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Abstract Reachability is a fundamental problem on large-
scale networks emerging nowadays in various application
domains, such as social networks, communication networks,
biological networks, road networks, etc. It has been stud-
ied extensively. However, little existing work has studied
reachability with realistic constraints imposed on graphs with
real-valued edge or node weights. In fact, such weights are
very common in many real-world networks, for example, the
bandwidth of a link in communication networks, the reliabil-
ity of an interaction between two proteins in PPI networks,
and the handling capacity of a warehouse/storage point in a
distribution network. In this paper, we formalize a new yet
important reachability query in weighted undirected graphs,
called weight constraint reachability (WCR) query that asks:
is there a path between nodes a and b, on which each real-
valued edge (or node) weight satisfies a range constraint.
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We discover an interesting property of WCR, based on
which, we design a novel edge-based index structure to
answer the WCR query in O(1) time. Furthermore, we
consider the case when the index cannot entirely fit in the
memory, which can be very common for emerging mas-
sive networks. An I/O-efficient index is proposed, which
provides constant I/O (precisely four I/Os) query time with
O(|V | log |V |) disk-based index size. Extensive experimen-
tal studies on both real and synthetic datasets demonstrate
the efficiency and scalability of our solutions in answering
the WCR query.

Keywords Weight constraint reachability · Minimum
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1 Introduction

Large networks are emerging nowadays in many applica-
tion domains, such as social networks, communication net-
works, biological networks, road networks, etc. Among many
types of graph queries, graph reachability is an important
type of query, which asks whether there exists a path from
one node to another in a directed graph. Graph reachability
has been studied extensively in the literature [1,4–7,9,12–
17,24–28,31–33] and has many potential applications. But
most existing algorithms do not consider realistic constraints
on graph reachability that are very common and challeng-
ing in real-world applications, except a few recent works
[9,14,15,32] that consider adding categorical edge label con-
straint or distance constraint to reachability queries.

In fact, many real-world networks contain real-valued
edge or node weights, for example, the bandwidth of a link
in communication networks, the reliability of an interaction
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between two proteins in PPI networks, the handling capacity
of a warehouse/storage point in a distribution network, etc.
In many real-world applications, the answers to reachability
queries are meaningful only if the edge or node weight is
also captured in the reported path. Thus, in this paper, we
study a new type of reachability query in weighted undi-
rected graphs, called weight constraint reachability (WCR)
query, which asks: is there a path between nodes a and b,
on which each real-valued edge (or node) weight satisfies
a range constraint, for example, ≥ x, ≤ y, or within [x, y].
The WCR query has many real application scenarios. Here
we list several application examples.

Communication networks: Transmission of multimedia
streams imposes a minimum-bandwidth requirement on all
the links on a path to ensure end-to-end Quality-of-Service
(QoS) guarantees [21]. A WCR query can find whether there
is a feasible path between two nodes in a network, on which
each link has a bandwidth≥ x , that is, a minimum-bandwidth
requirement. The resulting path can support a rate of x bits
per second for transmitting a stream, for example, audio or
video, with a bandwidth guarantee.

Biological networks: In a PPI network, a node represents
a protein, and an edge represents an interaction between two
proteins with a real-valued weight to denote the reliability
of the interaction. A WCR query can find whether there is
a path between two proteins where the reliability of every
interaction is ≥ x . A lot of research has been proposed to
find signaling pathways from PPI networks, for example, [2].
However, many false-positive candidates will be generated.
The WCR query can be used to prune these false positives.

Phone call networks: From a phone call log, we can con-
struct a phone call network, where a node represents a caller
ID and an edge represents a phone call between two callers,
labeled with the time stamp when the phone call is made.
A WCR query can find whether there is a chain of calls
between two callers, each of which is made during a time
period [t1, t2]. This query can be useful for security reasons
such as crime detection. Similarly, the WCR query can be
applied to social networks for relationship analysis.

The WCR query also applies to node-weighted networks
to ensure the weight of each node on the reported path satis-
fies a constraint. An example is given below.

Distribution networks: If a firm plans to ship its products
from a factory to a retailer store located in distant locations, a
WCR query can find whether there is a feasible delivery route
between these two locations in the distribution network, on
which each intermediate warehouse, storage point or distri-
bution center has a proper handling capacity≥ x . This query
can help facilitate delivery and distribution of the products
and improve the operational efficiency of the supply chain.

To the best of our knowledge, there is no existing reach-
ability study on the real-valued weight constraint. In the
literature, [14,32] study categorical edge label-constraint

reachability (LCR). In addition, regular path query (RPQ)
[22], conjunctive RPQ (CRPQ) [10] and reachability query
(RQ) [9] have been proposed for full or a subclass of reg-
ular expression constraint on categorical edge labels. The
real-valued weight constraint we study is very different from
those in [9,10,14,22,32] in the following aspects: (1) there is
a total order among real-valued weights, but no order among
categorical labels. A much more optimized solution can be
designed for WCR by exploiting the total-order property; (2)
the cardinality of a real-valued weight set is typically much
larger than that of a categorical label set. A large weight
set can substantially increase the indexing and query com-
plexity of the existing methods. Take the Sampling-Tree
method proposed in [14] for LCR query as an example, its
index construction time grows exponentially with the num-
ber of distinct labels in a graph, and its query time increases
linearly with the number of distinct labels. Given a large real-
valued weight set, the WCR query can hardly be answered
efficiently by directly applying Sampling-Tree. Other works
including NP-Hard query RPQ [22], NPC query CRPQ [10],
and O(|V |2) query time RQ [9] face the same problem for
handling real-valued weight set.

In this paper, we aim to design efficient algorithms to
answer the WCR query with a compact index. We mainly
focus on the edge weight constraint and show that the node
weight constraint can be easily reduced to the edge weight
constraint. Given an undirected graph G and a WCR query,
we exploit the cut property of minimum spanning tree (MST)
to show that checking whether two nodes are reachable in
G w.r.t. a constraint can be transformed to checking such
reachability in an MST of G. This property serves as a build-
ing brick for designing a novel index, called Edge-Index. It
organizes the MST edges hierarchically based on an elegant
transformation of MST, so that we can answer a WCR query
in O(1) time.

Considering the networks emerging nowadays typically
contain hundreds of millions of vertices or even more, the
index size of Edge-Index in O(|�||V |)1 (� is the edge
weight set and V is the vertex set of the graph) may
easily exceed the memory limit. Therefore, to answer the
WCR query, we further design an I/O-efficient disk-based
index, Balanced-Index, which is constructed by recursively
adjusting an MST into a balanced tree. A nice property
of the balanced tree is the log2 |V | worst-case tree height,
which effectively compresses the disk-based index size to
O(|�||V | log |V |) while guaranteeing to answer the WCR
query with exactly four I/Os. Our algorithm Balanced-
Index proves to be I/O-efficient and highly scalable. This
is a very significant contribution, as all existing algorithms

1 The O(|�||V |) space complexity is for handling the general bounded
interval constraint [x, y], x, y ∈ R. For the half-bounded constraint≥ x
or ≤ y, the complexity is O(|V |).
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on graph reachability in the literature are limited to main
memory-based algorithms.

Our major contributions are summarized as follows.

– We study the weight constraint reachability (WCR) prob-
lem in weighted undirected graphs, which has many
important applications in real-world networks. To the
best of our knowledge, this is the first work to study the
WCR problem.

– We design a novel Edge-Index as an efficient memory-
based index to answer a WCR query by exploiting the
cut property of minimum spanning tree. We also design
a Balanced-Index as an I/O-efficient disk-based index,
when the index is too large to fit in the memory. Remark-
ably, our in-memory algorithm Edge-Index achieves
O(1) query time and O(|�||V |) index size, while our
I/O-efficient algorithm using Balanced-Index uses four
I/Os for query processing and O(|�||V | log |V |) disk
space for indexing.

– We conducted extensive experiments on large real and
synthetic networks. The query time of both Edge-Index
and Balanced-Index algorithms is in microseconds and
remains stable regardless of the network size, the den-
sity, the cardinality of the edge weight set or the weight
distribution. Balanced-Index proves to be I/O-efficient
and highly scalable for querying large networks. Finally,
our query processing is at least three orders of magnitude
faster than basic search approaches including DFS, BFS
and bi-directional search.

The rest of this paper is organized as follows. Section 2
gives the preliminaries and problem definition. Section 3
introduces an efficient in-memory algorithm Edge-Index to
answer the WCR query. Section 4 further proposes an I/O-
efficient algorithm Balanced-Index. Section 5 shows our
experimental results on large-scale real and synthetic graphs.
We discuss related work in Sect. 6 and conclude our paper in
Sect. 7.

2 Preliminaries

2.1 Edge weight constraint

We first consider an edge-weighted undirected graph G =
(V, E, �, w), where V is the set of vertices, E is the set
of edges, � ⊂ R is the set of real-valued edge weights and
w : E �→ � is a function that assigns each edge e ∈ E to a
real-valued weight w(e) ∈ �. A path P between vertices u
and v is denoted as P(u, v) = (u, v1, . . . , vl−1, v), where
{u, v1, . . . , vl−1, v} ⊆ V and {(u, v1), . . . , (vl−1, v)} ⊆
E . We say e belongs to P , denoted as e ∈ P , if e is an
edge on P . The edge weight constraint reachability query is
defined as follows.

(a) (b)

Fig. 1 An example graph G and its MST T

Definition 1 (Edge weight constraint reachability (EWCR))
Given a graph G(V, E, �,w), an EWCR query is in the form
of q = (a, b, c), where a, b ∈ V and c is a range constraint
on edge weight, for example, ≥ x, ≤ y, or within [x, y]. q
asks whether there is a path P(a, b) between vertices a and
b such that ∀e ∈ P(a, b), w(e) satisfies the constraint c, for
example, w(e) ≥ x , or w(e) ≤ y, or w(e) ∈ [x, y], where
x, y ∈ R. If yes, we say a and b are reachable w.r.t. the edge
weight constraint c.

