
The VLDB Journal (2019) 28:765–792
https://doi.org/10.1007/s00778-019-00566-9

REGULAR PAPER

Eccentricities on small-world networks

Wentao Li1 ·Miao Qiao2 · Lu Qin1 · Ying Zhang1 · Lijun Chang3 · Xuemin Lin4

Received: 13 September 2018 / Revised: 7 August 2019 / Accepted: 17 August 2019 / Published online: 28 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
This paper focuses on the efficiency issue of computing and maintaining the eccentricity distribution on a large and perhaps
dynamic small-world network. Eccentricity distribution evaluates the importance of each node in a graph, providing a node
ranking for graph analytics; moreover, it is the key to the computation of two fundamental graph measurements, diameter,
and radius. Existing eccentricity computation algorithms are not scalable enough to handle real large networks unless approx-
imation is introduced. Such an approximation, however, leads to a prominent relative error on small-world networks whose
diameters are notably short. Our solution optimizes existing eccentricity computation algorithms on their bottlenecks—one-
node eccentricity computation and the upper/lower bounds update—based on a line of original insights; it also provides the
first algorithm on maintaining the eccentricities of a dynamic graph without recomputing the eccentricity distribution upon
each edge update. On real large small-world networks, our approach outperforms the state-of-the-art eccentricity computa-
tion approach by up to three orders of magnitude and our maintenance algorithm outperforms the recomputation baseline
(recompute using our superior eccentricity computation approach) by up to two orders of magnitude, as demonstrated by our
extensive evaluation.

Keywords Eccentricity · Small-world networks · Centrality measures · Dynamic graphs

1 Introduction

Shortest distances characterize the pair-wise relationships
among nodes in a graph. Given a graph with a vertex set
and an edge set, the shortest distance dist(u, v) between

B Wentao Li
wentao.li@student.uts.edu.au

Miao Qiao
miao.qiao@auckland.ac.nz

Lu Qin
lu.qin@uts.edu.au

Ying Zhang
ying.zhang@uts.edu.au

Lijun Chang
lijun.chang@sydney.edu.au

Xuemin Lin
lxue@cse.unsw.edu.au

1 CAI, FEIT, University of Technology Sydney, Sydney,
Australia

2 University of Auckland, Auckland, New Zealand

3 The University of Sydney, Sydney, Australia

4 The University of New South Wales, Sydney, Australia

two nodes u, v is defined as the minimized length of a path
from u to v. The largest– shortest distance from one node u
to another node of the graph defines u’s eccentricity. The
two extremes—the maximization and the minimization—of
eccentricities over all nodes in a graph are, respectively, the
values of the two fundamental [31] features, diameter, and
radius, of the entire graph. The computation andmaintenance
of these two features of a large and perhaps dynamic graph
can be inevitable for some graph analytical tasks. Besides,
the eccentricity also measures the centrality of a node in
the graph. The eccentricity distribution, the eccentricities of
all the nodes in a graph, thus helps in identifying impor-
tant nodes in a graph, which could be influential people in a
social network, critical nodes in an epidemic contact network,
or important sites in a Web graph. With all the applications
listed above, an efficient approach for computing the eccen-
tricity distribution of a graph is highly demanded.

Unfortunately, the eccentricity distribution can be expen-
sive to compute especially on big graphs. The state-of-the-
art algorithm for computing solely the diameter requires

�
(

n2
log n

)
time (see [7,32] and the reference therein) where

n denotes the total number of nodes in the graph (n is 1.32

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00566-9&domain=pdf
http://orcid.org/0000-0003-4941-8814

766 W. Li et al.

billion on Facebook1). An immense n renders significant effi-
ciency issue on diameter computation as well as eccentricity
computation while introducing approximation is a natural
solution.

To reduce the computation cost, approximate algorithms
for estimating the eccentricity ẽcc(v) of each node v with an
error bound [8,23] have been proposed. Their efficiency gain,
however, can hardly be extended to error-intolerant small-
world networks.

Small-world networks, a term first proposed byWatts and
Strogatz [30], describe a group of graphs that feature a highly
clustered topology and short path length. The phenomenon of
short path length has been observed much earlier in the book
of “Six Degrees of Separation” [12] and has been confirmed
later on recent data of biological networks, neural networks,
collaboration networks, communication networks, and social
networks. For example,2 Slashdot, a social network, has a
diameter of 11, while wiki-talk, a communication network,
has a diameter of 9. On unweighted networks, any additive
positive error δ = |ẽcc(·) − ecc(·)| will have δ ≥ 1. Note
that δ = 1 is already a high error compared to the short
radius/diameter of a small-world network: if the radius r = 5,
then 1

r = 20%. In other words, small-world networks are
intolerant to errors on the eccentricity distribution.

Though on small-world networks, a high empirical accu-
racy can be achieved by the approximate algorithms without
error bounds [26,27], an efficient exact algorithm is still
highly demanded. For the eccentricity of a node, the esti-
mation with a chance of a high relative error (due to the
small graph diameter and a lack of error bound) can hardly
be trusted and doubtlessly engaged. Furthermore, on billion-
scale graphs, it would be even challenging to evaluate the
accuracy of an approximate algorithm without the exact
eccentricities.

The state-of-the-art exact eccentricity computation (see
[27] and the references therein) follows the same paradigm,
which i) associates each node with eccentricity bounds, an
upper bound and a lower bound on its eccentricity; ii) for
each node v, if the upper and lower bounds of v do not
meet, compute the eccentricity ecc(v) using a Breadth-First
Search (BFS) and then update the bounds globally for all
other nodes. Theperformance is, therefore, largely dependent
on the node order of v traversed in step ii). Our solution sig-
nificantly improves the efficiency by revising the paradigm
based on a spectrum of insights. We identify the bottleneck
of the existing approaches—the exhaustive BFS and global
update—and then speed up the convergence of the upper and
lower eccentricity bounds.

When it comes to real graphswith dynamic nature, a graph
becomes a sequence of snapshots evolving over time. To

1 https://newsroom.fb.com/company-info/.
2 https://snap.stanford.edu/data/index.html.

detect anomaly in the graph, tracking diameter and eccen-
tricities as prominent features of the graph structure is
desirable [11,17]. Recomputing the eccentricity upon each
update can be obviously exhaustive. We find that only a por-
tion of nodes may have their eccentricities affected by an
edge update. Furthermore, we propose an algorithm that can
identify these affected nodes and then adjust their eccentric-
ities efficiently.

Our contributions are summarized below.

– We facilitate an early termination in computing the
eccentricity of a node v by i) non-trivially reversing
(approximately) the node visiting order of BFS at a low
cost and ii) optimizing the computation of ecc(v) based
on the eccentricity bounds of v instead of using BFS to
compute ecc(v) in �(m) time.

– We show that, in updating the eccentricity bounds, it suf-
fices for our algorithm to update only a connected area of
amortized O(d) nodes while achieving the same effect
as performing a global update. Here, d denotes the graph
diameter—a small integer for a small-world network.

– We reduce the cost of maintaining the eccentricities
upon an edge insertion/deletion by first scoping the
possibly affected nodes and then facilitating a more tar-
geted eccentricity recomputation—the eccentricities of
the other affected nodes can be determined directly based
on the rules that we identified.

– Empirical studies show that our approach outperforms
the state of the art by up to three orders of magnitude on
eccentricity computation. In particular, our approach is
the only one that completed the computation within 8h
on all graphs. Besides, for eccentricity maintenance on
dynamic graphs, our approach gains up to two orders of
magnitude speedup over the baseline approach.

The paper is organized as follows. Section 2 formally
introduces the eccentricity computation and maintenance
problems. Section 3 describes our algorithm in computing
the eccentricity. Section 4 devises an efficient eccentricity
maintenance algorithm. Section 5 summarizes the related
work. Section 6 demonstrates the experimental results, while
Sect. 7 concludes the paper.

2 Preliminaries

Section 2.1 defines the problems of eccentricity computa-
tion and eccentricity maintenance which Sects. 3 and 4 shall
study. Section 2.2 introduces the state-of-the-art solution to
pair-wise shortest distance queries, the building block of
eccentricity computation.

123

https://newsroom.fb.com/company-info/
https://snap.stanford.edu/data/index.html

Eccentricities on small-world networks 767

Fig. 1 Example graph G

2.1 Problem definition

This paper considers the eccentricity on an unweighted and
undirected graph. LetG(V , E) be a graphwith a vertex set V
and an edge set E . An edge e(u, v) in E connects two nodes
u, v in V . Denote by n = |V | the total number of nodes and
m = |E | the total number of edges in G. The degree deg(v)

for a node v is the number of neighbors adjacent to v, that is,
deg(v) = |{u, e(u, v) ∈ E}|.

Given two nodes s and t in V , a path p(s, t) from s to t is
a sequence of distinct nodes 〈u0 = s, u1, . . . , uk = t〉 with
neighboring nodes connected by edges, that is, (ui−1, ui) ∈
E , for ∀i ∈ [1, k]. The length |p(s, t)| of a path is the total
number of edges on the path. The shortest distance dist(s, t)
between s and t is the length of the shortest path from s to
t . The shortest distances on V hold the triangle inequality,
that is, for three nodes s, u, t ∈ V , dist(s, t) ≤ dist(s, u)+
dist(u, t).

Example 1 Figure 1 shows a running example of graph
G with 11 nodes and 17 edges. The shortest path from
v7 to v8 is 〈v7, v1, v9, v8〉 with dist(v7, v8) = 3. For
nodes v7, v8, v3, the triangle inequality dist(v7, v8) ≤
dist(v3, v7)+dist(v3, v8) holds since dist(v7, v3) = 2 and
dist(v3, v8) = 2.

Definition 1 (Eccentricity) Given a node u of a graph
G(V , E), the eccentricity of u is defined as

ecc(u) = maxv∈V dist(u, v).

Among all the eccentricities of nodes in G, the max-
imum eccentricity is defined as the diameter d, that is,
d = maxv∈V ecc(v); the minimum eccentricity is defined
as the radius, that is, r = minv∈V ecc(v).

Example 2 Figure 2 labels, on the graph G of the running
example, the eccentricity of each node. The color grayscale
indicates, for each node, the eccentricity value: a node
with a darker color means that it has a smaller eccentric-
ity. For example, the eccentricity of node v1 is calculated
as ecc(v1) = maxv∈V dist(v1, v) = 2, and ecc(v11) =

Fig. 2 Eccentricity of nodes in G

maxv∈V dist(v11, v) = 4. Intuitively, a node at the center
has a smaller eccentricity than the node at the border.

Problem 1 (Eccentricity computation) Given a graph
G(V , E), compute the eccentricity distribution, namely the
eccentricity ecc(u) for all the nodes u ∈ V .

