L, p,F), of G, correctly compute the shortest

distance for every two vertices in G.

Proof Sketch: Given two vertices u and v in G. Sup-

pose Xru and Xrv are two nodes in the corresponding

tree-decomposition T that u and v correspond to. There
are only two cases, namley, Case-1 and Case-2 as dis-

cussed above. They can be proved using Lemma 3 and

Lemma 4. ✷

Lemma 5 The distance labels in our multi-hop dis-

tance labeling is strictly smaller than that in the 2-hop

distance labeling given by Theorem 1.

Proof Sketch: In multi-hop distance labeling, for each

vertex v ∈ G, we only maintain the shortest distances

from v to vertices in Xrv , i.e., L(v) = {(w, δ(v, w) |
w ∈ Xrv \v}. While in 2-hop distance labeling, it needs

to maintain the shortest distances from v to vertices

not only in Xrv but also in the ancestor tree nodes of

Xrv , i.e., L(v) = {(w, δ(v, w)) | w ∈
⋃

i∈Ans(rv)
Xi \

v}. Therefore, the size of multi-hop distance labeling is

strictly smaller than 2-hop distance labeling generated

by Theorem 1. ✷
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Fig. 5: Example Tree Decomposition

4 Computing Distance Labels

Our multi-hop distance labeling is based on a tree de-
composition of a graph G [1], with a goal of finding a

tree decomposition whose total size is as small as possi-

ble. Several upper bound heuristics for determining the

treewidth of a graph and finding tree decompositions

are surveyed in [4]. A family of heuristic algorithms is
based on the concept of fill-in graph. Let π denote an

elimination order of vertex set V , which defines a to-

tal ordering of V , i.e., π(u) < π(v) if and only if u is

lower ordered than v with respect to π. Given a graph
G(V,E) and an elimination order π, the fill-in graph

H(VH , EH) of G with respect to π is a super graph of

G, such that any higher ordered neighbors of a vertex

are connected to each other, i.e., VH = V and EH ⊇ E,

and for any two edges (u, v) ∈ EH and (u,w) ∈ EH

with π(v) > π(u) and π(w) > π(u), there must have

(v, w) ∈ EH . Given an elimination order π, it is easy

to construct a tree decomposition with treewidth one

less than the size of the maximum clique in the fill-in
graph of G with respect to π [4]. Our Labeling algo-

rithm is based on the following well known alternative

characterizations of the notion of treewidth.

Theorem 3 [4] Let G(V,E) be a graph, and let k ≤ n

be a non-negative integer. The following three are equiv-
alent. First, G has a treewidth at most k. Second, there

is an elimination order π, such that the maximum size

of a clique of the fill-in graph of G with respect to π

is at most k + 1. Third, there is an elimination order
π, such that no vertex v ∈ V has more than k higher

ordered neighbors in the fill-in graph of G with respect

to π.

An approximate tree decomposition can be found
by choosing a specific elimination order heuristically.

Min-degree is such a heuristics that finds an approxi-

mate tree decomposition efficiently [4]. It works itera-

Algorithm 1 Min-Degree (G(V,E))

Input: A graph G = (V, E).
Output: An elimination order π based on min-degree heuristic.

1: H ← G;
2: for i← 1 to n do

3: Let v be the vertex in H that has minimum degree;
4: Add v to be the ith vertex in ordering π;
5: Add edges to H to make all neighbors of v to be con-

nected to each other, and then remove v and its asso-
ciated edges;

6: return π;

Algorithm 2 Labeling (G, π)

Input: A graph G = (V, E), and an elimination order π.
Output: Distance labels and parents assigned to each vertex.

1: Let H(VH , EH) be the fill-in graph of G with respect to
π;

2: for i← n down to 1 do

3: Let v ← π−1(i) be the ith vertex in ordering π;
4: Let C be the set of higher ordered neighbors of v in H,

i.e., C = {u | (u, v) ∈ EH , π(u) > π(v)};
5: Assign vertices in C and their corresponding shortest

distances from v computed in G to L(v), i.e., L(v) =
{(w, δ(v, w)) | w ∈ C};

6: Set the parent of v to be the lowest ordered vertex in
C, i.e., p(v) = argminu∈C π(u);

7: return L(v), p(v) for each vertex in V ;

tively. In every iteration, it locates the vertex v with

the minimum degree, and adds v to be the next vertex
in ordering π, then makes the neighborhood of v to be

a clique and removes v. The pseudocode of finding an

elimination order for a graphG based on the min-degree

heuristic is shown in Alg. 1, denoted as Min-Degree.

The pseudocode of generating multi-hop distance

labels is shown in Alg. 2. Given a graph G and an
elimination order π, Labeling assigns distance labels

and parents to each vertex in V . It first builds the

fill-in graph H(VH , EH) of G with respect to π (Line

1). Then, for each vertex v ∈ V , it locates the set
of higher ordered neighbors of v in H (Line 4), i.e.,

C = {u | (u, v) ∈ EH , π(u) > π(v)}. Note that the

induced subgraph of C in H is a clique, as ensured by

the definition of fill-in graph. For each vertex w ∈ C, it

assigns w and its distance from v to L(v) (Line 5), i.e.,
L(v) = {(w, δ(v, w)) | w ∈ C}. Note that, the distance

δ(v, w) is computed in graph G, not in the fill-in graph

H . The parent of v is assigned as the lowest ordered

vertex in C (Line 6), i.e., p(v) = argminu∈C π(u), and
p(v) is set to ∅ if C is a empty set. Note that, if the

graph G is a connected graph, there will be exactly one

vertex v ∈ V with p(v) = ∅.
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Example 4 Consider the graph G shown in Fig. 1, one

possible elimination order obtained by min-degree heuris-

tic can be π = {v6, v7, v8, v1, v5, v2, v3, v4}. The fill-in

graph is G itself, i.e., no edge needs to be added. Fig. 5

shows a tree decomposition of G. For vertex v1, the set
of higher ordered neighbors is Cv1 = {v2, v3}, therefore,
L(v1) = {(v2, 1), (v3, 1)} and p(v1) = v2. Table 2 shows

the multi-hop distance labels corresponding to this tree

decomposition.

Reconsider the graph G in Fig. 1. Suppose we delete

the two edges (v2, v3) and (v2, v4) from G, and have
a different graph denoted as G′. Here, the elimination

order and the fill-in graph of G′ will be the same as G.

However, distance labels for G′ can be different from

those for G, because they are computed on different

graphs.

The tree decomposition of graph G can be con-

structed by the algorithm Labeling (Alg. 2). Here,
each v and the corresponding C forms a node of the

tree decomposition (Lines 3-4). Note that Labeling

directly generates a tree decomposition which may not

be minimal, as our approach does not require to have
a minimal tree decomposition.1

Theorem 4 Algorithm Labeling correctly assigns dis-

tance labels and parents to vertices in V . The time com-

plexity of Labeling is linear to the size of the fill-in
graph H, i.e., O(|VH | + |EH |), and the labeling size is

also O(|VH |+ |EH |).