Example 1 We use a running example throughout the paper.
An undirected graph G is shown in Fig. 1a, where each edge
has a real-valued weight. To answer an EWCR query q =
(a, g,≤ 4), we can find a path P(a, g) = (a, f, d, b, c, g)

in G such that ∀e ∈ P(a, g), w(e) ≤ 4. Thus vertices a and
g are reachable w.r.t. the constraint.

2.2 Node weight constraint

The WCR query also applies to node-weighted graphs,
denoted as G(V, E, �,wn), where wn : V �→ � is a func-
tion that assigns each node v ∈ V to a real-valued weight
wn(v) ∈ �. The node weight constraint reachability query
is defined as follows.

Definition 2 (Node weight constraint reachability (NWCR))
Given a graph G(V, E, �,wn), an NWCR query is in the
form of q = (a, b, c), where a, b ∈ V and c is a range con-
straint on node weight, for example, ≥ x, ≤ y, or within
[x, y]. q asks whether there is a path P(a, b) between ver-
tices a and b such that ∀v ∈ P(a, b), wn(v) satisfies the
constraint c, for example, wn(v) ≥ x , or wn(v) ≤ y, or
wn(v) ∈ [x, y], where x, y ∈ R. If yes, we say a and b are
reachable w.r.t. the node weight constraint c.

Reducing NWCR to EWCR: An NWCR query on
a node-weighted graph G(V, E, �,wn) can be reduced
to an EWCR query, if we transform G to an edge-
weighted graph G ′(V ′, E ′, �,w′) as follows. For each edge
in G, e(a, b) ∈ E , we create two weighted edges in E ′, that
is, e(a, vab) ∈ E ′ and e(vab, b) ∈ E ′ with w′(e(a, vab)) =
wn(a) and w′(e(vab, b)) = wn(b). Here vab is a dummy
nodeintroduced in V ′. This transformation incurs a small
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constant-factor overhead on the edge set as |E ′| = 2|E |.
Then an NWCR query on G can be equivalently answered
by an EWCR query on G ′. Hence, we mainly focus on the
EWCR query on edge-weighted graphs. For simplicity, in the
following we use WCR to denote the edge weight constraint
reachability problem.

More generally, our problem setting is not limited to real-
valued edge or node weights, actually, it can be extended to
any form of edge/node labels as long as they have a total
order, for example, string labels with a total lexicographic
order, and multidimensional features on edges/nodes given
a function that maps a multidimensional feature to a total
ordered one-dimensional value, for example, Hilbert curve
[20]. Such graphs are commonplace in various scientific areas
including bioinformatics and cheminformatics.

2.3 Two naive solutions

There are two naive approaches to answer the WCR query.
One is online DFS or BFS search using the weight constraint
to confine the search space. Starting from vertex a, we fol-
low DFS or BFS order to recursively visit all adjacent vertices
through edges whose weights satisfy the constraint, until we
reach vertex b or have searched all reachable vertices with-
out reaching b. The query time is O(|V | + |E |), which is
impractical for online query processing in a realtime system.

The other approach is to pre-compute the weight con-
straint reachability for all pairs a, b ∈ V . The query time is
O(1), but the space complexity is O(|V |2) for the constraint
≥ x or ≤ y, or O(|�||V |2) for the constraint [x, y], which
severely limits the scalability.

The above two solutions are two extremes in terms of the
query time complexity and index space complexity. In the
following we will design novel index structures for efficient
WCR query processing in large-scale networks.

3 An efficient memory algorithm

The user-specified edge weight constraint c can have various
forms, such as a half-bounded interval, for example,≥ x, ≤
y, or a bounded interval, for example, within [x, y]. It is not
hard to see ≥ x and ≤ y are symmetric, thus without loss of
generality we assume the constraint c has the form of ≤ y.
We will show later that our proposed algorithms can be easily
extended to handle the bounded interval constraint [x, y]. We
first show a property in WCR for query processing.

3.1 WCR property

Given a graph G and a WCR query q(a, b,≤ y), for a
path P(a, b) in G, we denote the maximum edge weight
on P(a, b) as P(a, b) = maxe∈P(a,b) w(e). If for every path

P(a, b) in G, P(a, b) > y holds, then we can conclude that
a, b are not reachable w.r.t. the constraint ≤ y. But it is too
expensive to enumerate all possible paths P(a, b) in G and
check whether P(a, b) > y holds or not.

Let us consider the cut property [8] of minimum spanning
tree (MST) of a graph, which states that for any cut C in
the graph, if the weight of an edge e ∈ C is smaller than
the weights of any other edges in C, then this edge e
belongs to all MSTs of the graph. Let T denote an MST of
G. For a vertex pair (a, b), there is a unique tree path PT (a, b)

between a and b on T . Let PT (a, b) = maxe∈PT (a,b) w(e)
denote the maximum edge weight on PT (a, b). Based on the
cut property, we can derive the following lemma.

Lemma 1 Given a graph G(V, E, �,w), its MST T and an
arbitrary vertex pair (a, b), for any P(a, b) in G, PT (a, b) ≤
P(a, b) holds, that is, PT (a, b) ≤ minP(a,b){P(a, b)}.
Proof For an arbitrary vertex pair (a, b), an a-b cut Cab is a
set of edges, the removal of which causes a and b to be in two
disjoint components of G. Given an arbitrary path P(a, b) in
G and an arbitrary a-b cut Cab, the intersection of P(a, b) and
Cab must be non-empty, that is, P(a, b) ∩ Cab �= ∅. Denote
the minimum weight of a cut Cab as Cab = min{w(e)|e ∈
Cab}. Then for any e′ ∈ P(a, b) ∩ Cab, we have

Cab ≤ w(e′) ≤ P(a, b). (1)

Let emax denote the edge in PT (a, b) with the largest weight,
that is, emax = arg maxe∈PT (a,b) w(e). We can divide T into
two disjoint components Ta and Tb by removing emax . Here
Ta and Tb represent the connected components in T contain-
ing a and b respectively. Then we obtain an a-b cut C∗ab of
G, C∗ab = {e(u, v) ∈ E |u ∈ Ta, v ∈ Tb} and emax ∈ C∗ab.
Based on the cut property of MST, emax must be the edge
with the smallest weight in C∗ab, that is,

w(emax ) = C∗ab, (2)

as emax belongs to T and no other edges in C∗ab belong to T .
Combining (1) and (2), we prove

PT (a, b) = w(emax ) = C∗ab ≤ P(a, b)

for any path P(a, b) in G.

From Lemma 1, we can derive the following theorem to
answer a WCR query.

Theorem 1 Two vertices a and b are reachable w.r.t. the
weight constraint≤ y in a graph G ⇔ PT (a, b) ≤ y where
T is the MST of G.

Proof 1. ⇒: As a and b are reachable w.r.t. the weight con-
straint ≤ y in the graph G through a path, denoted as
P(a, b), we have P(a, b) ≤ y holds. By Lemma 1, we
have PT (a, b) ≤ P(a, b) ≤ y.
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2. ⇐: As PT (a, b) ≤ y, we know w(e) ≤ y for each
edge e ∈ PT (a, b). Thus, a and b are reachable w.r.t.
the weight constraint ≤ y through path PT (a, b) in G.

Based on Theorem 1, a WCR query q = (a, b,≤ y)

can be processed as follows. We find the unique MST path
PT (a, b) between a and b on T and compute the largest
edge weight PT (a, b). a and b are reachable w.r.t. the weight
constraint if and only if PT (a, b) ≤ y.

Example 2 For graph G in Fig. 1a, the MST T is shown
in Fig. 1b. To answer a WCR query q = (a, g,≤ 4), we
find the unique tree path PT (a, g) = (a, f, d, b, c, g), such
that ∀e ∈ PT (a, g), w(e) ≤ 4. Thus vertices a and g are
reachable w.r.t. the constraint.

An MST can be built in O(|E |) time using Kruskal’s algo-
rithm [19] (with the union-find technique [8]). All edges in
E can be sorted beforehand in O(|E |) time using radix sort,
since the edge weights are from a finite set. A straightforward
approach takes O(|V |) time to find the path PT (a, b) on T to
answer a WCR query. Theorem 1 serves as a building brick
for constructing an efficient index to answer a WCR query.

3.1.1 Connection with Gomory-Hu tree

The MST for answering a WCR query bears some similar-
ity with the Gomory-Hu tree [11]. We discuss the connec-
tion between our MST and the Gomory-Hu tree here. The
Gomory-Hu tree is defined as follows.

Definition 3 (Gomory-Hu tree) Given a weighted undi-
rected graph G = (V, E, w), denote the minimum capacity
of an s-t cut by λst , for any s, t ∈ V . A tree T = (VT , ET )

with VT = V and ET ⊂ E is a Gomory-Hu tree of G if

λst = min
e∈PT (s,t)

c(Se, Te),∀s, t ∈ V

where

1. PT (s, t) is the path in T between s, t ∈ V ,
2. Se and Te are the two connected components of T \ {e}

such that (Se, Te) forms an s-t cut in G, and
3. c(Se, Te) is the capacity of the cut in G.

To encode the minimum cut capacity information into a
Gomory-Hu tree T, for every edge (a, b) ∈ ET , we can
assign λab as its weight. For a tree path PT (s, t), denote the
minimum edge weight on PT (s, t) as PT (s, t). By definition,
PT (s, t) = λst . We have the following theorem.

Theorem 2 Given a graph G(V, E, w), we define G’s
λ-graph Gλ = (V, V × V, λ) as a complete graph whose
edge weight on edge (s, t) is the minimum capacity of an
s-t cut in G, denoted as λst . Let P(a, b) = {P(a, b)} be
the set of all paths that connect a and b in Gλ, we have
λab = maxP(a,b)∈P(a,b){P(a, b)}.

Proof First, the following triangle inequality holds:

λab ≥ min{λac, λbc},∀a, b, c ∈ V,

since c must be on one side of an a-b cut. Then, given any
path in Gλ, P(a, b) = (a, c1, c2, . . . , cl , b), we have

λab ≥ min{λacl , λcl b}
≥ min{λacl−1, λcl−1cl , λcl b}
≥ . . .