If a graph is disconnected, that is, there exist twonodesu, v

such that there is no path from u to v, then the eccentricities
of all the nodes in V become+∞which is trivial. Therefore,
we assume that G(V , E) is connected throughout the paper.
In particular, this assumption also applies to the dynamic
scenario of eccentricity maintenance defined as below.

Problem 2 (Eccentricity maintenance) Let G(V , E) be a
graph with the eccentricity distribution given; namely, the
eccentricity ecc(u) on G for each node u ∈ V is given.
Let e be an edge on V , that is, e ∈ V × V . Denote by G ′
the graph of G after a graph update—an edge insertion with
G ′ = (V , E∪{e}) or an edge deletionwithG ′ = (V , E\{e}).
Denote by ecc′(v) the eccentricity of node v in G ′, for
∀v ∈ V . The aim is to compute ecc′(v), for ∀v ∈ V whose
ecc′(v) �= ecc(u).

In the eccentricity maintenance, we focus on the edge
insertions that do not change the vertex set V and the edge
deletions that do not disconnect the graph. In other words,
the eccentricity of a node will not increase after an edge
addition and will not decrease after an edge deletion. If an
update goes beyond these cases, we simply recompute all the
eccentricities.

The building block of efficient eccentricity computation is
pair-wise shortest distance computation. The state-of-the-art
solution is introduced in Sect. 2.2.

2.2 Pair-wise shortest distance

On unweighted graphs, the pair-wise shortest distance prob-
lem (PWSD) reports, given two nodes u and v, the distance
between u and v. It can be trivially resolved by performing
a Breadth-First Search (BFS) from node u online. The linear
online computation can take seconds for answering a single

123

768 W. Li et al.

Fig. 3 Pruned landmark labeling for all nodes in G

query on large graphs; this motivated the indexing technique
of 2-hop labeling. 2-hop labeling methods label each node
w in V with the distances from w to every node in a set
S(w) ⊆ V . The set S(·) is selected for each node such that
for any two nodes u, v in V , S(u) ∩ S(v) contains at least
one node on a shortest path from u to v. In such a way, the
shortest distance can be computed with triangle inequalities:

dist(u, v) = min
x∈S(u)∩S(v)

dist(u, x) + dist(x, v).

Pruned landmark labeling 2-hop labeling methods for
general graphs suffer from a large label set. For the PWSD
problem on a special type of graphs—social networks —
a 2-hop labeling method called Pruned landmark labeling
(PLL) approach [3] has been proposed: a PWSD query can
be answered in1microsecond even for a large social network.
The PLL approach is explained in detail in “Appendix I”.

Example 3 Figure 3 shows the pruned landmark labeling for
all nodes in graph G (Fig. 1 of the running example). For
example, the label of v5 is S(v5) = {v1 : 1, v2 : 1, v3 :
1, v5 : 0} and the label of v8 is S(v8) = {v1 : 2, v3 :
2, v8 : 0}. We have S(v5) ∩ S(v8) = {v1, v3}. There-
fore, we can calculate dist(v5, v8) = min{dist(v5, v1) +
dist(v1, v8), dist(v5, v3) + dist(v3, v8)} = 3.

Average label length We use PLL as a black box for
answering pair-wise shortest distance queries. To quantify
the query time of PLL, we introduce the parameter of average
label length which is defined as below.

Definition 2 (Average label length) Given a graph G, for a
node u of G, denote by S(u) the set of nodes selected by the
pruned landmark labeling (PLL) approach. The average label
length is defined as b = averageu∈V |S(u)| = �u∈V |S(u)|

n .

The parameter of average label length cannot be replaced
by an existing graph parameter of average degree. As
observed in the PLL (Fig. 3) of graph G (Fig. 1), the label
length of a node is not proportional to its degree.

Lemma 1 The shortest distance between two nodes can be
computed in O(b) time in expectation by leveraging PLL.

Algorithm 1: BoundEcc
Input: Graph G(V , E)

Output: ecc(u) for each u ∈ V
1 W ← a priority queue of V ;
2 Initialize: ecc(u) ← +∞, ecc(u) ← 0, for ∀u ∈ V ;
3 while W is not empty do
4 u ← W .pop();
5 Compute dist(u, v), for ∀v ∈ V , by calling a BFS;
6 ecc(u) ← maxv∈V dist(u, v);
7 for each node w ∈ W do
8 ecc(w) ← min{ecc(w), ecc(u) + d(u, w)};
9 ecc(w) ← max{ecc(w), d(u, w), ecc(u) − d(u, w)};

10 if ecc(w) = ecc(w) then remove w from W ;

11 return ecc(u), ∀u ∈ V

Proof Computing minw∈S(u)∩S(v) dist(u, w) + dist(w, v),
for ∀u, v ∈ V , costs O(|S(u)|+|S(v)|). Expu,v∈V (|S(u)|+
|S(v)|) = 2Expu∈V |S(u)| = 2b. ��

3 Eccentricity computation

Section 3.1 depicts the state-of-the-art approach, BoundEcc,
for computing eccentricities. Section 3.2 identifies and ana-
lyzes the key subproblem of BoundEcc—one-node eccen-
tricity computation and global update—to which Sects. 3.3
and 3.4 jointly provide an improved solution.

3.1 The state of the art

Algorithm1depicts howBoundEcc [27] computes the eccen-
tricity for each node in V . Following the general framework
of computing eccentricity, radius, and diameter, BoundEcc
associates each node u ∈ V with an upper bound ecc(u) of
the eccentricity ecc(u) and a lower bound ecc(u) (Line 2).
These bounds are updated (Lines 7–9) until either the bounds
meet with each other (Line 11) or the exact ecc(u) is deter-
mined by a BFS computation (Lines 5–6). The upper and
lower bounds are generally updated with triangle inequal-
ities (Lines 8–9). Lemma 2 provides the rules in updating
the bounds. For the priority queue W , the selection of the
priority function on V does not affect the correctness of the
algorithm but may affect the running time. In [27], the sug-
gested priority queue alternatively pops i) the node with the
maximum eccentricity upper bound and ii) the node with the
minimum eccentricity lower bound. The underlying priority
function is an implicitly generated order on V .

Lemma 2 (Update bounds [27]) Let u be a node of graph
G(V , E) with eccentricity ecc(u). Given a node v and its
distance dist(v, u) to u,

ecc(v) ≤ ecc(u) + dist(u, v) (1)

ecc(v) ≥ ecc(u) − dist(u, v) (2)

ecc(v) ≥ dist(u, v) (3)

123

Eccentricities on small-world networks 769

Table 1 Execution of BoundEcc

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

1 2 1,3 1,3 1,3 1,3 1,3 1,3 2,4 1,3 2,4 2,4

2 – 3 2,3 2,3 2,3 2,3 2,3 3,4 2,3 3,4 2,4

3 – – 3 2,3 2,3 2,3 2,3 3,4 2,3 3,4 3,4

4 – – – 3 2,3 2,3 2,3 3,4 3,3 3,4 3,4

5 – – – – 3 2,3 2,3 3,4 – 3,4 3,4

6 – – – – – 3 2,3 3,4 – 3,4 3,4

7 – – – – – – 3 3,4 – 3,4 3,4

8 – – – – – – – 4 – 3,4 4,4

9 – – – – – – – – – 4 –

Bold indicates a recalculation Italic indicates an update of lower/upper
bound after computing the exact eccentricity for a certain node

As long as one adopts this framework, theworst-case com-
plexity would be quadratic to n. BoundEcc can tailor the
searching orders in W (Line 7) to different heuristics; how-
ever, it has three drawbacks:

– When the eccentricity of a new node is determined,
BoundEcc examines the eccentricity bounds of every
node in W (Line 7), which is exhaustive and unneces-
sary.

– As long as the upper and lower bounds do not match,
that is, ecc(u) < ecc(u), even if the gap is only one,
BoundEcc will compute ecc(u) from scratch. The effort
that has been invested in updating the upper and lower
bounds is entirely wasted.

– BFS has to traverse all the nodes in V which leaves no
chance for an early termination since ecc(u) is deter-
mined by the last visited node in a BFS from u.

Example 4 The execution process of BoundEcc is shown in
Table 1. The two numbers in each cell are the upper and
lower bounds of eccentricity for the corresponding node.
Using BoundEcc, we need to recalculate the eccentricity for
9 nodes. The bold indicates a recalculation while the italic
means an update of lower/upper bound after computing the
exact eccentricity for a certain node. For example, after com-
puting ecc(v2) = 3, we can update the lower/upper bounds
of v3 from 1, 3 to 2, 3. The BoundEcc algorithm involves a
large number of exact shortest path calculations.

3.2 Problem analysis

In viewing the three drawbacks of BoundEcc, we focus on
the following two problems to enable an efficient eccentricity
computation.

Problem 3 (Exact eccentricity computation for a node)
Given a node x in graph G(V , E), associated with ecc(x)
and ecc(x), determine the eccentricity ecc(x) of x .

Let each node u ∈ V in G(V , E) bear an upper bound
ecc(u) and a lower bound ecc(u) on the eccentricity ecc(u)

of u. The bounds {ecc(u), ecc(u)},∀u ∈ V , are called the
eccentricity bounds.

Let x be an arbitrary nodewith ecc(x) > ecc(x). Consider
the process of two steps: i) compute the shortest distances
from x to all the other nodes (Line 5, Algorithm 1) and ii)
update the eccentricity bounds of all the nodes (Lines 6–10)
based on the newly computed distances from x . We call x the
trigger node of step ii). Instead of using ecc(x) to update
the bounds globally by Lemma 2 as BoundEcc, we define the
problem of efficient bound update below.

Problem 4 (Efficient bound update) Let a state Sta1 be the
eccentricity bounds of all nodes v inV with ecc(v) < ecc(v).
Start the bound update once the trigger node x with both
ecc(x) and ecc(x) in Sta1 becomes its exact eccentric-
ity ecc(x). Consider another state Sta2 of the eccentricity
bounds of V obtained by recursively applying Lemma 2 to
Sta1 until it is stable—Lemma 2 can no longer update any
bound in Sta2. The problem of efficient bound update mini-
mizes the computation cost in finding Sta2 based on ecc(x)
and Sta1.

The aim is to reduce the exhaustive BFS computation in
Problem 3 and to avoid the update on the eccentricity bounds
across the node set of V . This may not be achieved without
proper indexing structures.

1. We pre-compute the distance dist(z, u) from a reference
node z (the selection of z will be explained later) to all
the nodes u in V . The nodes in V are stored in a list Lz =
{u1, u2, . . . , un} with non-descending distances associ-
ated dist(z, u1) ≤ dist(z, u2) ≤ . . . ≤ dist(z, un).