Proof Sketch: Let Cv = {u | (u, v) ∈ EH , π(u) >
π(v)} be the set of higher ordered neighbors of v in H .

We show that ({Xi | i ∈ I}, T (I, F )) is a tree decom-

position of G, where I = {1, · · · , n}, Xi = {vi} ∪ Cvi ,

and F = {(i, j) | vi ∈ V, p(vi) = vj}. Consider the first
condition of tree decomposition,

⋃
i∈I Xi = V , because

I = {1, · · · , n} and vi ∈ Xi. For the second condition,

for every (vi, vj) ∈ E, it is also in EH , without loss of

generality, assume π(vi) < π(vj), then vj ∈ Cvi , there-

fore vi, vj ∈ Xi. For the third condition, we show that
the set Iv = {i | v ∈ Xi} forms a connected subtree

of T for every v ∈ V . Consider an arbitrary i ∈ Iv,

v ∈ Xi, if v 6= vi, then v ∈ Cvi , let p(vi) be vj where

vj ∈ Cvi , then either v = vj or v ∈ Cvj because Cvi

induces a clique in H , therefore j ∈ Iv, also we have

π(vj) > π(vi). There is exactly one i ∈ Iv with vi = v,

therefore, Iv forms a connected subtree of T . Let such

i ∈ I, where p(vi) = ∅, be the root of T , then rvi = i

for all vi ∈ V . Because Xi = {vi}∪Cvi , we have L(v) =
{(w, δ(v, w)) | w ∈ Cv} = {(w, δ(v, w)) | w ∈ Xrv \ v},

1 If needed, we can transform the tree decomposition gen-
erated by Labeling into a minimal one.

Algorithm 3 SDistance ((u, v))

1: if v ∈ L(u) or u ∈ L(v) then

2: return δ(u, v);
3: if u is ancestor of v or v is ancestor of u then

4: return SDistanceAD(u, v);
5: else

6: return SDistanceNAD(u, v);

and p(v) just record that the parent of Xrv is Xrp(v) in

the rooted tree.

Now, we show the time complexity of Labeling.

Let d(v) denote the degree of a vertex v ∈ V . Line 3

takesO(1) time, and Line 4 takesO(d(v)) time, because

we just need to loop through all the neighbors of v in
H and record the higher ordered neighbors in C, and

Line 5 and Line 6 take O(|C|) time which is less than

O(d(v)). Note that, at Line 5, we do not include the

time to compute shortest distances δ(v, w). We need

to execute Lines 3-6 for all n vertices, so the total time
complexity is

∑
v∈V O(d(v)) = O(|VH |+|EH |). Because

we add labels and parents at Line 5 and Line 6, re-

spectively, the total label size is
∑

v∈V O(|Cv | + 1) ≤∑
v∈V O(d(v) + 1) = O(|VH |+ |EH |). ✷

It is worth noting that Theorem 4 states that the

time complexity of Labeling is linear to the size of

the fill-in graph H . Here, the time to find such a fill-in

graph and the time to compute shortest paths between

vertex pairs are not taken into consideration. If all these
computations are taken into consideration, the worst

case time complexity is O(|V |(|V |+ |E|)).

5 Shortest Distance Query

Alg. 3 shows the main algorithm to compute the short-

est distance between u and v. First, if v (or u) is in

the distance labels of u (or v) (line 1), then δ(u, v)

is maintained in the corresponding distance labels. If
u and v have ancestor-descendant relationships, then

we call the procedure SDistanceAD (Alg. 4) to com-

pute shortest distances, otherwise, we call the proce-

dure SDistanceNAD (Alg. 5).

Ancestor-Descendant Queries: Consider a distance

query (u, v), assuming that there exists an ancestor-

descendant relationship between u and v. Also assume

that v is an ancestor of u. We compute shortest dis-
tance from u to v. SDistanceAD (Alg. 4) is based on

Lemma 3 (in Section 3.2). It first initializes dis(w) to

be δ(u,w) for all w ∈ L(u) (Line 1). Then it computes

distances for vertices along the path from Xru to Xrv

(Lines 3-7). Let Xrc be the current node in consider-

ing. For every vertex w ∈ L(c), dis(w) is updated to be

dis(c)+δ(c, w), if dis(w) is not computed previously or
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Algorithm 4 SDistanceAD (u, v)

Input: Two vertices u and v, where v is an ancestor of u.
Output: Shortest distance between u and v, δ(u, v).

1: Initialize dis(w) = δ(u, w), for all w ∈ L(u);
2: Let c← p(u);
3: while c 6= v do

4: for all w ∈ L(c) do

5: if dis(w) is not computed or dis(c)+δ(c, w) < dis(w)
then

6: dis(w)← dis(c) + δ(c, w);
7: c← p(c);
8: for all w ∈ L(v) do

9: if dis(w) is computed and dis(w) + δ(v, w) < dis(v)
then

10: dis(v)← dis(w) + δ(v, w);
11: return dis(v);

(1) (2)

wi, · · ·

w1(u), · · · , wi, · · ·

...

wl(v), · · · , wi, · · ·wl(v), · · ·

w1(u), · · · , wi, · · ·

...

...

Xrv

Xru Xru

Xrv

Fig. 6: Illustration of Shortest Path

dis(c) + δ(c, w) < dis(w) (Lines 4-6). Finally, we check

if there exists any shorter path from u to v that goes

through vertices in L(v) (Lines 8-10).
Let tw denote the treewidth of the tree decomposi-

tion.

Theorem 5 SDistanceAD correctly computes short-

est distance δ(u, v), when v is an ancestor of u in the
multi-hop distance labeling. The time complexity of

SDistanceAD is O(tw · |P (Xru , Xrv )|).

Proof Sketch: We first prove that, for every dis(w)

computed by SDistanceAD, there is a corresponding

path from u to w that has distance dis(w). There are
three statements (Lines 1,6,10) that change the values

of dis(w). We prove it for each case. For the first case

(Line 1), dis(w) is initialized as stored in the distance

labels, therefore, the claim is satisfied as stated in Theo-

rem 4. For the second case (Line 6), we have that vertex
p(c) is included in the distance labels of c for any c, as

ensured by Line 6 of Alg. 2. Therefore, during the while

loop (Line 3), dis(c) is initialized with a correct value.

For dis(w) which is assigned as dis(c)+δ(c, w), it satis-
fies the claim since both dis(c) and δ(c, w) correspond

to paths. For the third case (Line 10), the proof is sim-

ilar to that for the second case. Therefore, the claim is

Algorithm 5 SDistanceNAD (u, v)

Input: Two vertices u and v, where u and v do not have
ancestor-descendant relationships.

Output: Shortest distance between u and v, δ(u, v).

1: Find the vertex separator S of u and v;
2: disu(S)← SDistanceAD-List(u, S);
3: disv(S)← SDistanceAD-List(v, S);
4: δ(u, v)← minw∈S disu(w) + disv(w);
5: return δ(u, v);

correct, and dis(w) is an upper bound of the shortest

distance from u to w.