≥ min{λac1, λc1c2 , . . . , λcl b} .= P(a, b)

By considering all the paths P(a, b) in Gλ, we have λab ≥
maxP(a,b)∈P(a,b){P(a, b)}. As edge (a, b) itself is also a path
between a and b, that is, (a, b) ∈ P(a, b), we have λab ≤
maxP(a,b)∈P(a,b){P(a, b)}. Thus we prove

λab = max
P(a,b)∈P(a,b)

{P(a, b)}.

Theorem 3 For any two nodes a, b in G, finding λab on the
Gomory-Hu tree is equivalent to calculating PT (a, b) on
the maximum spanning tree T of Gλ.

Proof Since maxP(a,b)∈P(a,b){P(a, b)} is a dual format of
minP(a,b)∈P(a,b){P(a, b)} considered in Lemma 1, it is sym-
metric to prove for all the paths P(a, b) in Gλ,

max
P(a,b)∈P(a,b)

{P(a, b)} ≤ PT (a, b),

where T is the maximum spanning tree of λ-graph Gλ. As
PT (a, b) ∈ P(a, b), we have

max
P(a,b)∈P(a,b)

{P(a, b)} ≤ PT (a, b) ≤ max
P(a,b)∈P(a,b)

{P(a, b)}.

Thus we prove

PT (a, b) = max
P(a,b)∈P(a,b)

{P(a, b)} = λab.

From Theorem 3, we conclude that finding a minimum cut
capacity on a Gomory-Hu tree is equivalent to applying our
WCR technique on the maximum spanning tree of a special
graph Gλ. But in the opposite direction, Gomory-Hu tree
cannot be used to answer WCR queries on general graphs.

3.2 Novel edge-based indexing

In this section, we aim to design a novel index that can answer
a WCR query in O(1) time. According to Theorem 1, it
is equivalent to solving the following problem: Given an
MST T , compute PT (a, b) for any two vertices a and
b in T in O(1) time.

Let emax be the edge with the maximum edge weight wmax

in T . If there are more than one edge with the same maximum
weight wmax , we pick one of them arbitrarily. We have the
following observations.
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Fig. 2 The edge-based index tree T of MST T

1. After removing emax , T becomes two disjoint subtrees
T1 and T2.

2. For any vertices a in T1 and b in T2, PT (a, b) = wmax .
3. For any two vertices a and b in T1 (or in T2), PT (a, b)

can be similarly determined in T1 (or in T2).

Based on the above observations, for an MST T , we define
its edge-based index tree as follows.

Definition 4 (Edge-based index tree) For an MST T , its
edge-based index tree, denoted as T [T ], is a vertex-labeled
binary tree, such that: If T contains only one vertex, T [T ]
is a tree with a single vertex labeled 0. Otherwise, let emax

be an edge with the maximum edge weight wmax in T . Sup-
pose after removing emax , T becomes two disjoint subtrees
T1 and T2. T [T ] is recursively defined as follows.

– The root of T [T ] is labeled wmax .
– The left subtree of T [T ] is T [T1].
– The right subtree of T [T ] is T [T2].

For any MST T , from the definition of T [T ], each node
v ∈ V (T ) corresponds to a unique leaf node in T [T ] with
a label 0, and each edge e ∈ E(T ) corresponds to a unique
internal node in T [T ] with a label w(e). We use L(v) to
denote the label of any node v in T [T ]. If the context is
obvious, we use T to denote T [T ].

Example 3 Figure 2 shows the edge-based index tree T for
the MST T shown in Fig. 1b. A leaf node in circle corresponds
to a vertex v ∈ V (T ) and the letter in the circle denotes the
vertex id v. The label of each leaf node in T is 0 and is not
shown in the figure. An internal node with a triple (u, v, w)

in rectangle corresponds to an edge e(u, v) ∈ E(T ) with
w = w(e(u, v)). The label of an internal node in T is w. T
organizes all 7 edges in T hierarchically.

Essentially, T is a delicate reorganization of all edges in
MST T , and it supports computing PT (a, b) in O(1) time
with little space overhead. T is stored in the memory as our

index named Edge-Index. Next, we discuss query process-
ing using Edge-Index, followed by the construction algo-
rithm of Edge-Index.

Query processing: The edge-based index tree T has the
following property: for an internal node v ∈ V (T ), its label
L(v) ≤ L(r) where r ∈ V (T ) is any ancestor of v in T . We
have the following lemma.

Lemma 2 Given an MST T of a graph G(V, E, �, w) and
its edge-based index tree T , ∀a, b ∈ V , we denote the lowest
common ancestor of a and b in T as LC AT (a, b). Then we
have

PT (a, b) = L(LC AT (a, b))

Proof Let us consider the process to construct the edge-based
index tree T : We remove edges from the MST T one by one
in the decreasing order of the edge weight. After removing a
certain edge, the subtree that contains the edge becomes two
disjoint subtrees and the removed edge becomes the root of
a subtree in T .

1. Let e be the first edge, whose removal separates a and b
in two disjoint subtrees of T . It means e is the first node
created in T that separates a and b, or in other words,
e = LC AT (a, b).

2. Let us consider the time before removing e and all edges
with weights > w(e) are removed. At that time, a and
b are still in the same connected subtree in T , and e
has the largest weight in the remaining edges. It means
PT (a, b) ≤ w(e).

3. After removing e in T, a and b are disconnected, which
means e is in PT (a, b). Thus PT (a, b) ≥ w(e).

From items 1–3, we can prove

PT (a, b) = w(e) = L(LC AT (a, b)).

Based on Lemma 2, the WCR query q = (a, b,≤ y)

can be processed as follows. On the edge-based index tree
T , we find the lowest common ancestor LC AT (a, b) of a
and b. If PT (a, b) = L(LC AT (a, b)) ≤ y, then a and b
are reachable w.r.t. the constraint; otherwise, they are not.
The LCA query on an index tree T can be answered in O(1)

time with an O(|V |) size index by transforming it into a
range minimum query (RMQ). RMQ is defined as follows.
Let A be an array of length n. For any indices 1 ≤ i ≤
j ≤ n, RMQ returns the index of the smallest element in
the subarray A[i, . . . , j]. The connection between LCA and
RMQ is based on an observation—the LCA of nodes a and
b is the shallowest node encountered between the visits to a
and b during a depth-first search of a tree T . Literature [3]
provides the technical details of the RMQ indexing and query
processing. According to [3], the LCA index has O(|V |) size
and can be constructed in O(|V |) time.
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Algorithm 1 Edge-Index-Construct-Naive(T )
Input: An MST T
Output: An edge-based index tree T for T
1: if T contains a single node then
2: return a tree of a single node labeled 0;
3: emax ← an edge in T with the maximum weight wmax ;
4: remove emax from T to generate two trees T1 and T2;
5: T ← a tree with root labeled wmax ;
6: T .le f t ← Edge-Index-Construct-Naive(T1);
7: T .right ← Edge-Index-Construct-Naive(T2);
8: return T ;

Example 4 With the edge-based index tree T in Fig. 2, to
answer the WCR query q = (a, g,≤ 4), one has to find
LC AT (a, g), which is e6 = (c, g, 4). As L(e6) = 4 ≤ 4, a
and g are reachable w.r.t. the constraint.

Index construction: Definition 4 gives a straightforward
way to build the edge-based index tree T for an MST T in a
top-down fashion. The index construction is shown in Algo-
rithm 1 and is self-explanatory. Line 3 needs O(|V |) time to
find emax with the maximum weight, and it is processed for
|V | − 1 times using recursion. The total time complexity of
Algorithm 1 is O(|V |2) for constructing Edge-Index. When
the graph contains hundreds of millions of vertices, this time
complexity is unacceptable.

Thus, we propose a novel linear-time method (in Algo-
rithm 2) to build the edge-based index tree T from the MST
T in a bottom-up fashion, in a way similar to Kruskal’s
algorithm [19].

In Algorithm 2, the edge-based index tree T is built with
a function R : V (T ) �→ V (T ) which maps a node to its
root. Initially, R maps each node to the node itself as the root
(line 2–3). So all nodes in T are isolated. In each iteration,
we pick an MST edge e(a, b) ∈ E(T ) in the ascending order
of w(e) and create an internal node with a label w(e) in T
(line 5–6). In line 7–8, Find-Root returns the current root of
a and b in T respectively. Line 9–10 unions the two subtrees
where a and b reside into one, by linking the two root nodes
to the new internal node created in line 6. After inserting all
edges e ∈ E(T ) as internal nodes in T , the edge-based index
tree T is constructed.

Algorithm 2 adopts the classical union-find algorithm [8].
The Find-Root procedure returns the current root of a node
in T . It adopts the path compression technique [8], thus the
amortized time complexity for each Find-Root operation is
O(α(|V |)). Here α(n) is the inverse Ackermann function that
is a very slowly growing function and can be considered as a

small constant. As an indicator, α(22265536 − 3) = 4. As we
totally perform O(|V |) Find-Root operations, the time for
all Find-Root operations is O(|V |). In addition, sorting all
edges in E(T ) can be done in O(|V |) time using radix sort
since all edge weights are from a finite set. Hence, the overall

Algorithm 2 Edge-Index-Construct (T )
Input: An MST T
Output: An edge-based index tree T for T
1: T ← ∅;
2: R(v)← v, ∀v ∈ V (T );
3: R(e)← e, ∀e ∈ E(T );
4: create a leaf node v labeled 0 in T , ∀v ∈ V (T );
5: for e(a, b) ∈ E(T ) in ascending order of w(e) do
6: create an internal node e labeled w(e) in T ;
7: e.le f t ← Find-Root(a);
8: e.right ← Find-Root(b);
9: R(e.le f t)← e;
10: R(e.right)← e;
11: return T ;

12: Procedure Find-Root(v)

13: if R(v) = v then
14: return v;
15: R(v)← Find-Root(R(v));
16: return R(v);

time complexity of building an edge-based index tree T is
O(|V |).
Example 5 The edge-based index tree T in Fig. 2 is
constructed from T in Fig. 1b as follows. Initially, all leaf
nodes are isolated, and the root of each node is itself. We
first sort the edges in E(T ) in the ascending order of their
weights to be the edge sequence e0, . . . , e6. In the first step,
we create an internal node corresponding to e0(a, f, 2) and
link nodes a and f as two children of the e0 node. Next, we
create an internal node corresponding to e1(b, c, 2) and link
nodes b and c to it. In the third step, we create an internal
node corresponding to e2(e, f, 2) and link node e and the cur-
rent root of node f , that is, node e0(a, f, 2) to the e2 node.
This process iterates until we insert all 7 edges e0, . . . , e6 as
internal nodes into T .