2. The state-of-the-art 2-hop labeling method for the pair-
wise shortest distance (PWSD)queries. Instead of obtain-
ing the eccentricity of u ∈ V by performing BFS from u
until it reaches the maximum shortest distance (Lines 5–
6, Algorithm 1), we probe the distances from x to its
potentially farthest nodes by invoking pair-wise shortest
distance (PWSD) queries. Specifically, we pre-compute
the pruned landmark labeling (PLL) structure which
answers the shortest distance of any two nodes in O(b)
time where b denotes the average label length of PLL
(Sect. 2.2).

It is worth noting that our study is independent of the
technique of PLL: we consider PLL as merely an embodiment
of a black box for answering PWSD queries while BoundEcc
necessitates n2 PWSD queries—even if PLL can magically

123

770 W. Li et al.

answer a query in O(1) time, the drawbacks of BoundEcc
still retain.

Section 3.3 solves Problem 3 without BFS computation,
while Sect. 3.4 exempts a solution to Problem 4 from travers-
ing the node set.

3.3 Exact eccentricity computation for a node

Recall that Problem 3 aims at efficiently computing the
eccentricity ecc(x) of a node x . Section 3.3.1 introduces a
solution to Problem 3 based on the list Lz if a given refer-
ence node z, and Sect. 3.3.2 discusses how to speed up the
solution in Sect. 3.3.1 by allowing each node x to choose its
own reference node z.

3.3.1 Computing ecc(x) under a fixed reference node

The very reason that BFS has to traverse the whole graph to
get the eccentricity of x is the conflict between

– the non-decreasing order of the distances from nodes to
x in which BFS follows, and

– themax nature in ecc(x) among the distances of all nodes
to x .

If the order of BFS traversal can be reversed, that is, the
nodes with longer distance from x will be visited earlier, then
the first node we visit can already provide ecc(x). However,
unless x coincides with the reference node z whose distance
information has been indexed, the BFS traversal of x can
hardly be reversed.

Utilize the pruned landmark labeling (PLL) structure
PLL efficiently answers pair-wise shortest distance queries—
probing the distances from x to a small subset V ′ ⊆ V of
nodes becomes inexpensive. By aggregating the exact dis-
tances from x to nodes in V ′, we can partially evaluate the
eccentricity of x .

Definition 3 (Partial eccentricity) Given a subset V ′ ⊆ V ,
define the partial eccentricity of x on V ′ as pecc(x |V ′) =
maxu∈V ′ dist(x, u).

Lemma 3 Let V ′ be a subset of V . pecc(x |V ′) ≤ ecc(x),
that is, partial eccentricity provides a lower bound for the
eccentricity. Besides, pecc(x |V) = ecc(x).

Utilize the reference node z To transfer the knowledge
gained on the reference node z to the computation of ecc(v),
we first introduce the definition of a bounded set with
bounded eccentricities.

Definition 4 (Bounded set) Given λ ≥ 0, the bounded set

V z
≤λ = {u ∈ V |dist(u, z) ≤ λ}.

Fig. 4 Illustration of bounded set and partial set (z = v2)

Lemma 4 (Bounded eccentricity) For λ ≥ 0, the partial
eccentricity of a bounded set of λ is also bounded:

pecc(x |V z
≤λ) ≤ dist(x, z) + λ.

Proof Please see “Appendix A”. ��
Definition 5 (λ-partial set) Given λ ≥ 0, a set V ′ is called a
λ-partial set, if V ′ ∪ V z

≤λ = V ; namely, V ′ is a super set of
V \ V z

≤λ.

Example 5 Figure 4 shows Lz for z = v2 of the running graph
in Fig. 1. Obviously, if x = z, we can determine ecc(x) = 3
directly from Lz . We also show V z

≤1 and V z
≤2 where V z

≤1
contains the first 7 nodes in Lz , while V

z
≤2 contains the first 9

nodes in Lz . The λ-partial set V ′ with respect to λ = 2 can be
any subset of V that contains {v8, v10}; V ′ w.r.t. λ = 1 can be
any subset containing {v3, v9, v8, v10}. For x = v4 and λ =
2, pecc(x |V z

≤λ) = maxv∈V z
≤λ

dist(x, v) = 2. Obviously, we

have pecc(x |V z
≤λ) ≤ dist(x, z)+λ = dist(v4, v2)+2 = 3.

Utilize both the reference node z and the PLL Given λ, we
combine the information we get from the reference node z
and the partial eccentricity on a λ-partial set.

Lemma 5 Given a λ-partial set V ′, the eccentricity

ecc(x) =
{
pecc(x |V ′), if pecc(x |V z

≤λ) ≤ pecc(x |V ′)
pecc(x |V z

≤λ), otherwise

Proof Please see “Appendix B”. ��
Assume that at a time, for a given λ and a correspond-

ing λ-partial set V ′, pecc(x |V ′) is obtained using PLL while
pecc(x |V z

≤λ) is bounded by Lemma 4. Is it possible that we
can determine the eccentricity ecc(x)? The following theo-
rem provides a positive answer.

Theorem 1 Given a λ-partial set V ′, if pecc(x |V ′) ≥
dist(x, z) + λ, then ecc(x) = pecc(x |V ′).

Proof From Lemma 4, pecc(x |V z
≤λ) ≤ dist(x, z) + λ.

If pecc(x |V ′) ≥ dist(x, z) + λ, then pecc(x |V ′) ≥
pecc(x |V z

≤λ). Lemma 5 leads to ecc(x) = pecc(x |V ′). ��

123

Eccentricities on small-world networks 771

Fig. 5 Illustration of V z
≤λ and V ′ for λ = 1 (z = v2)

Algorithm 2: EccentricityOneNode
Input: Node x , z, ecc(x), ecc(x), Lz , the PLL structure
// Lz = {u1, u2, . . . , un }.
Output: ecc(x)

1 p ← 0 ; // p = pecc(x |V ′), V ′ is initially ∅
2 for i takes from n down to 1 do
3 if i = 1 then λ ← 0; else λ ← dist(z, ui−1);
4 Obtain dist(x, ui) by querying PLL;
5 p ← max{p, dist(x, ui)} ; // By absorbing ui, V ′ remains a

λ-partial set p = pecc(x |V ′).
6 ecc(x) ← max{ecc(x), p};
7 ecc(x) ← min{ecc(x),max{p, dist(x, z) + λ}};
8 if ecc(x) = ecc(x) then return ecc(x);

9 return ecc(x)

Example 6 Suppose we want to calculate ecc(v9). Given
λ = 1 and z = v2, pecc(v9|V z

≤λ) = 3. Figure 5
shows two cases to select the partial set V ′. In Case 1,
we have pecc(v9|V z

≤λ) > pecc(v9|V ′) = 2. We can thus
compute ecc(v9) = pecc(v9|V z

≤λ). In Case 2, we have
pecc(v9|V z

≤λ) ≤ pecc(v9|V ′) = 3. We can thus compute
ecc(v9) = pecc(v9|V ′); we also have pecc(v9|V ′) = 3 ≥
dist(v9, z) + λ = 3. Thus, we can compute ecc(v9) =
pecc(v9|V ′) without knowing pecc(v9|V z

≤λ).

Theorem 1 leads to the bounds of ecc(x).

Lemma 6 Given a λ-partial set V ′, pecc(x |V ′) is a lower
bound on ecc(x) andmax{pecc(x |V ′), dist(x, z)+λ} is an
upper bound on ecc(x).

When the upper bound meets the lower bound, ecc(u) can
be identified directly. This allows us to leverage the original
upper and lower bounds on u to narrow the gap. Now, we are
ready to introduce our approach.

Exact eccentricity computation Theorem 1 implies an
approach in determining ecc(v): traverse nodes of V in a
non-increasing order of their distances to the reference node
z; in this process, update the upper bound and lower bound
using Lemma 6; terminate once the upper and lower bounds
meet. Algorithm 2 is such an approach.

Algorithm2 conceptually develops aλ-partial setV ′ along
a decreasing variable λ. In other words, when λ decreases
from dist(z, un) to 0, V ′ expands from ∅ to V accordingly.
Initially, pecc(v|V ′) = 0 since λ = dist(z, un), and thus,
V ′ = ∅ is a λ-partial set (Line 1). Then, nodes in V are
examined in a reverse order of Lz , the rearrangement of all
the nodes in V by the non-descending distances with z, as

Fig. 6 Process to compute ecc(v9) (z = v2)

formally defined in Sect. 3.2 (Line 2). For each node ui with
i > 1, λ is set to be the distance from the reference node
z to ui−1, otherwise z = ui , and thus, let λ be 0 (Line 3).
Obviously, {u1, u2, . . . , ui−1} is a subset of V z

≤λ. V
′ is aug-

mented with ui such that it remains a λ-partial set of the
newly updated λ. The partial eccentricity p = pecc(x |V ′)
on V ′ is updated accordingly (Lines 4–5). The upper bound
and lower bound of ecc(x) are then updated (Lines 6–7). The
loop will be terminated immediately when the gap between
the two bounds becomes 0 (Line 8). The entire loop trans-
forms ecc(x) to ecc(x) (Line 9).

Theorem 2 Algorithm 2 reports the eccentricity of x.

Proof Lemma 6 ensures that the upper and lower bounds of
the eccentricity of x are correctly updated (Lines 6–7). There-
fore, if the two bounds match, theymatch on ecc(x) (Line 8).
If the two bounds have not agreed by the end of the loop
when V ′ = V , then ecc(x) = pecc(x |V ′) = pecc(x |V) =
ecc(x) can be safely reported (Line 9) due to Lemma 3. ��

Example 7 Figure 6 illustrates the process to compute ecc(x)
for x = v9 for the running graph shown in Fig. 1. Suppose
z = v2, for i = 11 (λ = 3), the algorithm first computes
dist(x, v10) = 2 by querying PLL, updates p to be 2, and
updates ecc(x) and ecc(x) to be 2 and 5, respectively. Then,
for i = 10 (λ = 2), the algorithm computes dist(x, v8) = 1
and updates ecc(x) to be dist(x, z) + λ = 4. The process
continues until i = 7 (λ = 1), where the algorithm computes
dist(x, v11) = 3 and updates p = 3 and ecc(x) = 3. At this
time, we have ecc(x) = ecc(x), and therefore, the algorithm
terminates by returning 3 as ecc(x).

Theorem 3 In the worst case, Algorithm 2 reports the eccen-
tricity of v with n PLL queries.

Proof For node ui , i ∈ [1, n], Algorithm 2 computes the
exact distances from x to ui using the structure of PLL in
O(b) time. In the worst case, Algorithm 2 scan the whole
nodes in G, which incurs n PLL queries. ��

Example 8 Figure 7 demonstrates the process to compute the
eccentricity for all nodes in the running graph in Fig. 1 by

123

772 W. Li et al.

Fig. 7 Computing eccentricity for all nodes (z = v2)

setting the reference node as z = v2. For example, for node
v1, we need to query PLL for 4 times. The ecc and ecc values
after each PLL query are also labeled beside each node. In
total, we have 33 PLL queries.