Now, we show that the shortest path between u and

v has been considered by the algorithm when it ter-
minates. Assume the shortest path between u and v is

w1, · · · , wl with w1 = u and wl = v. Because Xru \ u is

a vertex separator of u and v (based on Lemma 3),

the path must go through a vertex in Xru \ u. As-
sume wi is such a vertex in Xru \u that has the largest

shortest distance from u among all the vertices on the

shortest path, then the path w1, · · · , wi is considered

in the distance labels L(u). If Xrwi
is not on the path

P (Xru , Xrv), then wi is contained in the distance labels
of every node on P (Xru , Xrv ) due to the third condition

of tree decomposition, therefore the path wi, · · · , wl is

checked in the labels L(v) (Lines 8-10), as illustrated in

Fig. 6(2). Otherwise, Xrwi
is on the path P (Xru , Xrv)

(Fig. 6(1)), then the path wi, · · · , wl is checked induc-

tively as proved above. And, the path will be found

since it becomes shorter by every induction.

For the time complexity, it is easy to see that, if we

use an array dis of size n to store distances and initialize
dis(w) ← ∞ for all w ∈ V , then SDistanceAD takes

O(tw · |P (Xru , Xrv )|) time excluding the initialization

time. Here, we show an implementation of SDistanceAD

that uses only O(tw) working memory space and runs
in time O(tw · |P (Xru , Xrv)|). We notice that, assume

P (Xru , Xrv) = Y1, · · · , Yl, then during the execution

of algorithm, only the distances for vertices contained

in two consecutive nodes are needed for computation

and storage. Therefore, we record vertex-distance pairs
in dis for vertices in consideration, and the entries in

dis are ordered by vertex id. Similarly, we also assume

distance labels L(v) are sorted by vertex id. There-

fore, Lines 4-6 and Lines 8-10 can be implemented in a
merge-sort fashion in linear time. ✷

Non-Ancestor-Descendant Queries: Consider a dis-

tance query (u, v), and assume u and v do not have

ancestor-descendant relationships. Let lca(u, v) denote
the least common ancestor of u and v in the distance

labeling. We have lca(u, v) 6= u and lca(u, v) 6= v.

SDistanceNAD (Alg. 5) is based on Lemma 4 (in

10



Section 3.2). It first finds the vertex separator S of

u and v which is chosen between the two children of

lca(u, v). Then it computes shortest distance from u

and v to all the vertices in S by calling a procedure

SDistanceAD-List (Lines 2-3), where all the vertices
in S are ancestors of u and v. Finally, δ(u, v) is equal

to minw∈S disu(w) + disv(w) (Line 4).

Algorithm 6 SDistanceAD-List (u, S)

Input: A vertex u and a set of ancestor vertices S.
Output: Shortest distances between u and every vertex in S.

1: Initialize dis(w) = δ(u, w), for all w ∈ L(u);
2: Let c← p(u);
3: while c is not ancestor of all vertices in S do

4: for all w ∈ L(c) do

5: if dis(w) is not computed or dis(c)+δ(c, w) < dis(w)
then

6: dis(w)← dis(c) + δ(c, w);
7: if c ∈ S then

8: for all w ∈ L(v) do

9: if dis(w) + δ(c, w) < dis(c) then

10: dis(c)← dis(w) + δ(c, w);
11: c← p(c);
12: return dis(v), ∀v ∈ S;

SDistanceAD-List computes shortest distances be-

tween a vertex and a set of ancestor vertices. A naive
implementation is calling the procedure SDistanceAD

for each w ∈ S. However, it will increase the time com-

plexity by a factor of tw. SDistanceAD can be ex-

tended to compute shortest distance between u and a

set of ancestor vertices S with the same time complex-
ity as SDistanceAD. The modifications are as follows.

The while loop (Line 3 of Alg. 4) will not terminate

until it reaches the ancestor of all vertices in S, i.e.,

the vertex with the maximum path length in T from
Xru , maxw∈S |P (Xru , Xrw)|. And Lines 8-10 of Alg. 4

are executed every time when c is equal to some ver-

tex in S, and the corresponding distance is recorded

as disu(c). The pseudocode of SDistanceAD-List is

shown in Alg. 6.

Alg. 6 and Alg. 4 share similarities. The difference

lies in the while loop (Line 3) of Alg. 6, compared with

the while loop (Line 3) of Alg. 4. In Alg. 6 it deals with
a set of vertices S, and in Alg. 4 it deals with a single

vertex.

Theorem 6 SDistanceAD-List correctly computes

shortest distances between u and a set of vertices S,
where every vertex in S is an ancestor of u in the dis-

tance labeling. The time complexity of the algorithm

SDistanceAD-List is O(tw ·maxw∈S |P (Xru , Xrw)|).

Proof Sketch: The correctness directly follows from

the above discussions. The time complexity follows from

the above discussions and the proof of Theorem 5. ✷

Theorem 7 SDistanceNAD correctly computes short-
est distance between u and v, when u and v do not have

an ancestor-descendant relationship. The time complex-

ity of SDistanceNAD is O(tw·maxw∈S(|P (Xru , Xrw)|+
|P (Xrv , Xrw)|)).

Proof Sketch: The correctness follows from Theo-

rem 6 and the fact that, S is a vertex separator of u and

v, and every path from u to v must go through at least
one vertex in S. Therefore δ(u, v) = minw∈S δ(u,w) +

δ(v, w).

As stated in Theorem 6, Line 2 has time complex-

ity O(tw ·maxw∈S |P (Xru , Xrw)|) and Line 3 has time

complexityO(tw·maxw∈S |P (Xrv , Xrw)|). In Line 1, the
vertex separator S can be found in O(tw) time. There-

fore, the time complexity of SDistanceNAD follows.

✷

Steps prev c

Line 1 − (v1, 1)
(1st) Lines 4-6 (v1, 1) (v2, 2), (v3, 2)
(2nd) Lines 4-6 (v2, 2), (v3, 2) (v3, 2), (v4, 3)
Lines 8-10 (v3, 2), (v4, 3) (v3, 2)

Table 3: Execution Example

Example 5 Consider the multi-hop distance labels in Ta-
ble 2. The execution steps of SDistanceAD for com-

puting shortest distance between v6 and v3 are shown

in Table 3, where v3 is an ancestor of v6 in the dis-

tance labeling. c denote the current vertex in consider-

ation, while prev denote the vertex considered in the
previous loop. Initially, it copies L(v6). At the second

step, c = v1, it is the first time of executing Lines 4-6,

(v2, dis(v2)) and (v3, dis(v3)) can be computed based

on L(c) and the distances stored in the previous step.
At the third step, c = v2, it is the second time of exe-

cuting Lines 4-6. At the forth step, c = v3, it is also the

last step, the shortest distance to v3 can be computed

based on L(v3) and the distances stored at the third

step. Finally, we correctly get δ(v6, v3) = dis(v3) = 2.