Lemma 3 Constructing Edge-Index takes O(|E |) time and
O(|V |) space. Using Edge-Index, the query time is O(1).

Proof We first build an MST from G in O(|E |) time and then
build the edge-based index tree and the LCA index in O(|V |)
time. Thus the time complexity for constructing Edge-Index
is O(|E | + |V |), or simplified as O(|E |), as |V | ≤ |E | + 1
usually holds, assuming G is a connected graph. The spaces
for both the edge-based index tree and the LCA index are
O(|V |), and thus, the space complexity is O(|V |). The query
time is O(1) for finding LC AT (a, b) on T .

3.3 Extension to other constraint formats

In the previous discussions, we assume the edge weight con-
straint has the form of ≤ y. If the user-specified weight con-
straint is≥x, Edge-Index can be applied similarly, since≥x
and ≤y are symmetric. The only change is to build a maxi-
mum spanning tree T ′ of G, instead of a minimum spanning
tree. All the complexity results apply to the ≥ x constraint.

123



M. Qiao et al.

Algorithm 3 Query-Processing-Edge-Index (Tl , q)
Input: Index Trees Tl , ∀l ∈ �, and a WCR q(a, b, [x, y])
Output: Whether a and b are reachable w.r.t. [x, y]
1: l ← minl ′∈�{l ′ ≥ x};
2: r ← LC ATl (a, b);
3: return L(r) ≤ y;

When the weight constraint is a bounded interval [x, y],
we can show that Edge-Index can also be easily extended
to handle this more general constraint.

3.3.1 When the weight constraint is [x, y]

In this section, we describe how to extend Edge-Index to
handle the constraint [x, y] respectively.

The y constraint can be handled in the same way. To satisfy
the x constraint as well, we can simply remove all e ∈ E with
w(e) < x . For this purpose, we define the l-Graph.

Definition 5 (l-graph) Given l ∈ R, we define the l-Graph
Gl(V, El , �l , w) as a subgraph of G(V, E, �,w), such that
El = {e|e ∈ E, w(e) ≥ l} and �l = {l ′|l ′ ∈ �, l ′ ≥ l}.

Index construction: For each l ∈ �, we first construct
the MST Tl from the l-Graph Gl . A Tl may be a forest, due to
the removal of edges with w(e) < l. It is trivial to handle this
case by adding a virtual root. In the following, we assume Tl

is connected for each l. For each MST Tl , ∀l ∈ �, we invoke
Algorithm 2 to build an edge-based index tree Tl and build
the LCA index for Tl . Both the index tree Tl , ∀l ∈ �, and
the LCA index are kept in the memory.

Query processing: Given a query q = (a, b, [x, y]),
we find Tl where l = minl ′∈�{l ′ ≥ x}. Then we compute
LC ATl (a, b) on Tl . a and b are reachable w.r.t. [x, y] if and
only if PTl (a, b) = L(LC ATl (a, b)) ≤ y. Algorithm 3 lists
the pseudo code for query processing by Edge-Index to han-
dle the constraint [x, y].
Lemma 4 To handle a bounded interval constraint [x, y],
building Edge-Index takes O(|�||E |) time and O(|�||V |)
space. Using Edge-Index, the query time is O(1).

We can see from Lemma 4, to handle a bounded constraint
[x, y], the index construction time and space complexities
increase by a factor of |�|, but the query time complexity is
the same as that for the constraint ≥ x or ≤ y.

4 An I/O-efficient index

The indexing scheme Edge-Index assumes the index can
entirely fit into the main memory, with a space complexity of
O(|�||V |) to handle the weight constraint [x, y]. When |�|
or |V | is large which is very common for emerging massive

graphs containing hundreds of millions of vertices, the index
size may exceed the memory limit. In this section, we propose
an I/O-efficient algorithm that builds compact disk-resident
index for query processing with low I/O cost. We use the
basic external memory model [30] that moves B data items
continuously between external and internal memory as one
I/O communication.

A straightforward implementation of the disk-based algo-
rithm is to store all the |�|MSTs on the disk. Given a query
q = (a, b, [x, y]), the MST Tl where l = minl ′∈�{l ′ ≥ x} is
fetched into the memory to answer q. The disk-based index
size is O(|�||V |). However, it needs O(|V |/B) I/O for query
processing where B is the page size, as it fetches the whole
MST Tl into the memory. Thus indexing MSTs directly on
the disk is not I/O-efficient for query processing. Another
approach is to store the edge-based index tree Tl as well as
its LCA index, ∀l ∈ � on the disk. However, answering
queries using the disk-based LCA index is not I/O-efficient
because of the complex structure used in the LCA index [3].
Our goal is to design a compact disk-based index based on
the MSTs to reduce the I/O cost in query processing.

4.1 Vertex coding

For efficient storage and indexing, coding is a commonly used
technique. To design an I/O-efficient disk index, we have an
intuitive vertex coding scheme on an MST T as follows. We
pick an arbitrary vertex r ∈ V (T ) as the root of T , thus
T becomes a rooted MST. Given two vertices a and b, we
denote the lowest common ancestor of a and b on such a tree
as rab. Since rab lies on the tree path between a and b, we
have

PT (a, b) = max{PT (a, rab), PT (b, rab)}.
where PT (a, rab) denotes the tree path between a and rab.

Based on the above equation, we generate a code for every
vertex v ∈ V (T ). In the rooted MST T , we define the level
of the root as 0, and the level of a child node increases that
of its parent by 1. For any vertex v at level l of T , we find its
ancestors ri at level i, 0 ≤ i ≤ l − 1. We also pre-compute
the maximum edge weight PT (v, ri ) on the path PT (v, ri )

from v to ri on T . The code of a vertex v, code(v), is

code(v) = {(ri , PT (v, ri ))|ri is v’s ancestor at level i,

0 ≤ i ≤ l − 1}
The code is stored on the disk as index.

To answer a query q = (a, b, [x, y]), we retrieve the pages
containing code(a) and code(b), from both of which we find
the lowest common ancestor rab of a and b in the rooted
MST. Thus PT (a, b) = max{PT (a, rab), PT (b, rab)} can
be determined by the two codes with no extra overhead. The
I/O cost for a query is O(h/B) on retrieving code(a) and
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(a) (b)

Fig. 3 Rooted MST and its balanced tree

code(b), where h is the tree height of the rooted MST (h
is also the maximum number of ancestors). The code-based
index uses O(|V |h) space for one MST, or O(|�||V |h) for
|�|MSTs.

Example 6 Figure 3a shows a rooted MST of T where
vertex b is an arbitrarily picked root. To answer a query
q = (a, g, [2, 4]), we retrieve

code(a) = {(b, PT (a, b)), (d, PT (a, d)), ( f, PT (a, f ))},
code(g) = {(b, PT (g, b)), (c, PT (g, c))}.
We can find LC A(a, g) = b. So

PT (a, g) = max{PT (a, b), PT (g, b)} = 4.

The above coding method is not I/O efficient, because an
MST may appear in arbitrary shape and thus the height h of
an MST is O(|V |) in the worst case, which causes O(|V |/B)

I/O cost for query processing and O(|�||V |2) index size in
the worst case and is too expensive. To address this issue, we
design a novel tree re-balancing technique to reorganize the
MST into a balanced rooted tree, such that the height has an
upper bound of log2 |V |. With the balanced tree, our disk-
based algorithm only needs four I/Os for query processing
and O(|�||V | log |V |) index size on the disk.

In the following, we will first introduce the tree
re-balancing technique in Sect. 4.2 and then propose the
disk-based index construction method in Sect. 4.3 and query
processing algorithm in Sect. 4.4.

4.2 MST re-balancing

In the vertex coding scheme, the key to reduce the I/O cost in
query processing and the disk-based index size is to make the
height h of a rooted MST T as small as possible. However,
when T is a chain, even if we pick the center node of T as
its root, its height h is still as large as |V |2 . Thus, we need to
re-balance T in order to make h small. Suppose we select
a certain vertex r ∈ V (T ) as the root of T . Underneath the
root r, T has p ≥ 1 disjoint subtrees T1, T2, . . . , Tp. For each
subtree Ti , we select a vertex ri ∈ V (Ti ) as the root of Ti for
the balance purpose. This re-balancing process is recursively

done in a top-down fashion to the leaf nodes. Although the re-
balanced tree is no longer an MST, the vertex coding-based
index and query processing can still be applied based on the
following property.

Property 1 Once the root r of T is fixed, no matter how the
subtrees T1, T2, . . . , Tp under r are re-balanced, for any two
vertices a ∈ V (Ti ) and b ∈ V (Tj ) for i �= j , their LCA in the
re-balanced tree is still r , as a and b are from disjoint sub-
trees. Furthermore, r must lie on PT (a, b). The maximum
weights PT (a, r) and PT (b, r) are pre-computed based on
the MST paths PT (a, r) and PT (b, r) in the original unbal-
anced MST. PT (a, b) = max{PT (a, r), PT (b, r)} can be
computed in the same way regardless of how the subtrees
T1, T2, . . . , Tp are re-balanced.

The main purpose of the balanced tree is to reduce the
tree height and thus reduce the code length and the disk-
based index size. For an MST T , we define its balanced tree
B[T ].
Definition 6 (Balanced tree) For an MST T , its balanced
tree, denoted as B[T ], is a rooted tree such that

– The root node r of B[T ] corresponds to a node in T .
– The height of B[T ] is at most log2 |V (T )|.
– Underneath the root r, T has p ≥ 1 disjoint subtrees

T1, T2, . . . , Tp, then the subtrees under root r in B[T ]
are B[T1],B[T2], . . . ,B[Tp].