Remarks 1 In finding the eccentricity of a node, Algorithm 2
is superior to BFS in practice:

1. Algorithm2boosts the computation of ecc(x)by leverag-
ing the previously computed upper and lower bounds on
ecc(x). For example, if ecc(x) is smaller than ecc(x) by
a tiny margin (e.g., 1) before Algorithm 2 starts, then one
effective update on either the upper or the lower bound
(in Lines 6–7) can terminate Algorithm 2, as opposed to
searching the whole graph in O(m) time using a BFS.

2. Algorithm 2 traverses the nodes in the reverse order of
their distances to the reference node z. A reference node
z that is close to x can terminate the algorithm at an early
stage since the farthest node to x will be far from z as
well.

3.3.2 Reference-node pool

As observed from Sect. 3.3.1 (Remarks 2) and Lemma 2, a
reference node z in the vicinity of x can terminate Algo-
rithm 2 at an early stage. Specifically, consider the case
when dist(x, z) = 1. From Lemma 2, ecc(z) − 1 ≤
ecc(x) ≤ 1 + ecc(z). Besides, by the triangle inequality,
ecc(z) − 1 ≤ dist(x, un) ≤ ecc(z) + 1. Here, un denotes,
in the list of Lz , the last element whose distance dist(z, un)
to z is the eccentricity ecc(z) of z.

– If dist(x, un) = dist(z, un) + 1, we can immediately
terminate Algorithm 2. Note that, the chance of this case
is considerable since dist(z, un) + 1 is one of the three
values that dist(x, un) can possibly take.

– Otherwise, dist(x, un) provides a strong lower bound
for ecc(x): ecc(x) ≥ dist(x, un) ≥ ecc(z)− 1. Let u be
the node with dist(u, x) = ecc(x). Then, dist(u, z) ≥

Algorithm 3: RefPool
Input: Graph G(V , E), k
Output: pool; Lz , ∀z ∈ pool; ecc(u) and ecc(u), ∀u ∈ V

1 Let pool be the k nodes in G with the highest degrees;
2 for each node z ∈ pool do
3 Lz ← a list of nodes in V in non-decreasing order of their distances to z;
4 for each node u ∈ V do
5 update ecc(u) and ecc(u) using Lemma 2;

6 return as required.

dist(u, x)−dist(x, z) ≥ ecc(x)−1 ≥ ecc(z)−2. That
is, once the λ = dist(ui−1, z) in Line 3, Algorithm 2,
drops below ecc(z)−2, we can safely terminate the algo-
rithm.

Example 9 Suppose we would like to compute ecc(x) for
x = v4 with reference node z = v2. Note that dist(x, z) = 1.
Therefore, in the worst case, we need to visit those nodes y
with dist(y, z) ≥ ecc(z)−2 = 1, which are all nodes except
z = v2. As shown in Fig. 7, we visit the node set {v10, v8} to
compute ecc(v4), which is a subset of the needed nodes.

The theorem below generalizes the analysis on the case of
dist(x, z) = 1.

Theorem 4 Denote by λ0 the distance dist(x, z) between x
and z. Let y be the farthest node to x, that is, ecc(x) =
dist(y, x). Then,

dist(y, z) ≥ ecc(z) − 2λ0.

Therefore, it suffices for Algorithm 2 to visit all nodes in
{v ∈ V |dist(v, z) ≥ ecc(z) − 2λ0} to determine ecc(x).
Proof FromLemma2, ecc(z)−λ0 ≤ ecc(x) = dist(y, x) ≤
dist(y, z) + dist(x, z) = dist(y, z) + λ0 ��

Theorem 4 implies that to determine ecc(x), it suffices to
scan only the nodeswhose distances fall into a range of length
2λ0. The smaller the λ0 is, the earlier the search of ecc(x)
may stop. Therefore, it boils down to select a reference node
that is as close as possible to x .

Let k be a small integer. Algorithm 3 selects k highest
degree nodes in G(V , E) as the pool of reference nodes
(Line 1). Each node x , as can be seen in Algorithm 5 (Line 4),
chooses the reference node in the pool that is the closest to
x . As verified by the experiments (Exp-2, Sect. 6), setting
k as 16 is sufficient to make an excellent performance for
eccentricity computation.

The adoption of a reference node pool is cost-effective.
The pre-computation for the pool of reference nodes incurs
only a small overhead, but it sets up the initial upper and
lower bounds for the eccentricity of each node (Lines 4–5).
More importantly, the pool of reference nodes scatters in the
vicinity of most nodes in V ; in other words, the averaged

123

Eccentricities on small-world networks 773

Fig. 8 Eccentricity computation (pool = {v1, v2})

distance d(x, z) from a node x to its closest reference node z
is relatively small, as has been verified experimentally (Exp-
5, Sect. 6). This is not surprising since, in a small-world
network, a few high-degree nodes have significantly higher
connections than the other nodes; these nodes can connect
the majority of the graph in merely two to three hops.

Example 10 In the running example, graph G is shown in
Fig. 1. Let k = 2. Select 2 nodes with the highest degree in
G as the reference-node pool: pool = {v1, v2}. The pro-
cess of computing the eccentricity for all nodes in G is
then shown in Fig. 8. The reference node selected for each
node is colored in black. For example, for node x = v3,
v1 instead of v2 is selected as the reference node since
dist(v2, v3) > dist(v1, v3). Using v1 as the reference node,
one only needs to obtain dist(v3, v11) = 3 to terminate the
algorithm with ecc(v3) = 3 by querying PLL. Compared to
Example 8, using the reference-node pool reduces the num-
ber of PLL queries from 33 to 13.

3.4 Bound update optimization

With the eccentricity ecc(x) of the trigger node x newly iden-
tified in Sect. 3.3, it remains to update the eccentricity bounds
of other nodes (Problem 4 in Sect. 3.2). Globally travers-
ing over all nodes in V is exhaustive. This section turns the
global update to a much cheaper yet effectively the same
local update.

It can be derived from Lemma 2 that the eccentricities on
adjacent nodes differ by at most one.

Lemma 7 For each undirected edge (u, v) ∈ E,

ecc(u) − 1 ≤ ecc(v) ≤ ecc(u) + 1.

When applying Lemma 7 to the eccentricity bounds, we
derive the notion of a stable state.

Definition 6 (Stable state) The eccentricity bounds are sta-
ble, if for each edge (u, v) ∈ E :

ecc(u) ≤ ecc(v) + 1, and (4)

ecc(u) ≥ ecc(v) − 1. (5)

(a) (b)(a) (b)

Fig. 9 Local spread: before and after updating the bounds of v10

Example 11 The eccentricity bounds shown in Fig. 9a are sta-
ble. For example, for adjacent nodes v3 and v10, ecc(v10) ≤
ecc(v3) + 1 and ecc(v3) ≥ ecc(v10) − 1.

Section 3.4.1 will show that the global update under the
first two rules of Lemma 2 can be materialized by iteratively
applying Lemma 7 in a local spread update.

3.4.1 Iterative update

This subsection describes an iterative update process of the
eccentricity bounds from one stable state to another stable
state in accordancewith the update of the eccentricity bounds
of the trigger node x .

Let x be the trigger node. Consider a stable state of eccen-
tricity bounds (Definition 6) before the update. To compare
the eccentricity bounds before and after the update, we con-
ceptually capture the eccentricity bounds before the update
in a snapshot of {eccold(u), eccold(u)}, for ∀u ∈ V .

Denote by ubx and lbx , respectively, the new upper and
lower eccentricity bounds for the trigger node x—if ecc(x)
is available, then ubx = lbx = ecc(x). The update process
has two steps.

1. Update the eccentricity bounds of x :

(a) ecc(x) ← min{eccold(x), ubx }
(b) ecc(x) ← max{eccold(x), lbx }

2. Iteratively update the eccentricity bounds based on
Lemma7and terminatewheneccentricity boundsbecome
stable. Specifically, update the eccentricity bounds of l
from that of r across edge (l, r) ∈ E :

(a) ecc(l) ← min{ecc(l), ecc(r) + 1}
(b) ecc(l) ← max{ecc(l), ecc(r) − 1}

Take a snapshot of the eccentricity bounds after an iterative
update: {eccnew(u), eccnew(u)},∀u ∈ V .

3.4.2 Local spread

The iterative update, as we shall prove in the following
theorem, narrows the eccentricity bounds over a connected

123

774 W. Li et al.

subgraph ofG “centered” at the trigger node x . This property
of iterative update enables an optimization which effectively
reduces the overhead.

Theorem 5 (Update locality) A node v is dirty if its
eccentricity bounds are updated with eccold(y) > eccnew
(y) or eccold(y) < eccnew(y) — otherwise v is clean. Let
V ′ be the set of dirty vertices, i.e., V ′ = {y ∈ V |eccold(y) >

eccnew(y) or eccold(y) < eccnew(y)}. If V ′ is not empty,
then graph G ′(V ′, E ′) defined with E ′ = {(u, v) ∈ E |u, v ∈
V ′} is connected, that is, for any two nodes a, b in V ′, there
is a path in G ′ from a to b. Besides, for each node y in V ′,

– eccnew(y) = min{eccold(y), ubx + dist(x, y)}
– eccnew(y) = max{eccold(y), lbx − dist(x, y)}.

Theorem 5 enables us to design a local spread update
approach in Algorithm 4. To update the eccentricity bounds,
we visit the nodes in V in the style of Breadth-First Search
(Lines 2,5) starting from the trigger node x . During the traver-
sal, the nodes that were visited first would be popped out
first in the queue Q. If one node u remains “clean” after the
visit, we halt the node expansion from u (Lines 3,6,10). In
this sense, the BFS is kept in a local area. All the distances
(Lines 8–9) are obtained in the local BFS rather than pair-
wise distance queries. Checking whether a node is “dirty”
(Lines 3,7,10,11) takes constant time via tagging. The search
terminates when all node expansions have been completed
(Line 4).

Lemma 8 (Complexity) Let set V ′ = {y ∈ V |eccold(y) >

eccnew(y) or eccold(y) < eccnew(y)} be the set of nodes
that has been affected by the update on the trigger node x.
The complexity of Algorithm 4 is O(�v∈V ′deg(v)).

Proof Algorithm 4 terminates when all the nodes in V ′ have
been visited. Since each node is visited only once, the time
complexity is O(�v∈V ′deg(v)). ��

Example 12 Figure 9a shows a stable state for the graph
in Fig. 1 of the running example. Suppose we calculate
ecc(v10) = 4, we update ecc(v10) = ecc(v10) = 4. Using
local spread, for the neighbor v3 of v10, we update ecc(v3) to
be 3. For the neighbor v8 of v10, we update ecc(v8) to be 5.
After local spread, the state becomes stable again as shown
in Fig. 9b.