Now, we show how to compute shortest distance be-
tween v6 and v7. As lca(6, 7) = 2, therefore X2 is a

vertex separator of v6 and v7, also X1\v1 and X7\v7
are vertex separators of v6 and v7. Because we need to

compute shortest distances from u and v to the ver-
tex separator, we choose the vertex separator that will

result in less running time. Here, we choose X7\v7 =

{v2}. Therefore, we need to compute disv6(v2) = 2 and
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disv7(v2) = 1, and the shortest distance between v6 and

v7 is the sum of the two values, i.e., δ(v6, v7) = 3.

Theorem 8 SDistance correctly computes shortest dis-
tance between vertex pairs based on the multi-hop dis-

tance labeling. The time complexity of SDistance is

O(tw · h), where tw and h are the width and height of

the tree decomposition, respectively.

Proof Sketch: The correctness of SDistance directly

follows from Theorem 5 and Theorem 7. As h is the

height of the tree decomposition, then for any u and v

where v is an ancestor of u, we have |P (Xru , Xrv)| ≤ h.
Therefore the time complexity of SDistance is O(tw ·
h). ✷

6 Extensions

In [29], Wei proposesTEDI to compute distance queries,

using a tree decomposition index structure. Our ap-
proach is different from TEDI. We store multi-hop dis-

tance labels and use different new query answering al-

gorithms. The efficiency of our multi-hop approach is

based on Lemma 3 and Lemma 4.

More specifically, in the label construction, for each

clique C as defined at Line 4 of Alg. 2, our approach
only needs to store the shortest distance from other

vertices in C to v, whereas TEDI has to store the pair-

wise shortest distances for all vertices in C. In query

processing, the time complexity of multi-hop is O(tw ·
h), whereas TEDI takes O(tw · tw · h) time. This is
because, for each tree node C on the undirected path

from u to v on the tree decomposition T , multi-hop

only needs a linear number of shortest distances with

respect to |C| which takes time O(tw), whereas TEDI

has to consider a quadratic number of shortest distances

which takes time O(tw · tw).

Reducing Tree Height: As shown by Theorem 5 and

Theorem 7, the time complexity of computing shortest
distance depends on both the width tw and the height

h of the tree decomposition. For large sparse graphs,

the width of a tree decomposition can be small, how-

ever, the height may be large, thus the query processing

time increases. Here, we show a technique to trade the
label size for query processing time, by increasing the

label size a little while lowering down the height of tree

decomposition.

Lemma 6 Given a rooted tree decomposition T (I, F ),
if we collapse any connected subtree containing the root

node into a single new root node, then it is still a tree

decomposition, and the height is lower.

Xr

X7X6

v1, v2, v3, v4, v5

v6, v1 v7, v2 X8 v8, v5

Fig. 7: Collapsed Tree Decomposition

Proof Sketch: After merging a connected subtree of

T into a single new node, the three conditions of tree

decomposition still hold if T is a tree decomposition.
The height of tree T gets lower directly following the

process. ✷

Example 6 Fig. 7 shows a collapsed tree decomposition

of the tree decomposition shown in Fig. 5. It collapses

the subtree induced by nodes {X1, X2, X3, X4, X5} into
a single new root node Xr. The height of tree decom-
position in Fig. 5 is 5, while the height of the collapsed

tree decomposition is 2.

Given a collapsed tree decomposition Tc, we cannot
generate multi-hop distance labels and answer queries

directly using the previous algorithms, because the width

of the collapsed tree decomposition is much larger. In-

stead, we generate a transitive closure for vertices in the
root node of Tc, and generate distance labels and par-

ents for vertices in non-root nodes as Theorem 4. For

each vertex v ∈ V , if Xrv is the root node or the parent

of Xrv is the root node, then p(v) = ∅. In order to re-

trieve the shortest distances between two vertices in the
root node in constant time, we also build an inverted

index for the vertices in the root node.

For query processing, only algorithms SDistanceAD

and SDistanceAD-List need to be modified. We dis-

cuss the modifications of SDistanceAD below, while

SDistanceAD-List can be modified similarly. For a

distance query (u, v) on Tc where v is an ancestor of u,

we modify SDistanceAD as follows. The while loop
at Line 3 iterates until c = v or c = ∅. If c = v,

then we find the shortest distance to v by Lines 8-10.

If c = ∅, let a be the node that is the child of the

root on the path from Xru to the root, and compute
dis(v) = minw∈Xra\a

dis(w) + δ(w, v), where δ(w, v) is

stored in the transitive closure of vertices in the root

node. The pseudocode is given in Alg. 7.

Example 7 Consider the collapsed tree decomposition

in Fig. 7, we show how to compute shortest distance be-

tween v6 and v7. Assume the vertex separator is chosen
as {v1}, then disv6(v1) = 1 is stored as labels in L(v6).
In order to compute disv7(v1), first, we get disv7(v2) =

1, then disv7(v1) = disv7(v2) + δ(v2, v1) = 2, where
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Algorithm 7 Modification of SDistanceAD

1: Lines 1-2 of Alg. 4;
2: while c 6= v and c 6= ∅ do

3: Lines 4-7 or Alg. 4;
4: if c = v then

5: Lines 8-10 of Alg. 4;
6: else

7: Let a be the node that is the child of the root on the
path from Xru to the root;

8: dis(v)← min{dis(v),minw∈Xra\a dis(w) + δ(w, v)};

δ(v2, v1) is stored as transitive closure of vertices in the

root node. Therefore, δ(v6, v7) = disv6(v1)+disv7(v1) =
3.

Theorem 9 Given our multi-hop distance labeling based

on a collapsed tree decomposition, our algorithm com-

putes shortest distances in time O(tw′ · tw′ + tw′ · h′),

where tw′ is the width of tree decomposition excluding
the root node, i.e., maxi∈I\r |Xi|−1. Note that tw′ ≤ tw

and h′ ≤ h.

Proof Sketch: Given two query vertices u and v, if v is

an ancestor of u, then the time complexity is O(tw′ ·h′)
as shown in the above discussions. If u and v do not

have ancestor-descendant relationships, then we need

to compute shortest distance from u and v to a ver-

tex separator S for u and v, where all vertices in S
are ancestors of u and v. If all vertices in S are con-

tained in root node, then we need to compute dis(w) =

minx∈Xra\a
dis(x)+δ(x,w) for all verticesw ∈ S. There-

fore, the total time complexity is O(tw′ · tw′ + tw′ · h′).

✷

Budget B: Based on Theorem 9, we can reduce the

query processing time by generating larger distance la-

bels which also reduces the height of tree decomposi-

tion. When the size of root gets larger, the size of dis-

tance labels also becomes larger, because we need to
store all-pairs shortest distance for vertices in the root

node. Given a budgetB of the size of labels, we generate

a collapsed tree decomposition so that the root node is

as large as possible, while the total size of label is below
B. We explain it below. Consider Alg. 2 which generates

distance labels, for a specific value i of the “for” loop

(Line 2). We know the size of distance labels already

generated, and we also know the size of root node if we

put all remaining vertices in a single root node. There-
fore, given a budget B, we can terminate the “for” loop

as long as the calculated total size of distance labels

does not exceed B. It can be proved that, when B be-

comes larger, tw′ and h′ become smaller, therefore the
query processing time gets smaller. It is worth of noting

that, given a graph, there is a minimal budget required,

that is the index size when constructing a complete tree

decomposition. If the budget given is smaller than the

minimal as required, we ignore the budget parameter

and build a complete tree decomposition.