If the context is obvious, we will use B to denote B[T ].
Example 7 Figure 3b shows the balanced tree B for the
unbalanced rooted MST in Fig. 3a. We pick node b as the tree
root at level 0, and nodes f and g as the roots of the left and
right subtrees at level 1. The tree height h = 2 < log2 8 = 3,
as |V (T )| = 8. For vertices a and g, we can see that their
lowest common ancestor in B is still vertex b, although the
left and right subtrees are re-balanced.

Before introducing our algorithm to construct the balanced
tree, we first study a special type of node in an MST T called
median node which is defined as follows.

Definition 7 (Median node) Given an MST T , a node vm ∈
V (T ) is a median node of T , if for each neighbor of vm , that
is, ∀v′ ∈ {v|(vm, v) ∈ E(T )}, |V (Tv′)| ≤ � |V (T )|

2 � holds,
where Tv′ is the incident subtree of vm rooted at a neighbor
node v′ and |V (Tv′)| is the number of nodes in Tv′ .

We will select vm as the root of a balanced tree B. However,
does the median node always exist? If yes, how to find it?

Algorithm 4 gives a constructive proof that such a median
node always exists—the lowest node u with the subtree size
satisfying Su = |V (Tu)| > � |V (T )|

2 � is the median node. We
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Algorithm 4 Find-Median-Node (T )
Input: An MST T
Output: The median node vm of T
1: Traverse T from an arbitrarily picked root r ′;
2: vm ← the lowest node u with subtree rooted at u satisfying
|V (Tu)| > � |V (T )|

2 �
3: return vm ;

Algorithm 5 Balanced-Tree-Construct (T )
Input: An MST T
Output: A balanced tree B for T
1: if |V (T )| = 1 then
2: return a tree with the only node in T ;
3: r ← Find-Median-Node(T );
4: B← a tree of a single node r ;
5: consider disjoint subtrees T1, T2, . . . , Tp under r in T ;
6: for i = 1 to p do
7: Bi ← Balanced-Tree-Construct(Ti );
8: add Bi to be a subtree under r in B;
9: return B;

start from an arbitrarily picked root r ′ ∈ V (T ) to traverse
the tree and find the median node. By ‘lowest’, we guarantee
for each child node uc of u, |V (Tuc )| ≤ � |V (T )|

2 � holds. We
denote u’s parent as u p. After we re-root the tree on u, the
size of subtree rooted at node u p is

|V (Tu p )| = |V (T )| − Su

≤ |V (T )| − � |V (T )|
2
� − 1

≤ �|V (T )|
2
�

Therefore, we prove for each neighbor v of u, the subtree
rooted at v has a size satisfying |V (Tv)| ≤ � |V (T )|

2 �. Thus u
is a median node by definition. Algorithm 4 costs O(|V (T )|)
time to traverse the tree and find the median node.

Given an MST T , we choose the median node as the
root and construct a balanced tree recursively based on
Definition 6. The algorithm to construct the balanced tree
B for T is shown in Algorithm 5 and is self-explanatory. We
have the following theorem.

Theorem 4 Given an MST T , the height of the balanced tree
B[T ] built is at most log2 |V (T )|.
Proof Let h(B) be the height of the tree B, and h(n) be the
maximum height of the balanced tree B[T ] of any tree T
with n nodes. Obviously, h(n) is a nondecreasing function.
In Algorithm 5, we find a median node r in T , whose removal
from T generates p disjoint trees T1, T2, . . . , Tp. Since r is
a median node, we have |V (Ti )| ≤ � |V (T )|

2 �, ∀1 ≤ i ≤ p.
From the construction of B, we know

h(B[T ]) = max
1≤i≤p

h(B[Ti ])+ 1

≤ max
1≤i≤p

h

(
� |V (T )|

2
�
)
+ 1 = h

(
� |V (T )|

2
�
)
+ 1

Algorithm 6 Balanced-Index-Construct (G)
Input: A graph G(V, E, �,w)

Output: Balanced-Index for G
1: I ← an empty external code index;
2: O← an empty external offset index;
3: for all l ∈ � do
4: Tl ←MST for Gl ;
5: Bl ← Balanced-Tree-Construct(Tl );
6: for all v ∈ V (Bl ) do
7: code(v)← ∅;
8: for all v’s ancestor u in a top-down fashion do
9: PTl (v, u)← the path from v to u on Tl ;
10: code(v).Append((u, PTl (v, u)));
11: O.Append(I.of f set);
12: I.Append(code(v));

Thus,

h(n) = max∀T,s.t.|V (T )|=n
h(B[T ])

≤ h
(
�n

2
�
)
+ 1

≤ h
(
� n

22 �
)
+ 2

≤ · · · ≤ h(1)+ log2 n = log2 n

Hence we prove h(B[T ]) ≤ h(|V (T )|) ≤ log2 |V (T )|.
Lemma 5 The time complexity for Algorithm 5 to construct
the balanced tree B for tree T is O(|V (T )| log |V (T )|).
Proof There are at most log2 |V (T )| levels in B, and in
each level, finding median nodes for all subtrees on the level
takes at most O(|V (T )|) time. The total time complexity is
O(|V (T )| log |V (T )|).

4.3 Disk-based index construction

Our disk-based Balanced-Index includes two parts,
namely a code index I and an offset index O. I stores all
the codes code(v), ∀v ∈ Tl and ∀l ∈ �. For each node
v, code(v) is a list of (key, value) pairs, where key is the
node id for each ancestor of v in B[Tl ] from the root to v,
and value is the maximum edge weight on the path from v

to key in Tl , that is, PTl (v, key). O stores the offsets for all
codes in I, because codes are of different sizes, as nodes at
different levels in B[Tl ] have different number of ancestors.

Algorithm 6 constructs the Balanced-Index from a graph
G. We first initialize I and O to be two empty lists. Then
for each weight l ∈ �, we construct the balanced tree Bl

from the MST Tl . For each node in Bl , we calculate its code
as described above. Note that the maximum edge weight
PTl (v, u) on the path from v to v’s ancestor u is calculated
in Tl , not in Bl . Finally, we append the code and the offset to
I and O respectively.

Lemma 6 Using Algorithm 6, Balanced-Index for graph
G can be constructed using O(|�||E |+|�||V | log |V |) time
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Table 1 Complexity results for
bounded interval constraint
[x, y]

Methods Index time Index size Query time

Edge-Index (memory-based) O(|�||E |) O(|�||V |) O(1)

Balanced-Index (disk-based) O(|�||E | + |�||V | log |V |) O(|�||V | log |V |) 4 I/Os

and O(|�||V | log |V |) disk space. The I/O cost to store the
index is O(

|�||V | log |V |
B ) where B is the page size.

Proof We first build |�| MSTs in O(|�||E |) time and |�|
balanced trees in O(|�||V | log |V |) time. This uses O(|V |)
memory space for processing one MST and balanced tree at
a time. We also need O(|�||V | log |V |) time and disk space
to calculate and store all the codes from the balanced trees,
because each balanced tree has |V | codes and each code has
at most log2 |V | (key, value) pairs. Since creating I and O
uses sequential I/Os, the total I/O cost is O(

|�||V | log |V |
B ).

4.4 Query processing

We show how to process queries using the disk-based offset
index O and code index I in Algorithm 7. Given a query
q = (a, b, [x, y]), find l = minl ′∈�{l ′ ≥ x}. Suppose l
is ranked rl in �, and the id of node a in graph G is ida .
Let p = rl × |V | + ida , we can get the offset of code(a)

in I by retrieving the p-th element from index O with one
I/O. Using the offset, we can retrieve code(a) from index
I, which contains at most log2 |V | (key, value) pairs. This
operation needs one I/O since one page is enough to hold
log2 |V | pairs in a code for a very large |V |, that is, in the
scale of O(2B), where B is the page size. We set B = 4096
bytes in our implementation. Similarly, we retrieve code(b)

from index I. We compare the i-th element in code(a) with
the i-th element in code(b) one by one in a top-down fashion,
until they are not referring to the same node. The last node
with code(a)[i].key = code(b)[i].key corresponds to the
LCA of a and b in Bl . We have

PTl (a, b) = max{code(a)[i].value, code(b)[i].value}
Thus we return true if PTl (a, b) ≤ y, and return false other-
wise. We totally need four I/Os to retrieve the index entries
for a and b to answer a WCR query. The offset index O

Algorithm 7 Query-Processing-Balanced-Index
(I,O, q)
Input: The code index I and the offset index O, and a WCR query

q(a, b, [x, y])
Output: Whether a and b are reachable w.r.t. [x, y]
1: l ← minl ′∈�{l ′ ≥ x};
2: oa ← O.Get-Offset(l, a); code(a)← I.Get-Code(oa);
3: ob ← O.Get-Offset(l, b); code(b)← I.Get-Code(ob);
4: i ← max{ j |code(a)[ j].key = code(b)[ j].key};
5: return max{code(a)[i].value, code(b)[i].value} ≤ y;

contains |�||V | offset values and is typically small enough
to fit in the memory. Thus if O is in the memory, we only
need two I/Os for query processing.

Lemma 7 Answering a WCR query with Balanced-Index
by Algorithm 7 takes O(log |V |) time and four I/Os.

Proof The I/O cost is on retrieving the offsets from O and the
codes from I. We need one I/O to retrieve each offset. The
number of (key, value) pairs in a code is at most log2 |V |
and is small enough to fit into one page, thus we can use
one I/O to retrieve the code for each node. Thus we totally
need four I/Os. After retrieving the codes into memory, in
the worst case, we need to traverse all elements in the two
codes once to find the LCA of a and b in Bl , which needs
O(log |V |) time.