Correctness of Theorem 5 Iterative update tightens the
eccentricity bounds iteratively without specifying the con-
vergence rate. To quantify the margin between the old and
new snapshots, we found bounds on the margins: Lemmas 9
(weak), 10 (strong), and 11 (strong), respectively.

Algorithm 4: LocalSpread
Input: Node x , ubx , lbx , a stable eccentricity bounds.
Output: A stable eccentricity bounds
// All eccentricity bounds are clean. A bound b gets

dirty once it is updated, which can be
materialized by setting a field of b with x.

1 ecc(x) ← min{ecc(x), ubx }, ecc(x) ← max{ecc(x), lbx };
2 Q ← an empty queue;
3 if either ecc(x) or ecc(x) is dirty then add x to Q;
4 while Q is not empty do
5 u ← Q.pop(); mark u as visited;
6 if either ecc(u) or ecc(u) is dirty then
7 for each unvisited neighbor v of u do
8 ecc(v) ← min{ecc(v), ubx + dist(v, x)};
9 ecc(v) ← max{ecc(v), lbx − dist(v, x), dist(v, x)};

10 if either ecc(v) or ecc(v) is dirty then
11 add v to Q if v is not in Q;

Lemma 9 (Weak bounds) For any node v ∈ V other than u
in the graph,

eccnew(u) ≤ min{eccold(u), eccnew(x) + dist(x, u)} (6)

eccnew(u) ≥ max{eccold(u), eccnew(x) − dist(x, u)} (7)

Proof Please see “Appendix C”. ��
Lemma 10 (Strong upper bounds) For each node y ∈ V
with eccnew(y) < eccold(y), there exists a shortest path
〈u0, u1, . . . , uk〉 from x to y with k = dist(y, x) such that

1. for each i ∈ [0, k], eccnew(ui) = ubx + dist(ui , x).
2. for each i ∈ [0, k], eccnew(ui) < eccold(ui).
3. eccnew(x) = ubx .

Proof Please see “Appendix D”. ��
All the results on the upper bounds in Lemma 10 can be

symmetrically applied on lower bounds.

Lemma 11 (Strong lower bounds) For each node y ∈ V
with eccnew(y) > eccold(y), there exists a shortest path
〈u0, u1, . . . , uk〉 from x to y with k = dist(y, x) such that

1. for ∀i ∈ [0, k], eccnew(ui) = eccnew(x) − dist(ui , x).
2. for ∀i ∈ [0, k], eccnew(ui) > eccold(ui).
3. eccnewx = lbx .

3.4.3 Putting all parts together

We now have all parts in the puzzle of exact eccentricity
computation completed in Algorithm 5. We pre-compute an
auxiliary structure PLL to efficiently answer pair-wise short-
est distance queries (Line 1). Select the reference-node pool
with k nodes (Line 2). For each node v ∈ V (Line 3), we first
find the reference node in the pool with the smallest distance
to x (Line 4) and then use the reference node to compute the

123

Eccentricities on small-world networks 775

exact eccentricity of x (Line 5). After that, we use ecc(x) to
update the eccentricity bounds (Line 6). Finally, we are able
to report the eccentricities of all nodes in V (Line 7). The
correctness of Algorithms 3–5 can be easily guaranteed by
the triangle inequality, Lemmas 2 and 7.

Theorem 6 The amortized number of nodeswhose eccentric-
ities are updated by a call of LocalSpread is O(d).

Proof According to Theorem 5, a node y ∈ V is updated
by LocalSpread only when ecc(y) is increased to ecc(x) +
dist(x, y) or ecc(y) is decreased to ecc(x) − dist(x, y)
upon ecc(x) of the corresponding trigger node x . Note that
ecc(x) + dist(x, y) ≤ 2d, here d is the diameter of the
graph. Thus, after the first update on ecc(y), ecc(y) will
be decreasing within the range of [0, 2d]. Therefore, ecc(y)
will be updated at most 2d+1 times. We can similarly prove
that ecc(y) will be updated at most d + 1 times. In total,
LocalSpreadwill update the eccentricity bounds of y at most
3d + 1 times. The total of O((3d + 1)n) updates over all
nodes took place in n calls of LocalSpread.The amortized
number of nodes whose eccentricities are updated by a call
of LocalSpread is therefore O(d). ��
Lemma 12 The time complexity on updating the eccentricity
bounds in Algorithm 5 in total is O(dm).

Proof According to Lemma 8, the adjacency list of a node
y ∈ V is visited by LocalSpread only when a bound of y
is updated. Since each node is updated O(d) times and each
update reads through the correspondingnode’s adjacency list,
the total time for LocalSpread is O(d · ∑

v∈V deg(v)) =
O(dm). ��
Remarks 2 The worst-case complexity of Algorithm 5 is
quadratic; however,

– Algorithm 5 determines the eccentricity of a node x at an
early stage by i) searching from remote nodes of x guided
by a reference node that is close to x and ii) inheriting
the eccentricity bounds of x from the outer loop which
terminates the search whenever the bounds meet.

– The time complexity for updating the eccentricity bounds
is near linear since the total cost is O(dm)while a small-
world network has a small d (d < 50 for all datasets in
Table 3).

Therefore, within the loop of a node in V (Line 3, Algo-
rithm 5), the practical cost is far less than n. In this sense,
our algorithm is more efficient than its counterparts.

4 Eccentricity maintenance

Section 3 introduces an efficient algorithm for computing
the eccentricity distribution of a graph. Applying this algo-

Algorithm 5: ECC-LS
Input: Graph G(V , E), k
Output: ecc(u) for each u ∈ V

1 PLL ← the PLL structure of G(V , E);
2 pool, Lz ,eccentricity bounds ← RefPool(G(V , E), k);
3 for each node x ∈ V with ecc(x) �= ecc(x) do
4 z ← the node in the pool that is nearest to x ;
5 ecc(x) ← EccentricityOneNode(x, z, ecc(x), ecc(x), Lz , PLL);
6 LocalSpread(x, ecc(x), ecc(x),eccentricity bounds);

7 return ecc(u), ∀u ∈ V

rithm to recompute the eccentricity upon each update,when it
comes to dynamic graphs, is obviously undesirable since the
graph can frequently change which makes the maintenance
time critical.

This section considers the eccentricity maintenance prob-
lem formulated in Problem 2 in Sect. 2.1 which aims at
maintaining the eccentricity distribution upon updating an
edge e(a, b) in a graph.

We denote the graph, the eccentricity of a node v, and the
shortest distance between two nodes (u, w) before and after
the update as G and G ′, ecc(v) and ecc′(v), and dist(u, w)

and dist ′(u, w), respectively. We call a node v maintenance
dirty if its eccentricity is affected by the update, that is,
ecc(v) �= ecc′(v), and denote the set of maintenance dirty
nodes asCm−dirty = {v ∈ V |ecc(v) �= ecc′(v)}. An efficient
maintenance of the eccentricity distribution includes an effi-
cient identification of Cm−dirty and an efficient update of the
eccentricities of nodes in Cm−dirty.

In order to identify Cm−dirty, we first inspect how pair-
wise shortest distances are affected by the update (Sect. 4.1).
After that, we roughly scope potential maintenance dirty
nodes (Sect. 4.2) and then facilitate a more targeted eccen-
tricity recomputation by determining the eccentricities of the
other maintenance dirty nodes with the rules we have found
(Sect. 4.3).

4.1 Pair-wise distances affected by edge updates

We first brief the notions and findings of Yen et. al. [33]
on the problem of how an edge update affects the shortest
distance between two nodes. They proposed these notions
and findings to maintain the closeness of nodes in a graph.
The techniques on closeness maintenance, however, fail on
eccentricity maintenance, as we shall see below.

Lemma 13 When edge e(a, b) is inserted into G (or deleted
from G, resp.), for two nodes v,w ∈ V with dist ′(v,w) �=
dist(v,w), each shortest path between v and w must go
through e in G ′ (or G, resp.).

Proof Please find the proof in “Appendix E”. ��
Definition 7 When edge e(a, b) is inserted intoG (or deleted
from G, resp.), two critical sets Ca and Cb are derived from

123

776 W. Li et al.

Fig. 10 Original graph G

Fig. 11 Updated graph G ′

Ca = {v ∈ V |dist ′(v, a) �= dist(v, a)} and Cb = {v ∈
V |dist ′(v, b) �= dist(v, b)}.

Example 13 Consider inserting an edge (a, b) = (v2, v3) to
the graphG in Fig. 10 to form the updated graphG ′ in Fig. 11.
We mark in green the nodes in Ca and yellow the nodes in
Cb. The nodes whose distances to a = v2 change are in
Ca = {v3, v10}. For b = v3, Cb = {v2, v11}.

On undirected graphs, w.l.o.g., we assume |Ca | ≤ |Cb|.
Denote by Ca = V \ Ca the complement of Ca .

Lemma 14 For two nodes u, v ∈ V , if dist ′(u, v) �=
dist(u, v), then either u ∈ Ca and v ∈ Cb or u ∈ Cb

and v ∈ Ca. Besides, Ca and Cb are disjoint.

Proof Please find the proof in “Appendix F”. ��
To accelerate the maintenance of node closeness, Yen et.

al. [33] also made an observation that the sizes of the two
sets Ca and Cb have a large gap. Recall that we assume
|Ca | ≤ |Cb| without loss of generality.
Observation 1 ([33]). |Ca | � |Cb|.

We verified this observation on small-world networks in
five categories: Youtube (social networks), HepPh (collab-
oration networks), Superuser (interaction networks), Wiki-
talk (communication networks), and Google (Web graphs).
For each graph, the average of |Ca |

n and |Cb|
n was obtained by

repeating the following process 100 times:

Table 2 |Ca | � |Cb| on small-world networks

n m |Ca |
|n|

|Cb |
|n|

Youtube 1,134,890 2,987,624 1.16E−04 1.92E−01

HepPh 11,204 117,619 8.93E−05 4.02E−01

Superuser 189,191 712,870 3.91E−05 1.73E−01

Wiki-talk 2,388,953 4,656,682 1.85E−05 1.19E−01

Google 266,388 2,228,348 1.85E−05 8.46E−02

– select an edge e uniformly at random from the edge set
E of the graph G,

– delete e from E to generate G ′ and then get the sizes of
|Ca | and |Cb|.

The dramatic gap between |Ca | and |Cb| can be observed
in Table 2. For example, |Cb| is about 4431 times larger
than |Ca | on the graph of Superuser. Note that it suffices to
consider only edge deletion since the same Ca and Cb will
be identified if one swaps G and G ′ by reversing the edge
deletion to edge insertion.