Weighted and Directed Graph: For weighted graphs,

the only difference is to compute shortest distances us-
ing Dijkstra’s algorithm when generating distance la-

bels. For a weighted graph, shortest paths need to be

computed using Dijkstra’s algorithm instead. There-

fore, it needs more time to compute distance labels for

weighted graphs. However, the query time remains the
same as long as the graph topologies are the same.

For directed graphs, we treat the edges as undi-

rected and compute the fill-in graph and tree decom-

position. In other words, for distance labels, we store

shortest distances on both directions, i.e., in L(u), we
store both the shortest distance from u to v and the
shortest distance from v to u. When answering short-

est distance queries, we choose the correct directional

shortest distances in L(u) in computation. For exam-

ple, in Alg. 4, we consider only the shortest distance
from c to w at Lines 5-6, and consider only the shortest

distance from w to v at Lines 9-10.

7 Related Work

There are works in the literature using tree decompo-

sition to fast shortest distance queries. Chaudhuri and

Zaroliagis [5] study the problem of computing shortest

paths in digraphs with bounded treewidth, by prepro-
cessing the graph using tree decomposition. They an-

alyze the problem in theoretical aspect, no implemen-

tation issues are considered. Wei [29] proposes TEDI,

which uses a tree decomposition index structure, while

computing shortest distance in O(tw2 · h) time. Al-
though the concept of using tree decomposition index

to fast compute shortest distance is not new, these ex-

isting works cannot be applied to generate distance la-

bels that are discussed in this paper. Furthermore, the
existing works have higher query time complexity com-

pared to our algorithm, which is also confirmed in the

experiments (Section 8).

There are other works proposing index structures

for exact shortest distance queries. Xiao et al. [30] pro-

pose the concept of compact BFS-trees to index all-

pairs shortest paths. First, a BFS-tree is constructed
starting from every vertex. Then, the set of BFS-trees

are compressed by exploiting the symmetry property

of the graph. It is shown in [29] that TEDI outper-

forms this approach in both index size and query time.
Another category of works are based on the concept

of 2-hop distance labeling [7], which assigns distance

labels to vertices such that, for each pair of vertices
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u and v, the shortest path is covered by the concate-

nation of a path in L(u) and another path in L(v).

However, in order to generate 2-hop distance labels, it

needs to pre-compute all-pairs shortest paths, which is

prohibitive in large graphs. Furthermore, give the set
of all-pairs shortest paths, generating an optimal 2-hop

distance labels is NP-hard [7]. Cheng and Yu [6] pro-

pose a heuristic algorithm to generate 2-hop distance

labels for directed graphs. It first constructs a DAG
subgraph by removing a small set of vertices, then 2-

hop distance labels are generated for these two parts

respectively. However, their techniques cannot be ap-

plied to undirected graphs. Upper and lower bounds

of the 2-hop distance labeling size for several families
of graphs are studied theoretically in [11,16,19]. The

above mentioned works are dealing with general graphs.

There are other methods designed specifically for road

networks [23,12], which make use of the near planarity
of road networks or/and the existence of coordinates of

nodes in road networks.

Another set of works consider generating sketches

for vertices to answer approximate shortest distance
queries, termed distance oracle [27]. Thorup and Zwick

[27] give a method to construct an approximate dis-

tance oracle using space O(c · n1+1/c), that can answer

queries in time O(c) with a distance estimation that is

at most 2c−1 times larger than the actual shortest dis-
tance, for any integer c. Baswana and Sen [3] improve

the preprocessing time to O(n2) time for unweighted

graphs. Sommer et al. [26] show a new lower bound

for the approximate distance oracles in the cell-probe
model for sparse graphs. Sarma et al. [9] simplify the

algorithms proposed by Thorup and Zwick while pro-

viding the same theoretical guarantee, and experiments

are conducted to evaluate their algorithms.

There are some initial works studying shortest path
queries with additional constraints recently, which is or-

thogonal to our problem of general shortest path query.

Rice and Tsotras [21] study shortest path queries of

road networks with label restrictions, where the label
restrictions specify a subset of the graph edges that

the shortest path computation can be applied on. They

extend the techniques of Contraction Hierarchies [12]

to handle labels restrictions when building index. Op-

timization techniques are also studied in [21]. Liu and
Wong [18] study shortest path queries in terrain datasets

with slop constraint, where each data point is a three di-

mensional point which adds elevation to the traditional

two dimensional data. They propose a new framework
called surface simplification, under which the surface is

“simplified” such that the complexity of finding short-

est paths on this simplified surface is lower. Such tech-

niques cannot be applied to the optimization of shortest

path queries on general graphs.

Reachability queries have been extensively studied

on large graph data. The theoretical foundation of in-

dexing reachable vertex pairs using 2-hop index is stud-
ied by Cohen et al. [7]. Path-tree and 3-hop techniques

are proposed by Jin et al. [15,14] to build index for

reachability queries more practically. The techniques

of path-tree and 3-hop combine the techniques of tree
cover, chain cover, and 2-hop cover together. Due to the

complex structures of existing techniques, they can only

handle moderately sized data. Two recent works study

the reachability queries for very large data. Yildirim

et al. [31] use the idea of computing several random
tree covers and generating a modified interval code for

each generated tree cover over a condensed DAG (Di-

rected Acyclic Graph). With these modified interval

codes, they can prune non-reachable queries very ef-
ficiently. Due to the low complexity of index structure,

it can handle directed graphs with hundreds of mil-

lions of nodes. However, such a condensed DAG can-

not be used for computing shortest paths. Schaik and

Moor [28] study a memory efficient data structure to
index the reachability information between all pairs of

vertices using bit vector compression. The size of bit

vector index used is typically small for practical data,

even though it can be very large in worst case. The bit
vector compression can be also used to compute all the

reachability information very efficiently. Although they

can handle very large directed graphs, these techniques

cannot be applied to shortest path queries in undirected

graph. First, in undirected graph, all the vertex pairs
are reachable. Second, these techniques do not consider

the distance information associated with edges.

8 Experiments

We conduct extensive performance studies to test the

efficiency of our multi-hop approach as well as 2-hop

approach. We implement our multi-hop algorithm, de-

noted as m-hop in this section. For comparison, we
also implement the tree-decomposition based approach

TEDI in [29]. All tests are conducted on a PC with

an Intel(R) Pentium(R) 2.8GHz CPU and 2GB mem-

ory PC running CentOS 5.4. All algorithms are imple-

mented in C++ and compiled with -O3 optimization.
m-hop consists of two phases: multi-hop distance la-

bels generation and query answering. TEDI also con-

sists of two phases: label construction and query an-

swering. We compare m-hop and TEDI in two aspects,
label construction time and query answering time. We

also list the query answering time of a naive BFS algo-

rithm, which computes shortest distances on the origi-
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nal graph directly. The query answering time are mea-

sured in milliseconds (ms). For each dataset, we ran-

domly generate 10,000 pairs of vertices to issue queries.