The disk-based algorithm can be applied directly to solve
the half-bounded constraint ≥ x and ≤ y. The only differ-
ence is that we build only one balanced tree B from the MST
of the graph G. Thus the index construction time is O(|E |+
|V | log |V |) and the disk index size is O(|V | log |V |). The
query time is the same as in Lemma 7. Finally, Table 1 sum-
marizes the complexities of our proposed algorithms.

5 Experiments

In this section, we perform extensive experimental studies on
real and synthetic datasets. We systematically test our mem-
ory algorithm Edge-Index and the I/O-efficient algorithm
Balanced-Index. We report three performance measures,
index construction time (IT), index size (IS), and query time
(QT). All our algorithms are implemented in C++, and our
experiments are performed on a machine with a 2.67 GHz
CPU and 12 GB memory.

Besides the two algorithms we proposed, we also test the
following baseline methods for comparison.

1. Naive-Search Methods: We take three basic search
approaches, depth-first search (DFS), breadth-first search
(BFS), and bi-directional search (BIS) [9], as memory-
based baselines. Given a query q = (a, b, [x, y]), to
find a valid path between a and b, Naive-Search only
visits edges that satisfy the [x, y] constraint. Being dif-
ferent only on the searching order, they share the same
index time O(|E | log |E |) (for pre-sorting all graph edges
according to the start node id of the edges, if the input is
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not sorted), index size O(|V |+|E |) (for storing the orig-
inal graph G), and worst-case query time O(|V | + |E |).
We also use them as disk-based baselines by adapt-
ing them to external memory, denoted as Ext-DFS,
Ext-BFS, and Ext-BIS, respectively. In the preprocess-
ing phase, we need to pre-sort all edges in memory
in O(|E | log |E |) time and then sequentially store the
adjacency lists on disk with O(|E |/B) I/Os. The disk-
based index takes O(|E |) size. In the online phase,
when extending a node v, it needs O(1+ degree(v)/B)

I/Os to fetch v’s neighbors from disk. Thus the total
number of I/Os for query processing is O(

∑
v∈V (1 +

degree(v)/B)) = O(|V | + |E |/B) I/Os in the worst
case.

2. MST-Index: MST-Index is a memory-based baseline,
which builds |�| MSTs in memory, denoted as Tl ,

∀l ∈ �. Given a query q = (a, b, [x, y]), MST-Index
finds l = minl ′∈�{l ′ ≥ x} and computes PTl (a, b) on Tl .
The index time and space complexities of MST-Index is
the same as those of Edge-Index, but its query time is
O(|V |).

3. External-MST: External-MST is a disk-based baseline,
which stores |�| MSTs on disk. Given a query q =
(a, b, [x, y]), External-MST finds l = minl ′∈�{l ′ ≥ x}
and fetches the MST Tl into the memory. Then it com-
putes PTl (a, b) on Tl . It uses O(|V |/B) I/Os for query
processing.

4. Sampling-Tree [14] and 2-Label-Hop [32]: These two
approaches handle label-constraint reachability (LCR)
on directed graphs, where the labels appearing on the
path from a node u to another node v should be a sub-
set of a user-provided label set. In terms of problem
hardness, LCR is more difficult than WCR. But since
LCR is the closest to our WCR problem in the literature,
we adapt Sampling-Tree and 2-Label-Hop to answer
WCR query on undirected graphs for performance com-
parison.

5.1 Experiments on real datasets

In this experiment, we evaluate the performance of different
methods on two real-world datasets. The first is the Face-
book New Orleans network2 [29] over a period of 2 years.
A node represents a user, and an undirected edge denotes a
user-to-user friendship link. Each edge has a weight denot-
ing the UNIX timestamp with the time of link establishment.
We generalize the timestamps into two granularities, hour
and day. The two resulting networks are denoted as Face-
book (h) and Facebook (day). The second graph is the USA
road network,3 a representative of very large-scale networks.

2 http://socialnetworks.mpi-sws.org/data-wosn2009.html.
3 http://www.dis.uniroma1.it/~challenge9/download.shtml.

Table 2 Real network statistics

Network |V | |E | |�|
Facebook (day) 63,731 440,384 862

Facebook (h) 63,731 440,384 19,657

USARN 23,947,347 29,166,672 12

A node represents an intersection or endpoint while an edge
represents a road segment. We generate 12 weights from 10
to 120 with a step size of 10 and randomly assign a weight
to each edge to represent the road speed limit. Table 2 lists
the statistics of these real networks.

We generate and test 10,000 queries for each real network.
All the queries have the constraint format of [x, y], where
x, y are randomly picked from �. Tables 3 and 4 show the
index time (in s), index size (in GB) and average query time
(in μs) of memory-based and disk-based algorithms respec-
tively. Sampling-Tree and 2-Label-Hop cannot finish index
construction on any of these datasets within 12 h. The com-
parisons are as follows.

Memory-based algorithms (Table 3) The query time
of Edge-Index and MST-Index is the same on Facebook
(day), but on USARN with 24 million nodes, the query time
of MST-Index increases dramatically to 1382μs, which is
345 times slower than Edge-Index. This is because the query
time complexity of MST-Index is O(|V |). The index time of
Edge-Index is 1.75–3.95 times that of MST-Index, and the
index size of Edge-Index is about 3 times larger, because
Edge-Index needs to build edge-based index trees and LCA
index. Both methods run out of memory on Facebook (Hour)
on indexing due to the large number of weights, |�| =
19, 657. Edge-Index uses 13.9–122.3 times longer index
time and 12.9–220.0 times larger index size than Naive-
Search due to the |�| factor. But its query time is within
4μs , three orders of magnitude faster than that of Naive-
Search, which takes 1,098–32,462μs.

Disk-based algorithms (Table 4) The query time of
Balanced-Index is very stable on all networks, taking 11
or 18μs. The query time of External-MST is orders of
magnitude longer than that of Balanced-Index, especially
on USARN with 24 million vertices, as it takes O(|V |/B)

I/Os to fetch an MST. The index size of Balanced-Index
is 2.85–4.3 times larger than that of External-MST and the
index time is 3–10 times longer. Both methods do not suf-
fer from the memory limit as they build disk-based index.
Balanced-Index’s index size is 6.95–6843 times larger than
that of Naive-Search, since the index size of Balanced-
Index is linear with |�|, whereas that of Naive-Search is
O(|E |), not affected by |�|. But the query time of Balanced-
Index is within 18μs in all cases, 2,851–16,362 times
faster than that of Naive-Search, which takes 29,385–
294,521μs.
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Table 3 Memory-based algorithms on real dataset results (IT in s, IS in GB, QT in μs)

Naive-Search MST-Index Edge-Index

IT IS QT IT IS QT IT IS QT

DFS BFS BIS

Facebook (day) 0.4 0.01 1,098 1,429 2,324 27.9 0.66 1 48.9 2.20 1

Facebook (h) 0.4 0.01 1,500 1,377 1,860 – >12G – – >12G –

USARN 33.7 0.89 32,462 30,868 31,325 119.0 3.45 1,382 469.9 11.49 4

Table 4 Disk-based algorithms on real dataset results (IT in s, IS in GB, QT in μs)

Naive-Search External-MST Balanced-Index

IT IS QT IT IS QT IT IS QT

Ext-DFS Ext-BFS Ext-BIS

Facebook (day) 0.6 0.01 31,368 48,152 45,405 41.8 0.66 772 125.6 2.98 11

Facebook (h) 0.5 0.01 35,325 57,366 47,533 922.3 15.03 749 3336.3 68.43 11

USARN 48.8 0.89 294,521 64,471 29,385 146.9 3.45 422,810 1425.9 6.19 18

Summary Our memory method Edge-Index has a very
low and stable query time. But the memory index size can be
a bottleneck for Edge-Index (also for baseline MST-Index).
Naive-Search only stores the original graph which is com-
pact, but its query time is three orders of magnitude longer.
In fact, all the baseline methods, Naive-Search, MST-Index
and External-MST, have a long query time especially when
|V | is large. In contrast, our disk-based Balanced-Index is
very scalable, and the query time remains very low and stable
regardless of the network size, the edge density, or the dis-
tinct weight number. The choice of algorithm depends upon
the network size and the available memory.

5.2 Memory-based algorithms on synthetic datasets

To test the parameter sensitivity of different methods, we
generate a collection of random graphs based on Erdös-Rényi
model [18] by varying three parameters |E |/|V |, |V | and
|�|. |E |/|V | is the density of the graph. The default values
are |E |/|V | = 2, |V | = 105 and |�| = 100. We assign a
random weight to each edge in the graphs. The edge weights
follow a uniform distribution.

We first test our memory algorithm Edge-Index. For
comparison, we also test the baselines, main memory Naive-
Search (DFS, BFS and BIS) and MST-Index. The disk-
based algorithm will be discussed separately in Sect. 5.3. We
test 10,000 random queries on each graph and report index
construction time (in seconds), index size (in GB) and the
average query time (in μs). All the queries have the con-

straint format of [x, y], where x, y are random real numbers
from �.

Varying density: In this experiment, we vary the edge
density |E |/|V | from 2 to 1024 in log scale and fix |V | = 105

and |�| = 100. Figure 4a–c shows the index construction
time, index size and query time in log scale, respectively.

The index time of Edge-Index and MST-Index increases
with the density |E |/|V |, or equivalently with |E | as |V | is
fixed, since they both take O(|�||E |) time to build MSTs. In
addition, Edge-Index needs to build edge-based index trees
and LCA index in O(|�||V |) time, thus its index time is
longer. But the margin between Edge-Index and MST-Index
decreases with the increase of |E |, as the MST construction
time dominates LCA index building time given a large |E |.
The index time of Naive-Search is linear with |E | since it
is dominated by the loading cost of the graph, |E |/B I/Os,
which is much larger than O(|E | log |E |) sorting cost.

The index size of Edge-Index and MST-Index is not
affected by the density. MST-Index uses 0.12 GB space for
indexing MSTs, each of which contains |V | vertices; Edge-
Index uses 0.40 GB to store the edge-based index trees, each
of which contains≤2|V | vertices, as well as the LCA index.
In contrast, the index size of Naive-Search increases lin-
early with |E |. When |E |/|V | = 1024, Naive-Search uses
6 times larger index size than Edge-Index.