By usingLemma14 andObservation 1, closenesses can be
efficientlymaintained [15,25,33]. Unfortunately, the additive
nature of the closeness definition which enables the efficient
maintenance no longer exists when it comes to the definition
of eccentricity. Specifically, for a node u, its closeness (and
eccentricity, resp.) is defined as the summation (and maxi-
mization, resp.) of the shortest distances from u to all the
other nodes. According to Observation 1, |Ca | is relatively
small, and thus, computing single-source shortest distance
from each node in Ca is inexpensive. Then, we can update
the closeness for all nodes, especially for the nodes u ∈
Cb: the summation �v∈Cadist(u, v) = �v∈Cadist ′(u, v)

can be computed by subtracting �v∈Cadist(u, v) from the
old closeness of u, which, combined with the updated
�v∈Cadist ′(u, v), produces the updated closeness of u
directly. Such a method, however, fails when it comes to
eccentricity, that is, maxv∈Ca dist(u, v) can hardly be com-
puted without computing the distances from u to all nodes
in Ca , and thus, the cost of eccentricity maintenance is still
high.

In the following two sections, we first coarsely scope the
maintenance dirty nodes and then identify rules to directly
determine the updated eccentricity of nodes in the scope and
then facilitate a more targeted recomputation.

4.2 Scope themaintenance dirty nodes

An exact identification of Cm−dirty can be achieved by
maintaining, for each node u, the supporting set of u:
{v|dist(u, v) = ecc(u)}. Note that, an edge insertion will
not decrease ecc(u) unless all nodes in the supporting set

123

Eccentricities on small-world networks 777

have their distances to u decreased. The cost for record-
ing and maintaining the supporting set for each node can be
extremely expensive. Instead of identifying the maintenance
dirty nodes, this section considers scoping the maintenance
dirty nodes, that is, to find a superset of Cm−dirty.

The next lemma shows that if a node has its distances to
both a and b unaffected by the update, and then, it is not
maintenance dirty.

Lemma 15 Cm−dirty ⊆ Ca ∪ Cb, that is, for node v ∈ V , if
dist ′(v, a) = dist(v, a) and dist ′(v, b) = dist(v, b), then
ecc′(v) = ecc(v).

Proof According to Lemma 14, for a node u /∈ Ca ∪ Cb,
dist(u, v) = dist ′(u, v) for any node v ∈ V , and thus,
ecc(u) = ecc′(u). ��
Example 14 Suppose G ′ = (V , E ∪ (v2, v3)) for graphs
in Fig. 11. Cm−dirty only includes node v3 and v10, whose
eccentricity changes. Ca = {v3, v10}, Cb = {v2, v11} since
their distance changes with a = v2 and b = v3, respec-
tively. Thus, (Ca ∪ Cb) = {v3, v10, v2, v11} ⊃ Cm−dirty =
{v3, v10}. Moreover, only distances between the node pairs
from {v3, v10} and {v2, v11} change.

By performing a BFS for each node in Ca ∪ Cb, we can
obviously update the eccentricities of all nodes. However,
spending O((|Ca ∪ Cb|) · m) time for a single edge update
is not appealing.

4.3 Refine the eccentricity update

This section provides rules to update the eccentricities of
nodes inCa ∪Cb. In the case of edge insertion, we only need
to recompute the eccentricity for a small portion of nodes in
Cb (less than 102 in our empirical studies) and in the case of
edge deletion, eccentricity maintenance is solely rule based,
which is extremely efficient.

Effective rules are obtainable since according to Obser-
vation 1, a majority of nodes in Ca ∪ Cb are contributed
by Cb. To avoid the BFS computation over Cb, we com-
pute single-source shortest distances from each node in Ca

before and after the update. For each node v ∈ Cb, we then
obtain partial eccentricities pecc(v|Ca) and pecc′(v|Ca),
respectively, on G and G ′. It then remains to identify rules
to determine the eccentricity ecc′(v) for each node v in Cb

based on pecc(v|Ca) and pecc′(v|Ca), the partial eccentric-
ities of v on Ca .

Example 15 Let G be the graph in Fig. 11 and G ′ =
(V , E \ (v2, v3)) be the graph in Fig. 12. Conduct BFS
from each node in Ca = {v3, v10} on G ′. Then, for
each node in Cb, we can find its partial eccentricity:
pecc′(v2|Ca) = max(dist ′(v2, v3), dist ′(v2, v10)) = 3
and pecc′(v11|Ca) = max(dist ′(v11, v3), dist ′(v11, v10))
= 4.

Fig. 12 pecc′(v|Ca)

Fig. 13 D-Rule: Lemma 16

4.3.1 Update eccentricities upon an edge deletion

This section serves as a proof to Theorem 7.

Theorem 7 When an edge e(a, b) is deleted from G, the
eccentricity distribution can be maintained in O(n + m +
|Ca |m) time complexity.

Lemma 16 For a node v ∈ Cb, if pecc′(v|Ca) < ecc(v),
then ecc′(v) = ecc(v).

Proof According to Lemma 14, the distances from v to all
nodes inCa remain unchanged, that is, the partial eccentricity
pecc(v|Ca) = pecc′(v|Ca). If pecc′(v|Ca) < ecc(v) =
max{epcc(v|Ca), pecc(v|Ca)}, since pecc(v|Ca) ≤ pecc′
(v|Ca) in deleting an edge, we have pecc(v|Ca) < ecc(v),
and therefore, ecc(v) = pecc(v|Ca) = pecc′(v|Ca). Thus,
ecc′(v) = max{pecc′(v|Ca), pecc′(v|Ca)} = pecc(v|Ca)

= ecc(v). ��
Example 16 In Fig 13,G ′ = (V , E\(v2, v6)) andCa = {v6},
Cb = {v2, v11}. We first conduct BFS on Ca to gain the dis-
tance information. For v2 ∈ Cb, we find that pecc′(v2|Ca) =
2 < ecc(v2) = 3; therefore, the eccentricity of v2 does not
change, and thus, ecc′(v2) = ecc(v2) = 3.

Lemma 17 If pecc′(v|Ca) = ecc(v), then ecc′(v) =
ecc(v).

Proof Since ecc′(v) = max{pecc′(v|Ca), pecc′(v|Ca)},
pecc′(v|Ca) = pecc(v|Ca) ≤ ecc(v) and pecc′(v|Ca) =
ecc(v), ecc′(v) = ecc(v).

123

778 W. Li et al.

Fig. 14 D-Rule: Lemma 17

Fig. 15 D-Rule: Lemma 18

Example 17 In Fig. 14, G ′ = (V , E \ (v1, v5)) and Ca =
{v5}, Cb = {v1, v9}. For v1 ∈ Cb, we find that pecc′(v1|Ca)

= 2 = ecc(v1); therefore, the eccentricity of v1 does not
change, and thus, ecc′(v1) = ecc(v1) = 2.

Lemma 18 If pecc′(v|Ca) > ecc(v), then ecc′(v) =
pecc′(v|Ca).

Proof Since ecc′(v) = max{pecc′(v|Ca), pecc′(v|Ca)},
pecc′(v|Ca) = pecc(v|Ca) ≤ ecc(v) and pecc′(v|Ca) >

ecc(v), ecc′(v) = pecc′(v|Ca). ��
Example 18 In Fig. 15, G ′ = (V , E \ (v1, v2)) and Ca =
{v2, v11}, Cb = {v1, v8, v9}. We first conduct BFS on Ca

to gain the distance information. For v1 ∈ Cb, we find that
pecc′(v1|Ca) = 3 > ecc(v1) = 2; therefore, the eccen-
tricity of v1 changes to pecc′(v1|Ca), and thus, ecc′(v1) =
pecc′(v1|Ca) = 3.

Remarks 3 In maintaining the eccentricity distribution when
deleting edge e(a, b) fromG, it suffices to compute the short-
est distance from a, b, and each node in Ca , respectively,
using BFS.

4.3.2 Update eccentricities upon an edge insertion

Edge insertion triggers more complicated situation on Cb —
updating solely based on the partial eccentricities on Ca is
no longer feasible. This section aims at determining ecc′(v)

for most v ∈ Cb in a rule-based approach while recomputing
the eccentricities for a small subset Cb′ ⊆ Cb. Our imperial
study will show that the size of Cb′

can be reduced to a level
less than 102.

Fig. 16 I-Rules: Lemmas 19 and 21

Fig. 17 I-Rule: Lemma 20

Example 19 In Fig. 16, G ′ = (V , E ∪ (v6, v9)). Ca = {v6},
and Cb = {v8, v9}. In G, the largest distance between v9
and nodes in Ca is 2 while in G ′, the largest distance is 1.
Therefore, pecc(v9|Ca) = 2 and pecc′(v9|Ca) = 1.

Lemma 19 If pecc(v|Ca) < ecc(v), then ecc′(v) = ecc(v).

Proof For a node v ∈ Cb, if its eccentricity pecc(v|Ca) <

ecc(v), then we know ecc(v) = pecc(v|Ca) while the lat-
ter partial eccentricity is not affected by the edge update
(Lemma14). In this sense, the updated eccentricity ecc′(v) =
ecc(v). ��
Example 20 In Fig. 16, G ′ = (V , E ∪ (v6, v9)). Ca = {v6},
and Cb = {v8, v9}. For node v8, pecc(v8|Ca) = 3 <

ecc(v8); therefore, the eccentricity of v8 does not change
and ecc′(v8) = ecc(v8) = 4.

Lemma 20 If pecc(v|Ca) = pecc′(v|Ca) = ecc(v), then
ecc′(v) = ecc(v).

Proof ecc(v) = pecc(v|Ca) indicates that pecc(v|Ca) ≤
pecc(v|Ca). Since pecc(v|Ca) = pecc′(v|Ca), ecc′(v) =
max{pecc′(v|Ca), pecc′(v|Ca)} = pecc(v|Ca) = ecc(v).

��
Example 21 In Fig. 17, G ′ = (V , E ∪ (v5, v10)). Ca =
{v8, v10}, and Cb = {v2, v5, v11}. In G, the largest distance
between v11 and nodes in Ca is 4 and in G ′, the largest dis-
tance is 4. Both of the distances equal to ecc(v11) Therefore,
ecc′(v11) = ecc(v11) = 4.

When pecc(v|Ca) = ecc(v) and pecc′(v|Ca) < ecc(v),
it is hard to decide whether ecc′(v) = ecc(v) or not. Here,
we show the last rule to avoid a BFS search.

123

Eccentricities on small-world networks 779

Lemma 21 For v ∈ Cb, let p be a neighbor of v, that is,
(v, p) ∈ E. If ecc′(p) > ecc(v), then ecc′(v) = ecc(v).