8.1 M-hop vs 2-hop

We compare m-hop with 2-hop in the aspects of label

construction time, label size, and query time. We imple-

ment the 2-hop distance labels construction algorithm
given in [7]. The label construction of 2-hop is done on

a linux server with 48G memory since it runs out of

memory if running on the PC.

We generate a set of small synthetic graphs accord-

ing to the BA model [2], which is a widely adopted

model to simulate real graphs. In the generated graphs,

the degrees follow a scale-free power-law distribution.

We generate 6 graphs with average degree 2.2, where
the number of vertices ranges from 1000 to 6000 by a

step of 1000, and denote the graph as xk if it contains

x · 1000 vertices.
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Fig. 8: Label Construction Time of 2-hop and m-hop

Query Time (ms) Label Size (KB)
Graph 2-hop m-hop 2-hop m-hop

1k 0.00013 0.00073 45.1 34.9
2k 0.00014 0.00084 107 78
3k 0.00015 0.00094 176 130
4k 0.00020 0.00105 263 195
5k 0.00025 0.00120 356 240
6k 0.00031 0.00149 452 245

Table 4: Query Time and Label Size of 2-hop andm-hop

The construction time of 2-hop andm-hop are shown

in Fig. 8. For a graph with 6,000 vertices, m-hop takes
0.1s, whereas 2-hop takes 4.27 hours. The 2-hop label

construction time increases much faster than that of

m-hop, e.g., when the graph size increases from 1,000 to

6,000, the m-hop construction time increases 15 times,

whereas 2-hop increases 300 times. This is because that,

for undirected graphs, 2-hop first computes all-pairs

shortest paths, and then solves an instance of set cover,

where the size of the ground set is quadratic to the
number of vertices. The query time and label size of 2-

hop and m-hop are shown in Table 4, which shows that

our multi-hop distance labels are smaller than 2-hop

distance labels. The query processing time of m-hop is
fast, but is larger than that of 2-hop.

8.2 Small Real Datasets

In this subsection, we test m-hop and TEDI over the

real datasets used in [29]. The real graphs include bio-
logical networks (PPI and Homo), social networks (Pfei,

Geom, Erdos, Dutch, and Eva), information networks

(Cal and Epa), and technological networks (Inter). All

these graphs are provided by the authors of [30]. Sizes

and other information of these datasets are shown in Ta-
ble 5, where maximum distance and median distance

are the maximum and median value of all the distances

between vertex pairs, respectively.

Average Maximum Median
Graph n Degree Distance Distance

Pfei 1738 2.16 29 10
PPI 1458 2.67 19 7
Dutch 3621 2.38 22 8
Epa 4253 4.18 10 4
Erdos 6927 3.42 4 4
Eva 4475 2.08 18 7
Geom 3621 5.23 14 5
Cal 5925 5.32 13 5
Homo 7020 5.64 14 5
Inter 22442 4.06 10 4

Table 5: Information of Real Datasets

In TEDI, a parameter d is used to tune the tree

decomposition. TEDI generates a tree decomposition,
with the size of all nodes except the root node at most

d. In order to generate such a tree decomposition, in

Min-Degree, the for loop (Line 2) stops immediately

when the next minimum degree (Line 3) is larger than

d. In this set of tests, we use the same d values as spec-
ified in [29]. Our approach uses budget B instead of d.

Our budget B is more general than d. Given a d value,

we can compute a budget B. However, a budget B we

use can be smaller than the corresponding budget com-
puted from d.

The query time (ms) ofBFS,TEDI, andm-hop, are

shown in Table 6. From Table 6, we can see that, the

15



Graph d BFS (ms) TEDI m-hop

Pfei 6 0.0336 0.0030 0.0010
PPI 7 0.0310 0.0024 0.0010
Dutch 5 0.0634 0.0027 0.0011
Epa 8 0.0724 0.0012 0.0009
Erdos 7 0.0916 0.0013 0.0011
Eva 2 0.0544 0.0021 0.0008
Geom 6 0.0967 0.0023 0.0011
Cal 10 0.1674 0.0021 0.0015
Homo 18 0.2421 0.0033 0.0022
Inter 14 0.6951 0.0032 0.0025

Table 6: Query Time for Real Datasets
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Fig. 9: Speedup of Query Time on Small Real Datasets

query processing time of BFS increases dramatically

when the graph size increases, because the time com-
plexity of BFS is linear to the graph size. For m-hop,

the query processing time changes very slowly when

the graph size increases, e.g., the query time on Pfei

is 0.001ms, and it only increases to 0.0025ms on In-
ter, whose size is 13 times larger than that of Pfei. The

speedups of m-hop and TEDI with respect to BFS are

shown in Fig. 9. m-hop consistently outperforms TEDI

in all these real graphs. This is confirmed by the time

complexity of these two algorithms. The time complex-
ity of our algorithm is O(tw · (tw + h)), while the time

complexity of TEDI is O(tw · tw · h).

Construction Time Index Size (KB)
Graph m-hop TEDI m-hop TEDI

Pfei 17 19 86 110
PPI 18 22 149 174
Dutch 76 84 718 767
Epa 200 227 3264 3343
Erdos 173 227 1184 1314
Eva 52 55 94 149
Geom 274 301 3478 3551
Cal 692 765 7974 8113
Homo 1320 1526 15542 15752
Inter 3725 5238 5865 6520

Table 7: Label Construction Time and Index Size for

Real Datasets
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Fig. 10: Speedup of Query Time on Small Synthetic

Datasets

The label construction time and index size of TEDI

and m-hop are shown in Table 7, where the label con-

struction time includes the time to build a tree decom-

position, and the time to compute shortest paths for

vertices in nodes. Our algorithm takes less time to gen-
erate distance labels. Because, for all vertices in a node

in the tree decomposition, it needs to compute all-pairs

shortest paths in TEDI, while, in m-hop, we only com-

pute shortest paths from one vertex to all other vertices.

For all the datasets, our index size is smaller than that
of TEDI. The difference between the two algorithms

is small, because data stored for the root node is the

dominating factor of the index size when d is relatively

small. Therefore, we do not report the index size for the
following experiments.

8.3 Small Synthetic Datasets

We generate a set of small synthetic graphs according

to the BA model [2] the same as that in Section 8.1.

Here, we generate 10 graphs, where the number of ver-
tices range from 1000 to 10000 by the step of 1000, and

denote the graph as xk if it contains x · 1000 vertices.