Edge-Index takes 2μs for query processing via an O(1)

LCA operation. Thus its query time is not affected by the
density. The query time of MST-Index is around 3–4μs
when the density changes. As it needs to search the MST
online for the path between two query nodes, the query time
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Fig. 4 Memory-based algorithms on synthetic datasets, varying |E |/|V | from 2 to 1, 024, |V | = 105, |�| = 100
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Fig. 5 Memory-based algorithms on synthetic datasets, varying |V | from 105 to 107, |E |/|V | = 2, |�| = 100

depends on the MST structure and how distant two query
nodes are on the MST. The query time of Edge-Index is
915–3,682 times faster than that of DFS and BFS on graphs
with different density. Although BIS slightly improves DFS
and BFS (by 2–10 times) by reducing the searching space,
it is still at least two orders of magnitude slower than Edge-
Index.

Varying vertex number: In this experiment, we vary |V |
from 105 to 107 in log scale and fix |E |/|V | = 2 and |�| =
100. Figure 5a–c shows the index construction time, index
size and query time in log scale, respectively.

The index time of all algorithms increases with |V |, as |E |
increases with |V | given a fixed density. Since Edge-Index
needs to build edge-based index trees and LCA index, its
index time is about 2.6 times that of MST-Index, and 93 times
longer than that of Naive-Search. The index size of all meth-
ods increases linearly with |V |. Edge-Index uses index size
about 3.3 times more than MST-Index, and 71 times more
than Naive-Search. When |V | = 107, the index size of
both Edge-Index and MST-Index exceeds the 12 GB mem-
ory limit, but the index size of Naive-Search is much smaller
by keeping the original graph only. The query time of Edge-
Index remains 2μs when |V | increases, whereas that of
MST-Index increases linearly with |V | as the query time

is O(|V |). When |V | = 106.5, the query time of MST-Index
is 20 times that of Edge-Index, which is a very big differ-
ence. The query time of Naive-Search increases linearly
with |V | and is three to five orders of magnitude longer than
Edge-Index. When |V | = 107, it takes 1.5 s on average to
answer one query.

Varying distinct weight number: In this experiment, we
vary |�| from 102 to 104 in log scale and fix |E |/|V | = 2
and |V | = 105. Figure 6a–c shows the index construction
time, index size and query time in log scale, respectively.

The index time and size increase linearly with |�| for
both Edge-Index and MST-Index. The index time of Edge-
Index is 2.4 times that of MST-Index, and the index size
of Edge-Index is 3.3 times larger. Both methods run out of
memory when |�| = 104. The query time of Edge-Index
remains 2μs, while that of MST-Index remains 3μs. This
demonstrates that our query processing is not affected by the
weights appearing in the graph or in the query. The index
time, index size and query time of Naive-Search remain
stable when increasing |�|. Its query time is three orders
of magnitude longer than that of Edge-Index and MST-
Index.

Summary Edge-Index takes only 2μs query time in all
networks which is very stable and fast. The query time differ-
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Fig. 6 Memory-based algorithms on synthetic datasets, varying |�| from 102 to 104, |E |/|V | = 2, |V | = 105

Table 5 Online performance of memory-based algorithms

Dependency Response time (μs)

Naive-Search Linear with |V | 481–1,892,083

MST-Index Linear with |V | 3–57

Edge-Index None 2

ence between Edge-Index and MST-Index increases with
|V | linearly and thus can be very significant when |V | is large.
Edge-Index uses 2–3 times more index time and space than
MST-Index, which is a small overhead. When |V | = 107

or |�| = 104, both Edge-Index and MST-Index run out of
the 12 GB memory limit. Naive-Search uses much smaller
index time and size. But its query time is at least three orders
of magnitude longer than that of Edge-Index, moreover, it
increases linearly with |V | and |E |. This is prohibitive for
an online system. The online performance is summarized in
Table 5.

5.3 Disk-based algorithms on synthetic data

We test our disk-based algorithm Balanced-Index on
the same set of random graphs tested in Sect. 5.2. For
comparison, we also test the following baseline methods,

Naive-Search (Ext-DFS, Ext-BFS and Ext-BIS) and
External-MST. Naive-Search stores sorted adjacency lists
on disk and External-MST stores |�| MSTs on disk. In
query processing, Naive-Search traverses along edges that
satisfy the [x, y] constraint, while External-MST loads an
MST Tl where l = minl ′∈�{l ′ ≥ x} to answer a WCR
query.

Varying density: In this experiment, we vary the edge
density |E |/|V | from 2 to 1024 in log scale and fix |V | and
|�|. Figure 7a–c shows the performance measures.

The index time of Balanced-Index is about 4 times
that of External-MST when the density is small, that is,
|E |/|V | = 2− 16, but the margin decreases with the density
increase. Balanced-Index uses 32 times longer index time
than Naive-Search on average, but the margin decreases
dramatically to less than 2 when |E |/|V | ≥ 100.

The index size of External-MST is 0.12 GB under dif-
ferent density values. The index of Balanced-Index is
about 4.5–7.3 times larger, as the vertex-coding-based index
takes O(|�||V | log |V |) space. Naive-Search’s index size
increases linearly with |E | and is 2.8 times larger than that of
External-MST when |E |/|V | = 1024.

There is a very large margin between the query time
of External-MST and Balanced-Index. External-MST
takes 1635μs, while Balanced-Index takes 23μs, which
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Fig. 7 Disk-based algorithms on synthetic datasets, varying |E |/|V | from 2 to 1024, |V | = 105, |�| = 100
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Fig. 8 Disk-based algorithms on synthetic datasets, varying |V | from 105 to 107, |E |/|V | = 2, |�| = 100

 0.1

 1

 10

 100

 1000

 10000

 100000

 100  1000  10000

Naive-Search
External-MST

Balanced-Index

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100  1000  10000

Naive-Search
External-MST

Balanced-Index

 10

 100

 1000

 10000

 100000

 100  1000  10000

Ext-DFS
Ext-BFS
Ext-BIS

External-MST
Balanced-Index

(a) (b) (c)

Fig. 9 Disk-based algorithms on synthetic datasets, varying |�| from 102 to 104, |E |/|V | = 2, |V | = 105

is 71 times faster. The query time of External-MST and
Balanced-Index is not affected by the density. In contrast,
the query time of Naive-Search varies with different densi-
ties. Ext-BIS is the most efficient among the three variants.
On average, the query time of Naive-Search is three to four
orders of magnitude longer than Balanced-Index.

Varying vertex number: In this experiment, we vary
|V | from 105 to 107 in log scale and fix |E |/|V | and |�|.
Figure 8a–c shows the performance measures.

The index time of Balanced-Index is about 5–10 times
longer than that of External-MST, and its index size is about
4.5–6.4 times larger. The index time and index size of all the
three methods increase near linearly with |V |. The query
time of Balanced-Index remains 23μs when |V | increases.
In contrast, the query time of External-MST and Naive-
Search increases linearly with |V |, because External-MST
takes O(|V |/B) I/Os to load an MST, and Naive-Search
uses O(|V | + |E |/B) I/Os to search online. When |V | =
107, External-MST takes 176,901μs to answer a query,
7,691 times slower than Balanced-Index. Naive-Search
is even slower, with 2,722–764,514 times longer query time
than Balanced-Index.

Varying distinct weight number: In this experiment, we
vary |�| from 102 to 104 in log scale and fix |E |/|V | and
|V |. Figure 9a–c shows the performance measures.

The index time and size increase linearly with |�|
for both External-MST and Balanced-Index. The index
time of Balanced-Index is about 5 times longer than that
of External-MST, while the index size of Balanced-
Index is about 4.5 times larger. The query time of both
methods remains very stable as |�| increases. The query
time of Balanced-Index is about 23μs while that of
External-MST is 1770μs, which is 77 times slower. The
index time and index size of Naive-Search is indepen-
dent of |�|, which remain 0.25 s and 5.6 MB, respec-
tively. Naive-Search’s query time does not vary much
with |�| either. For comparison, DFS, BFS, and BIS
take 89,000, 153,000 and 53,000μs respectively for
query processing on average, whereas Balanced-Index
only takes 23μs, which is three orders of magnitude
faster.

Summary Balanced-Index scales to very large networks
while at the same time providing 23μs response time. It uses
5–10 times more index time and space than External-MST,
which is a small overhead. Naive-Search has a low index
time and size in most cases. But when the density |E |/|V |
is large, the index size of Naive-Search can be much larger
than that of Balanced-Index. The index size of Balanced-
Index is independent of |E |/|V | or |E |. The query time of
Naive-Search is three to four orders of magnitude longer
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than that of Balanced-Index. The online performance of
disk-based approaches is summarized in Table 6.

5.4 Comparing Edge-Index with Sampling-Tree
and 2-Label-Hop

We compare our solution with Sampling-Tree [14] and
2-Label-Hop [32] in this experiment. Sampling-Tree and
2-Label-Hop are memory algorithms to solve the label-
constraint reachability on directed graphs. In terms of prob-
lem hardness, LCR is much more difficult than WCR. So
adapting LCR solutions to answer WCR queries is unnec-
essarily complicated and thus is not very fair. Nevertheless,
as LCR is the closest problem in the literature to WCR, we
compare Edge-Index with Sampling-Tree and 2-Label-
Hop in terms of index time, index size and average query
time. We adapt both methods to handle undirected graphs.
Given a query q(a, b, [x, y]), we rewrite it into the query
format of Sampling-Tree and 2-Label-Hop by forming a
categorical label set A = {l ∈ �|x ≤ l ≤ y}.

Random graphs with uniform weight distribution In
this experiment, we generate a set of random graphs by vary-
ing the parameters |E |/|V |, |V | and |�|. The default values
are |E |/|V | = 1.5, |V | = 1000 and |�| = 5. The edge
weights follow a uniform distribution. We report the perfor-
mance in Table 7.