Proof Under edge insertion, ecc′(v) ≤ ecc(v). Since
ecc′(v) ∈ [ecc′(p) − 1, ecc′(p) + 1] and ecc′(p) > ecc(v),
we have ecc′(v) = ecc(v). ��
Example 22 In Fig. 16, G ′ = (V , E ∪ (v6, v9)). Ca = {v6},
and Cb = {v8, v9}. v9 has a neighbor v8 with ecc′(v8) =
4 > ecc(v9) = 3; therefore, the eccentricity of v9 will not
change.

Lemma 22 Applying Lemmas 19 and 20 takes O(|Ca | · m)

time. Applying Lemma 21 takes O(m) time.

Proof Since each node in Cb needs to check its neighbors,
the total cost will be no larger than O(m). ��
Theorem 8 When edge e(a, b) is inserted into G, the eccen-
tricity distribution can bemaintained in O(m+n+m(|Ca|+
|Cb′ |)) time complexity.
Remarks 4 The challenge of eccentricity maintenance is that
the partial eccentricity pecc(v|Ca) for a node v ∈ Cb cannot
be easily obtained. In inserting an edge toG, the eccentricities
of nodes in Cb′

cannot be decided unless a recomputation is
engaged. However, the rules in Lemmas 19–21 screen a large
number of nodes fromCb. Our empirical study indicates that
the size of Cb′

is reduced to a level which is no more than
102.

4.3.3 Eccentricity maintenance

We conclude this section with Algorithm 6 of eccentricity
maintenance. We first obtain set Ca and Cb by performing
BFS from a and b, respectively (Line 1). Perform BFS from
each node in Ca (Line 3) (i) to update the eccentricities of
nodes inCa (Line 4) and (ii) to provide the partial eccentrici-
ties for nodes inCb onCa (Lines 5–6).After that, the deletion
(Lines 7–9) and insertion (Lines 10–18) are separately han-
dled according to Sects. 4.3.1 and 4.3.2, respectively.

5 Related work

Section 5.1 studies eccentricity computation on static graphs,
while Sect. 5.2 shows the results on eccentricitymaintenance.

5.1 Eccentricity computation

Exact eccentricity A straightforward method to compute the
exact eccentricity for all nodes is to apply all-pairs shortest
path (APSP) algorithms or to pose pair-wise shortest distance
(PWSD) queries quadratic times. These algorithms, however,
require a high time complexity and thus are impractical to

Algorithm 6: ECC-DY
Input: Graph G(V , E),e(a, b), ecc(u), ∀u ∈ V
Output: ecc′(u), ∀u ∈ V

1 Compute Ca and Cb by performing BFS from a and b on G and G′,
respectively;

2 for each v ∈ V \ (Ca ∪ Cb) do ecc′(v) ← ecc(v);
3 for each node in Ca do perform BFS on G and G′ ;
4 for each v ∈ Ca do ecc′(v) ← maxu∈V (dist ′(v, u)) ;

5 for each node v ∈ Cb do
6 Compute the partial eccentricity pecc(v|Ca) on G and pecc′(v|Ca) on G′,

respectively;

7 if e(a, b) is deleted from G then
8 for each v ∈ Cb do
9 Apply Lemmas 16–18 to ecc′(v);

10 if e(a, b) is inserted into G then

11 Cb′ ← ∅;
12 for each v in Cb do
13 if none of Lemmas 19–21 applies to v then

14 Add v to Cb′ ;
15 else
16 Apply Lemmas 19–21 to ecc′(v);

17 for each v in Cb′ do
18 Conduct BFS to get the eccentricity;

19 return the updated eccentricities ecc′(u),∀u ∈ V

handle large graphs [14]. Although optimization strategies
are proposed [4,29], their approaches still cannot scale to
handle large real-world graphs. An efficient approach to the
PWSDproblem is called Pruned landmark labeling (PLL) [3];
its detail has been introduced in Sect. 2.2.

In the literature, to compute the exact eccentricity, Hen-
derson [13] speeds up the computation by making use of
articulation points and eccentricity bounds. The state-of-the-
art algorithm is proposed by Takes et al. [27], which has been
introduced in Sect. 3.1 in details. Borassi et al. [6] focus on
the “directed” aspect of the diameter/radius computation on
directed graphs; their techniques fall into the framework of
[27] when it comes to undirected scenarios.

As a related problem, graph diameter is defined as the
maximum eccentricity among all nodes. A pruning-based
method to compute the graph diameter is introduced in [28],
and the method is further improved by Akiba et al. [2] using
eccentricity bounds propagation.

Approximate eccentricity In the literature, because of
the huge computational cost for exact eccentricity, several
approaches focus on computing approximate eccentricities
with error bounds. A straightforward approach is to adopt the
approximate APSP [1]. However, this method does not con-
sider the properties involved in eccentricity.Roditty et al. [23]
present an algorithm to estimate eccentricity ẽcc(v) using
sampling. ecc(v) is bounded by [23 ẽcc(v), 3

2 ẽcc(v)], for each
nodev in an undirected andunweighted graph. The time com-
plexity is O(m

√
n log n). The method is further improved by

Chechik et al. [8] by transforming the graph to a bounded-

123

780 W. Li et al.

degree graph. ecc(v) is bounded by [ẽcc(v), 5
3 ẽcc(v)]. The

complexity is O((m logm)
3
2).

When error bound is not required, approximate eccen-
tricities can be computed more efficiently. Takes and Kol-
sters [27] follow Algorithm 1 (Sect. 3.1): instead of deter-
mining the eccentricities for all nodes (Line 3), [27] only
aims at determining the diameter and radius. In other words,
the search halts when the eccentricities are determined for the
nodes with either the largest eccentricity upper bound or the
smallest eccentricity lower bound. Another approach [26]
estimates the eccentricities by computing the shortest dis-
tances from 2k—k is a parameter—selected nodes in two
phases. Phase-1 picks a set S of k nodes sourced from which
the shortest distances are computed. Phase-2 chooses a set
S′ of k nodes with the maximum, among all graph nodes,
the maximum distance to S, and then computes the short-
est distances from S′. Each node estimates its eccentricity
as its maximum distance to S ∪ S′. The accuracy, though
is normally high, is controlled by k and subjected to indi-
vidual graph properties (as can be seen in our experiments).
In particular, when it comes to a specific node, without an
error bound, the estimation with a chance of a high relative
error (due to the small diameter) can hardly be trusted and
doubtlessly engaged.

Other graph centrality measures In addition to graph
eccentricity, there are some other famous graph centrality
measures. For example, closeness centrality, which is the
inverse of the average shortest distance from the vertex to
any other vertex in the graph [21], is useful to measure
the efficiency of each vertex in spreading information to all
other vertices. Betweenness centrality, which is the fraction
of shortest paths between node pairs that pass through the
target node [20], is used to measure the ability of a node to
control the information flow between other nodes. A recent
survey of graph centrality measures and their application in
different domains can be found in [18].

5.2 Eccentricity maintenance

The problem of maintaining the eccentricity distribution on
dynamic graphs, as far aswe know, has not been studied in the
literature. A straightforward solution is to resort to dynamic
APSP algorithms, the classic algorithms in which has been
captured in a survey [9]. Dynamic APSP algorithms, how-
ever, necessitate expensive yet unnecessary space and time
cost to maintain the distance information—eccentricity only
tracks themaximum distance, as opposed to all the distances,
from a node to all the other nodes.

Diameter maintenance A related topic is to maintain the
diameter of a dynamic graph; however, existing work [10,24]
only considers insertion-only graphs. The proposed algo-
rithms [10,24] keep the set of node pairs whose distances

equal the diameter and update the node-pair set when a new
node is added. Their inefficiency is because i) the cardinal-
ity of the node-pair set kept can be large and ii) the cost
of refreshing the distances of the node pairs in the set can
be expensive. Besides, these approaches cannot handle edge
deletions.

Centrality maintenance The problem of maintaining cen-
tralitymeasures on dynamic graphs has been studied on, apart
from closeness centrality [33], a wide spectrum of central-
ity definitions such as betweenness centrality [22], harmonic
closeness centrality [5], and personalized centrality [19].
Their solutions vary dramatically based on the properties of
the centrality definition. For eccentricity centrality, the most
related definition is closeness centrality [33] for which the
state-of-the-art solution has been introduced in Sect. 4.

6 Experiments

This section evaluates the performance of the eccentricity
computation andmaintenance solution proposed in the paper.
We first introduce the experiment setting and then show the
results on eccentricity computation in Sect. 6.1 and mainte-
nance in Sect. 6.2.

Datasets Our experiments were conducted on 20 real-
world graphs with various properties. The first seven graphs
are online social networks, and the following four graphs
are collaboration networks. Askubuntu, Mathoverflow, and
Superuser are interaction networks on the Stack Exchange
Web site—nodes represent users and edges indicate the
answer and comment relationships.Wiki-temporal andWiki-
talk are communication networks. Skitter is the computer
network, while Google, In, and Indochina are Web graphs.
All graphs are considered as undirected and connected
graphs: if a graph is not connected, we used the largest con-
nected component of the graph. The details, which are the
total number of nodesn, the total number of edgesm, radius r ,
and diameter d, of all graphs are presented in Table 3. Among
these graphs, the largest diameter is 43 and the smallest is
7. The average label size for PLL is no larger than 100 on
most graphs.3 All graphs were downloaded from Stanford
Large Network Dataset Collection4 [16] and Laboratory for
Web Algorithms.5 To better explain the results, we use four
graphs, Slashdot, Twitter, DBLP, and Wiki-talk, to repre-
sent the large graphs in some experiments while showing the
results of the other graphs in “Appendix J”.

Eccentricity computation algorithms We compare our
proposed algorithms against the state-of-the-art algorithm

3 The label size may differ during every execution of the PLL approach
due to the randomness in determining the node order [3].
4 http://snap.stanford.edu/data/.
5 http://law.di.unimi.it/datasets.php.