Graph n d BFS (ms) TEDI m-hop

1k 1000 3 0.0196 0.0016 0.0007
2k 2000 5 0.0354 0.0018 0.0008
3k 3000 6 0.0519 0.0021 0.0009
4k 4000 7 0.0688 0.0023 0.0010
5k 5000 8 0.0880 0.0027 0.0012
6k 6000 9 0.1081 0.0034 0.0015
7k 7000 9 0.1275 0.0034 0.0016
8k 8000 9 0.1639 0.0028 0.0015
9k 9000 9 0.2087 0.0031 0.0017
10k 10000 9 0.2426 0.0033 0.0018

Table 8: Query Time for Small Synthetic Datasets

The query time of BFS, TEDI, and m-hop on these

small synthetic graphs are shown in Table 8. Similar
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to the real graphs, the query time of BFS increases

dramatically when the graph size increases. Actually,

the query time of BFS on synthetic graphs is almost

as the same as that on real graphs of the same size,

as shown in Table 6 and Table 8. The query time of
m-hop increases very slowly as compared to BFS. For

example, when the graph size increases from 1000 to

10000, the query time of BFS increases by a factor of

13, while the query time ofm-hop increases 3 times. The
speedups of m-hop and TEDI with respect to BFS are

shown in Fig. 10. Consistently, the speedup of m-hop is

2 times larger than that of TEDI. For both algorithms,

the speedups increase when the graph size increases, as

explained for the real datasets.

Graph m-hop TEDI Graph m-hop TEDI

1k 7.7 9.2 6k 119 168
2k 21 26 7k 163 228
3k 39 49 8k 252 302
4k 63 78 9k 302 391
5k 92 116 10k 394 506

Table 9: Label Construction Time for Small Synthetic

Datasets

The label construction time of TEDI and m-hop
on these synthetic graphs are shown in Table 9. For

both m-hop and TEDI, the label construction time

increases when graph size increases. When graph size

increases, it takes more time to build tree decomposi-
tion. Also the time to compute shortest paths increases

when graph size increases, as shown by the query time

of BFS in Table 8. For all the synthetic graphs, the

label construction time of m-hop is only about 70-80%

of that of TEDI.

8.4 Large Datasets

We test the performance of m-hop and TEDI under a

given budget of the label size for large datasets. Specif-

ically, given a budget B, we generate a tree decompo-

sition, where the resulting label size is no larger than

B, while the size of the root node is as large as possi-
ble (refer to the discussions on reducing tree height in

Section 6).

Real Datasets: For the real datasets, we test m-hop

and TEDI over two large road networks, California

Road Network [17] and North America Road Networks,
and a computer science bibliography graph, DBLP 2.

2 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
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Fig. 11: Speedup of Query Time on California Road

Network (Varying B)

The number of vertices contained in these two road

networks are 21, 048 and 175, 813, respectively. After

processing as [29], the DBLP dataset consists of 581K

vertices. The average degree and the maximum/median
distance of these three graphs are shown in Table 10.

Average Maximum Median
Graph n Degree Distance Distance

California 21K 2.06 721 256
North America 175K 2.04 4657 946
DBLP 581K 2.45 35 15

Table 10: Information of Large Datasets

Budget Query Time (ms) Const Time (ms)
Size BFS TEDI m-hop TEDI m-hop

10M 0.7035 0.0175 0.0027 5781 5133
40M 0.7035 0.0133 0.0021 11979 11655
70M 0.7035 0.0111 0.0017 17052 16518
100M 0.7035 0.0091 0.0015 21021 20519

Table 11: Query and Construction Time for California

Road Network

The query time of m-hop and TEDI on the Cali-

fornia road network are shown in Table 11, where the
budget B of label size varies from 10M to 100M by

a step of 30M. The query time of BFS is 0.7035ms,

which does not change for different budget sizes, be-

cause BFS directly works on the original graph. When

the budget size B increases, the query time for both
m-hop and TEDI decrease. This is because that the

root node of the tree decomposition contains more ver-

tices when budget B increases, therefore, the treewidth

tw and height h decrease. The speedups of m-hop and
TEDI with respect to BFS are shown in Fig. 11. For

both m-hop and TEDI, the speedups increase when

the budget size B increases. This is based on the fact
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that the query time of BFS remains unchanged, while

the query time of m-hop and TEDI decrease, when

B increases. The speedup of m-hop is 5 to 6 times

larger than that of TEDI. The label construction time

of m-hop and TEDI on the California road network
are shown in Table 11. For a given budget size, m-hop

takes less time to construct labels than that of TEDI

because TEDI needs to compute more pairs of shortest

paths, and m-hop answers queries faster than TEDI.

Query Distance BFS TEDI m-hop

[1,10] 0.0414 0.0033 0.0015
[11,50] 0.0564 0.0083 0.0023
[51,150] 0.1936 0.0121 0.0022
[151,800] 0.9902 0.0129 0.0020

Table 12: Query Time for California Road Network with

Different Query Distance (B = 40M)

Table 12 shows the query time of BFS, TEDI, and

m-hop for California Road Network with different query

distance settings, i.e., we divide the queries into four
ranges based on the distance of the query vertex pairs.

As expected, the query time ofBFS andTEDI increase

when the distance of query vertex pairs becomes larger.

The query time of m-hop does not change much, since

the number of hops involved is not much related to the
distance of a vertex pair.
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Fig. 12: Speedup of Query Time on North America

Road Network (Vary B)

The query time and label construction time ofm-hop

and TEDI on the North America road network are

shown in Table 13, where the budget size ranges from
10M to 100M. The query time of BFS remains 26ms,

while the query time of m-hop and TEDI decrease,

when budget size B increases. The construction time of

m-hop increases when B increases, because the number
of shortest path pairs computed in the construction of

m-hop is linearly proportion to the label size. The con-

struction time of TEDI first decreases then increases

Budget Query Time (ms) Const Time (s)
Size BFS TEDI m-hop TEDI m-hop

10M 25.842 0.418 0.127 958.9 516.9
12M 25.842 0.376 0.098 979.9 543.7
14M 25.842 0.313 0.058 913.2 555.1
16M 25.842 0.190 0.050 856.5 562.1
18M 25.842 0.148 0.042 830.0 570.2
20M 25.842 0.138 0.042 853.4 584.1
30M 25.842 0.135 0.041 886.1 624.6
40M 25.842 0.134 0.043 911.4 648.2
70M 25.842 0.133 0.042 981.4 730.3
100M 25.842 0.132 0.042 1049 789.5

Table 13: Query and Construction Time for North

America Road Network

when B increases. This is because, when B is small, the

treewidth tw is very large so it needs to compute a lot of

shortest paths; when B becomes larger, the treewidth
tw becomes almost stable while the size of root node be-

comes larger. The speedups of m-hop and TEDI with

respect to BFS are shown in Fig. 12. When the bud-

get size B increases from 10M to 20M, the speedup
of TEDI increases from 62 to 189, while the speedup

of m-hop increases from 203 to 626. The speedup of

m-hop and TEDI becomes stable when the budget size

increases from 20M. This is because that, although the

tree decomposition becomes smaller, when B increases,
the treewidth tw and height h do not change much when

B is larger than 20M.