We vary the density |E |/|V | from 1.0 to 3.0 with a step
size of 0.5 and fix |V | = 1000 and |�| = 5. The index time,
index size and query time of Edge-Index are not affected by
the density. In contrast, the index time of Sampling-Tree and
2-Label-Hop increases with the density and is four to five
orders of magnitude longer than that of Edge-Index. The
index size of 2-Label-Hop is 50 times larger than that of
Edge-Index on average. The query time of Sampling-Tree
is two orders of magnitude longer than that of Edge-Index,
and the query time of 2-Label-Hop is about 20 times longer.

When we vary |V | and |�|, the index time and query time
of Edge-Index remain stable, while the index size increases
linearly with |V | and |�|. In contrast, the index construction
time of Sampling-Tree and 2-Label-Hop increases dramat-
ically. When |V | ≥ 5000 or |�| ≥ 10, Sampling-Tree
cannot finish index construction within 12 h. 2-Label-Hop
cannot finish index construction within 12 h when |�| ≥ 15.
The index size of 2-Label-Hop is 150 times larger than that
of Edge-Index. The query time of Sampling-Tree is two
orders of magnitude longer than that of Edge-Index, and the
query time of 2-Label-Hop is 12–23 times longer.

Random graphs with power law weight distribution In
this experiment, we test random graphs with weights follow-
ing a power law distribution with the parameter α = 2 [23],
the same setting as in [14]. According to the power law weight
distribution, only a few weights appear frequently, while the
majority of weights appear infrequently. The default values

of the parameters are |E |/|V | = 1.5 and |V | = 1000. Under
a power law distribution, the number of distinct weight val-
ues that actually appear in a network depends on |E |, thus we
do not vary |�| here. Table 8 shows the performance when
we vary |E |/|V | and |V |. The actual weight number |�| is
listed in the second column of Table 8.

First, we vary the density |E |/|V | from 1.0 to 3.0 with
a step size of 0.5 and fix |V | = 1000. We observe that the
index time and index size of Edge-Index increase slightly,
and the query time remains 1μs. In contrast, the index time of
Sampling-Tree and 2-Label-Hop is three to five orders of
magnitude longer. The query time of Sampling-Tree is two
orders of magnitude longer than that of Edge-Index and
the query time of 2-Label-Hop is 16 times longer. When
|E |/|V | = 3.0, Sampling-Tree cannot finish index con-
struction within 12 h.

When we vary the vertex number |V |, the index time
and index size of Edge-Index increase by at most 6.5 and
11 times respectively, as |V |, |E | and |�| all increase. The
query time remains 1μs. The index time of Sampling-
Tree and 2-Label-Hop is three to four orders of magni-
tude longer than Edge-Index. Both index time and index
size of Sampling-Tree and 2-Label-Hop increase with |V |.
The query time of Sampling-Tree is three orders of magni-
tude longer than that of Edge-Index and the query time of
2-Label-Hop is 13 times longer.

Summary In the above experiments, the query time of
Edge-Index remains 1μs in all cases, which is one to
three orders of magnitude faster than that of Sampling-
Tree and 2-Label-Hop. In addition, both Sampling-Tree
and 2-Label-Hop suffer from the index construction effi-
ciency. In [14], the indexing time of Sampling-Tree is
O(n|V ||E |( |�||�|/2

)+n/n0(|E |+|V | log |V |)), which increases
exponentially with the label set size |�|, and also increases
with |V | and |E |. 2-Label-Hop[32] needs to pre-compute
the local transitive closure in index construction. That is why,
Sampling-Tree and 2-Label-Hop cannot finish index con-
struction within 12 h in many cases, even for very small scale,
for example, |V | = 1000 and |�| = 15. This demonstrates
that both Sampling-Tree and 2-Label-Hop are not efficient
to answer the WCR query.

6 Related work

Reachability query on directed graphs has been studied
extensively with many algorithms proposed [1,4–7,9,12–
17,24–28,31–33]. These algorithms usually design a certain
type of coding for graph nodes so that reachability queries can
be answered by checking the coding of the involved nodes.
The codings include tree cover [1], chain cover [5,13], dual
labeling [31], GRIPP index [27], path-tree cover [17], 2-hop
cover [4,6,7,25,26], 3-hop [16], randomized interval label-
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Table 6 Online performance of disk-based algorithms

Dependency Response time (μs)

Naive-Search Linear with |V | 1,883–37,277,978

External-MST Linear with |V | 1,573–176,901

Balanced-Index None 23

Table 7 Edge-Index versus Sampling-Tree and 2-Label-Hop, uniform weights (IT in s, IS in MB, QT in μs)

Edge-Index Sampling-Tree 2-Label-Hop

IT IS QT IT IS QT IT IS QT

|E |/|V |
1 0.01 0.2 1 72 0.1 86 24 4.55 22

1.5 0.01 0.2 1 339 0.1 106 225 9.74 18

2 0.01 0.2 1 627 0.3 193 574 10.88 20

2.5 0.01 0.2 1 737 0.4 158 1757 12.41 13

3 0.01 0.2 1 953 0.6 135 3773 13.81 13

|V |
1000 0.01 0.2 1 339 0.1 106 226 9.45 20

2000 0.01 0.4 1 1500 0.3 362 1994 43.59 13

3000 0.01 0.6 1 3630 0.6 454 6299 94.88 12

4000 0.01 0.8 1 14432 1.4 565 17390 182.89 14

5000 0.02 1 1 >12h – – 34019 277.36 13

|�|
5 0.01 0.2 1 339 0.1 106 228 9.59 23

10 0.01 0.4 1 >12h – – 28140 102.83 21

15 0.01 0.6 1 >12h – – >12h – –

20 0.02 0.8 1 >12h – – >12h – –

25 0.02 1 1 >12h – – >12h – –

Table 8 Edge-Index versus Sampling-Tree and 2-Label-Hop, power law weights (IT in s, IS in MB, QT in μs)

|�| Edge-Index Sampling-Tree 2-Label-Hop

IT IS QT IT IS QT IT IS QT

|E |/|V |
1 14 0.02 1 1 125 0.1 311 12 2.90 20

1.5 17 0.02 1.2 1 154 0.4 716 49 3.41 17

2 20 0.02 1.4 1 2376 1.8 837 78 2.96 18

2.5 22 0.02 1.5 1 18078 6.2 663 114 2.68 12

3 24 0.03 1.7 1 >12h – – 148 2.63 12

|V |
1000 17 0.02 1.2 1 154 0.4 716 44 3.45 15

2000 24 0.04 3.4 1 681 1.4 1252 404 15.22 12

3000 30 0.07 6.2 1 2579 5.5 1280 1114 31.61 12

4000 34 0.09 9.6 1 4309 10 3275 3110 61.45 12

5000 38 0.13 13.4 1 6633 17.4 3308 6106 96.03 13
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ing [33], and bit vector compression of transitive closure
[28].

Most existing algorithms do not consider vertex or edge
label constraints except a few recent works [9,10,14,22,32].
Jin et al. [14] studies label-constraint reachability, given a
set of categorical edge labels as the constraint. It utilizes the
directed maximal weighted spanning tree and sampling tech-
niques to compress the generalized transitive closure for the
edge-labeled graphs. The index construction time increases
exponentially with the label set size |�| and thus is not
scalable to handle a large label set. Xu et al. [32] solves
the same problem by proposing a Dijkstra-like algorithm to
compute path-label transitive closure. Mendelzon and Wood
[22] proves RPQ, a path query with regular expression con-
straints, is NP-Hard; Florescu et al. [10] shows CRPQ is a
NPC problem; and Fan et al. [9] studies adding a subclass
of regular expressions (RQ) to specify the reachability via a
path of certain edge types and of a possibly bounded length.
Fan et al. [9] proposed two algorithms that answer a query
in O(|V |2) time. One algorithm uses a matrix of shortest
distances as index, and the other uses online bi-directional
search to answer a query. Jin et al. [15] studies distance-
constraint reachability in uncertain graphs and proposes two
probabilistic estimators for the probabilistic reachability.

The existing reachability solutions cannot be directly or
efficiently applied to answer the WCR query, as they focus
on a different problem setting that does not have the total-
ordering property on edge labels. In addition, all existing
reachability algorithms in the literature are main memory-
based algorithms that assume the index resides in the memory
and do not consider the I/O cost in query processing. Our
paper is the first to design a disk-based I/O-efficient algorithm
to answer the WCR query.

7 Conclusion and future work

In this paper, we study a new type of reachability query,
called weight constraint reachability WCR, on undirected
graphs with real-valued edge or node weights, which is very
common and has a wide range of real-world applications.
We design two novel index structures for the memory and
disk scenarios respectively. To answer a WCR query, we can
guarantee O(1) query time with the memory-based index
Edge-Index and O(1) I/O cost (exactly four I/Os) with the
disk-based index Balanced-Index. Experimental results on
real and synthetic graphs demonstrate that both the memory
and disk-based approaches answer a query in microseconds
with very compact index and efficient index construction.
The disk-based algorithm is highly scalable to large networks
and I/O-efficient in query processing.

Our work also opens several promising directions for
future work on querying weighted graphs.

It is natural to integrate WCR with other existing queries.
One, for example, is weight constraint k-NN, which reports
a ranked list of nodes, each having a valid path to the
query node under the weight constraints. The nodes are
ranked according to a user-specified distance/similarity met-
ric between the node and the query node, for example,
the cosine of their multidimensional features. It is widely
applicable in various scientific areas but not trivial to solve.
Another one is weight constraint keyword search, which is
queried on graphs with node labels. Another possibility is to
combine WCR with other constraints such as the distance
constraint to answer reachability queries.

From the system perspective, it is interesting to explore
how to increase the throughput of a WCR querying system
by proper caching mechanism under a main memory or disk
budget. In addition, designing WCR algorithms for a dis-
tributed system and managing to reduce the network com-
munication cost by graph partitioning is also a promising
and useful extension.

Finally, maintaining update is also a viable direction, that
is, adapting WCR algorithms to handle evolving graphs that
allow node/edge insertion, deletion and modification.
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