For the DBLP dataset, with a budget size B of

200M, our m-hop constructs labels in 7, 482 seconds,

while TEDI constructs index in 17, 997 seconds. In

query processing, the average processing time of m-hop
is 0.393 milliseconds, and the average processing time

of TEDI is 1.008 milliseconds, while it takes 96.6 mil-

liseconds for a BFS approach. The speedups of m-hop

and TEDI overBFS are 245.2 and 95.7, respectively.

Synthetic Datasets: In the previous sets of exper-
iments, we have tested our algorithm and TEDI on

small synthetic graphs, i.e., the graph sizes are less

than 10, 000. We test the algorithms on large synthetic

graphs in the following. Specifically, we test the algo-

rithms on graphs, whose sizes range from 20, 000 to
100, 000 by a step of 20, 000, and denote the graph as

xk if the size is x · 1000. The budget B of label size

varies from 10M to 100M by a step of 30M.

We test the algorithmsm-hop andTEDI when vary-

ing budge size B, while the graph size is chosen as 60k.

The query time and construction time is shown in Ta-
ble 14. When budget size B increases, the query time of

m-hop and TEDI decrease, while the construction time

of m-hop and TEDI increase. The speedups of m-hop
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Fig. 13: Speedup of Query Time on Large Synthetic

Graph (Varying B, n = 60, 000)

Budget Query Time (ms) Const Time (s)
Size BFS TEDI m-hop TEDI m-hop

10M 6.2244 0.0040 0.0028 62 60
40M 6.2244 0.0028 0.0022 119 116
70M 6.2244 0.0025 0.0020 158 156
100M 6.2244 0.0023 0.0019 190 189

Table 14: Query and Construction Time for Synthetic

Graph (n = 60, 000)
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Fig. 14: Speedup of Query Time on Large Synthetic

Graph (Varying n, B = 40M)

and TEDI are shown in Fig. 13, which increases when
budget size B increases. The speedups of m-hop over

TEDI is not as much as the previous testings, because

the treewidth tw and height h are both very small for

these synthetic graphs when the budget B is relative

large.

Graph Query Time (ms) Const Time (s)
Size BFS TEDI m-hop TEDI m-hop

20k 0.9867 0.0012 0.0010 18 19
40k 3.6326 0.0022 0.0018 63 62
60k 6.2244 0.0028 0.0022 119 116
80k 10.4778 0.0033 0.0026 209 203
100k 14.0068 0.0038 0.0029 294 279

Table 15: Query and Construction Time for Synthetic

Graph (B = 40M)

Here, given a budget B of label size, we test the

performance of m-hop and TEDI on graphs of different

sizes. The query time and construction time of m-hop

and TEDI are shown in Table 15, where B is equal to

40M. As expected, with the same label size, when graph
size increases, the query time and construction time of

all three algorithms increase. As shown in Fig. 14, the

speedups of both m-hop and TEDI increase when the

graph size increases. This is because that, although the
query time of all three algorithms increase when the

graph size increases, the query time of BFS increases

much faster than that of m-hop and TEDI.

8.5 Density Testing

We test the performance of m-hop and TEDI by vary-

ing the average degree of graphs. The synthetic graphs

are generated with n = 40, 000, and the average de-
grees (d̄) vary from 2.2 to 4, denote the four graphs

as d̄ = 2.2, d̄ = 2.8, d̄ = 3.4, and d̄ = 4. In all these

testings, the budgets B for m-hop and TEDI are set as

70M .

Average Query Time (ms) Const Time (s)
Degree BFS TEDI m-hop TEDI m-hop

2.2 3.6693 0.0019 0.0015 84 86
2.8 3.6156 0.0025 0.0021 92 94
3.4 3.5594 0.0041 0.0032 107 102
4.0 3.2254 0.0094 0.0069 143 104

Table 16: Query and Construction Time for Density

Testing (n = 40, 000, B = 70M)

Table 16 shows the query time and index construc-
tion time of the two algorithms on the four graphs. In

general, when the average degree increases, the query

time of BFS decreases while the query time of m-hop

and TEDI increase. The BFS time decreases because

the distances between query pairs become smaller, there-
fore BFS can find the shortest path with few hops

of exploration. The query time and index construc-

tion time of m-hop and TEDI increase because the

graph becomes larger. Consistently, our m-hop algo-
rithm can answer shortest distance queries much faster

than TEDI.

Indexing Time and Size: Here, we test the grow-

ing trends of index size and index time of m-hop, when

density increases. The synthetic graphs are generated
with n = 40, 000, and the average degrees (d̄) vary

from 2.2 to 8, namely, 2.2, 4, 6, and 8, as indicated

in Fig. 15. In this testing, we do not specify a budget of
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index size, and the tree decomposition is built such that

the index size is minimal for our algorithm. The index

size and index time for different densities are shown in

Fig. 15(a) and Fig. 15(b), respectively. From Fig. 15,

we can see that both the index size and index time in-
crease very fast when the graph becomes denser. Our

current implementation will run out of memory when

building tree decomposition for dense graphs, we are

planning to work on dealing with dense graphs as our
future work.
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Fig. 15: Index Size and Time for Different Densities

8.6 Weighted Graph

Here, we test the performance of index and query algo-
rithms of our approach and TEDI. The dataset is Cal-

ifornia Road Network, and edge weights are obtained

from the original dataset3.

Budget Query Time (ms) Const Time (ms)
Size Dijkstra TEDI m-hop TEDI m-hop

10M 1.9830 0.0163 0.0026 11956 11371
40M 1.9830 0.0131 0.0021 25072 24650
70M 1.9830 0.0105 0.0017 35605 34345
100M 1.9830 0.0089 0.0014 43365 43166

Table 17: Query and Construction Time for Weighted

California Road Network

The query time and index construction time ofm-hop

and TEDI on this weighted dataset is shown in Ta-

ble 17. Comparing the approaches on weighted and un-

weighted graphs, the only difference lies in shortest path
computation when computing distance labels. There-

fore, it will need more time to compute distance labels

on weighted graph, and the query time remains almost

the same. This is confirmed by comparing Table 17 with
Table 11.

3 http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

9 Conclusion

In this paper, we studied a small distance labeling scheme

to fast query shortest distances. In our multi-hop dis-
tance labeling, instead of directly generating 2-hop dis-

tance labels as index, we generate a small set of query

specific 2-hop distance labels on-line efficiently based

on our stored multi-hop distance labels. The multi-hop
distance labels stored in our approach is only a sub-

set of that generated by a 2-hop distance labeling, so

it is small in size. Furthermore, our multi-hop distance

labels generating algorithm avoids pre-computing all-

pairs shortest paths. We give efficient algorithms to gen-
erate the query-specific 2-hop distance labels based on

our stored multi-hop distance labels. We conducted ex-

tensive performance studies to compare our approaches

with the up-to-date existing approaches, using a large
number of small/large real/synthetic graphs, and con-

firmed the efficiency of our approach. Although we con-

firmed the efficiency of our approach on large sparse

graphs, one limitation of our current version of multi-

hop distance labeling is that it may run out of memory
when building tree decomposition for dense graphs. We

are planning to work on dealing with dense graphs in a

memory constrained environment as our future work.
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