123

http://snap.stanford.edu/data/
http://law.di.unimi.it/datasets.php

Eccentricities on small-world networks 781

Ta
bl
e
3

D
at
as
et
de
sc
ri
pt
io
n
an
d
co
m
pa
ri
so
n
w
ith

th
e
st
at
e-
of
-t
he
-a
rt
m
et
ho
ds

D
at
as
et

St
at
is
tic

al
in
fo
rm

at
io
n

Pr
op

os
ed

al
go

ri
th
m

E
C
C
(s
)

B
as
el
in
e
(s
)

PL
L

n
m

r
d

L
ab
el
in
g

R
ef
Po

ol
E
cc
en
tr
ic
ity

To
ta
l

Bo
un

dE
cc

Bo
un

dP
LL

A
vg

la
be
ls
iz
e

B
ri
gh
tk
ite

56
,7
39

21
2,
94
5

9
18

0.
95

0.
14

0.
07

1.
16

88
.9
9

66
4.
43

64
.7
2

E
pi
ni
on
s

75
,8
77

40
5,
73
9

8
15

1.
07

0.
20

0.
14

1.
41

20
.0
9

11
6.
25

59
.1
9

G
ow

al
la

19
6,
59
1

95
0,
32
7

8
16

8.
09

0.
66

0.
20

8.
95

39
5.
00

25
59
.3
1

91
.5
4

Sl
as
hd
ot

77
,3
60

46
9,
18
0

6
12

1.
77

0.
22

0.
29

2.
28

86
.4
0

51
6.
46

66
.9
0

Tw
itt
er

81
,3
06

1,
34
2,
29
6

4
7

3.
05

0.
24

36
.8
0

40
.0
9

16
6.
15

54
8.
51

70
.2
0

Y
ou
tu
be

1,
13
4,
89
0

2,
98
7,
62
4

12
24

79
.7
5

4.
35

5.
35

89
.4
5

23
,
21
6.
60

−
11
5.
03

L
as
tf
m

1,
19
1,
80
5

4,
51
9,
33
0

5
10

46
4.
24

5.
96

12
63

.6
2

17
33

.8
29

,
03
9.
06

−
29
5.
96

A
st
ro
Ph

17
,9
03

19
6,
97
2

8
14

0.
40

0.
03

0.
14

0.
57

4.
14

26
.9
7

75
.0
3

C
on
dM

at
21
,3
63

91
,2
86

8
15

0.
30

0.
05

0.
06

0.
41

4.
39

37
.6
9

68
.8
7

D
B
L
P

31
7,
08
0

1,
04
9,
86
6

12
23

78
.0
7

1.
29

9.
66

89
.0
2

77
4.
18

14
,8
65
.8
0

26
3.
66

H
ep
Ph

11
,2
04

11
7,
61
9

7
13

0.
16

0.
02

0.
08

0.
26

1.
40

5.
93

63
.2
3

A
sk
ub
un
tu

15
2,
59
9

45
3,
22
1

7
13

1.
78

0.
60

0.
27

2.
65

33
.2
8

17
2.
99

54
.5
6

M
at
ho
ve
rfl
ow

24
,6
68

18
7,
93
9

5
9

0.
22

0.
05

0.
02

0.
29

4.
63

18
.6
2

51
.8
0

Su
pe
ru
se
r

18
9,
19
1

71
2,
87
0

6
12

2.
91

0.
58

0.
33

3.
82

29
5.
93

15
19
.6
6

57
.3
8

W
ik
i-
ta
lk

2,
38
8,
95
3

4,
65
6,
68
2

6
11

36
.4
3

8.
13

12
.6
7

57
.2
3

11
87

.1
7

12
,2
45
.4
0

61
.6
8

W
ik
i-
te
m
po
ra
l

1,
09
1,
74
2

2,
78
6,
76
4

5
9

12
.3
9

3.
43

9.
60

25
.4
2

48
57

.3
6

29
,5
22
.6
0

56
.0
2

Sk
itt
er

1,
69
4,
61
6

11
,0
94
,2
09

16
31

36
0.
75

7.
91

14
.0
3

38
2.
69

82
11

.2
1

−
18
7.
78

G
oo
gl
e

85
5,
80
2

4,
29
1,
35
2

12
24

97
.5
1

3.
03

19
.3
8

11
9.
92

12
,
82
0.
50

−
13
7.
47

In
1,
35
3,
70
3

13
,1
26
,1
72

22
43

11
4.
01

5.
13

62
.7
0

18
1.
84

72
3.
51

13
,6
50
.2
0

16
7.
22

In
do
ch
in
a

7,
32
0,
53
9

14
9,
05
4,
85
4

22
43

47
57

.5
5

41
.7
6

11
01

.0
2

59
00

.3
3

30
,
63
8.
80

−
41
3.
71

123

782 W. Li et al.

BoundEcc [27] for exact eccentricity computation. The
source code is downloaded from the author’s webpage.6 All
parameters were set to their default values. Moreover, we
plugged the distance labeling algorithm PLL into BoundEcc
by replacing all online distance queries with the distance
labeling queries and the final algorithm is called BoundPLL.

Our techniques include the following two methods:

– ECC: Invoke EccentricityOneNode for each node in the
graph. (Algorithm 2 in Sect. 3.3).

– ECC-LS: Update the eccentricity bounds using the local
spread technique. (Algorithm 5 in Sect. 3.4).

To better analyze the result, we will show the cost of dis-
tinct phases of ECC as well. The phases include:

– Labeling: build the PLL structure of the graph [3].
– RefPool: compute the reference-node pool, the lists Lz

for each z in the pool, and the initial ecc and ecc for each
node of the graph (Algorithm 3 in Sect. 3.3.2).

– Eccentricity: compute the eccentricity distribution.

Note that ECC-LS shares the first two phases with ECC while
differs with ECC on the third phase.

Eccentricity maintenance algorithms We also compare
our proposed maintenance algorithm ECC-DY (see Algo-
rithm 6) against the baseline approach Recomp which
triggers ECC-LS upon each edge update.

Environment and settings All algorithms were imple-
mented in C++ and compiled with GNU GCC 4.8.5 and
-O3 level optimization. All experiments were conducted on a
machine with an Intel Xeon 2.3GHz CPU and 128GB main
memory running Linux (Red Hat Linux 4.8.5, 64bit). The
cost was evaluated in the wall clock time, and the cutoff time
was set to 24h. The costs of the three phases were evalu-
ated, respectively. By default, the number of reference nodes
was set to be k = 16; otherwise, the varying number k of
reference nodes ranged from 1 to 32.

6.1 Eccentricity computation

Exp-1: Comparison with the state of the art This experiment
compares our algorithm ECCwith BoundEcc and BoundPLL.
The results are shown in Table 3.

Table 3 indicates that our method ECC outperforms
BoundEcc on all types of graphs by up to two orders of
magnitude over BoundEcc and up to three orders of magni-
tude over BoundPLL. For example, On Wiki-temporal, ECC
is more than 191 times faster than BoundEcc and 1161 times
faster than BoundPLL. For Youtube and Lastfm, our ECC

6 https://franktakes.nl/research/.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(a) Slashdot

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(b) Twitter

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(c) DBLP

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(d) Wiki-talk

Fig. 18 Testing ECC (varying # reference nodes)

had completed the eccentricity computation in, respectively,
2min and half an hour, while BoundEcc needs > 6h and
BoundPLL cannot finish the computation within 24h.

Second, we observe that, in the three phases of our pro-
posed algorithm ECC, the time for labeling dominates the
overall cost for most of the graphs. The actual time used
for eccentricity is within 2min on all of the graphs except
Lastfm and Indochina. This means that ECC can be scaled to
handle larger graphs upon an accelerated labeling method.
The results in Table 3 demonstrate that our proposed method
is superior to the state-of-the-art methods.

Exp-2: Testing ECC This experiment shows the perfor-
mance of ECC under a varying number k of reference nodes.
k ranges from 1 to 32. Since the time for Labeling is inde-
pendent of the number of reference nodes, we only report
the processing time for RefPool and Eccentricity. We show
the experimental results for four representative large graphs
in Fig. 18 while leaving the results on the other graphs in
Fig. 29 in “Appendix J”.

Figure 18 indicates that the time for RefPool increases
with an increasing k, and the time for Eccentricity decreases
with the increasing k. k reference nodes incur k BFSs, and
thus, the time of RefPool increases with k. The efficiency
of Eccentricity for one node u is dependent on the distance
dist(u, z) from u to its reference node z (Theorem 4) while
an enlarged reference-node pool decreases dist(u, z). There-
fore, increasing k reduces the cost of Eccentricity.

Figure 18 also shows a trade-off between RefPool and
Eccentricity in ECC. For Slashdot and Wiki-talk, the running
time first decreases and then increases with an increasing
k; for Twitter and DBLP, the running time drops with an
increasing k. The results over all graphs suggest that k = 16
is a reasonable number of reference nodes to balance the cost
for RefPool and Eccentricity.

Exp-3: Testing ECC-LSWe examine the local spread tech-
nique by comparing ECCwith ECC-LS. Since ECC and ECC-LS

123

https://franktakes.nl/research/

Eccentricities on small-world networks 783

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(a) Slashdot

101

102

103

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(b) Twitter

100

101

102

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(c) DBLP

100

101

102

103

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(d) Wiki-talk

Fig. 19 Testing ECC-LS (processing time for Eccentricity)

105

106

107

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(a) Slashdot

107

108

109

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(b) Twitter

106

107

108

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(c) DBLP

106

107

108

109

1010

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(d) Wiki-talk

Fig. 20 Testing ECC-LS (# PLL queries)

have the same costs for Labeling and RefPool, we only report
the cost of the third phase—Eccentricity.We show the results
on four representative graphs in Figs. 19 and 20 while leav-
ing the results on the other graphs in Figs. 30 and 31 in
“Appendix J”.

Figure 19 shows the processing time when varying the
number k of reference nodes. The processing time for both
ECC andECC-LS increaseswith an increasing k. Besides, local
spread speeds up the Eccentricity by tightening the eccen-
tricity bounds: ECC-LS outperforms ECC on Eccentricity by
a factor of 2 to 10.

We also report the number of PLL queries for ECC and
ECC-LS in Fig. 20 when varying the number of reference
nodes. The trend is similar to that for the processing time in
Fig. 19. For example, for theDBLP dataset, when the number
of reference nodes is 4, ECC is 3 times slower than ECC-LS
while the number of PLL queries for ECC is 3 times larger than
ECC-LS. This shows that the processing time for Eccentricity
is proportional to the number of PLL queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10%20%30%40%50%60%70%80%90%100%

T
im

e
C

os
t (

s)

Percentage of Edges

Labeling
RefPool

Eccentricity

(a) Askubuntu

 0

 0.5

 1

 1.5

 2

 2.5

10%20%30%40%50%60%70%80%90%100%

T
im

e
C

os
t (

s)

Percentage of Edges

Labeling
RefPool

Eccentricity

(b) Superuser

Fig. 21 Scalability testing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4 5 6

P
er

ce
nt

ag
e

Distance

(a) Slashdot

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4

P
er

ce
nt

ag
e

Distance

(b) Twitter

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6 7 8 9 10 11
P

er
ce

nt
ag

e

Distance

(c) DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 1 2 3 4 5

P
er

ce
nt

ag
e

Distance

(d) Wiki-talk

Fig. 22 Testing distribution of distance to reference nodes

Exp-4: Scalability testing We chose temporal graphs
Askubuntu and Superuser for the scalability test. Edges of
a temporal graph are associated with timestamps. For each
graph, edgeswere sorted in the ascendingorder of their times-
tamps. The first 10%, 20%, . . ., 100% of the sorted edges
consisted of a series of 10 generated graphs, respectively,
with increasing sizes. Each generated graph is a real-world
graph with the similar graph properties as the original graph.

Figure 21 demonstrates the processing time for the three
phases Labeling, RefPool, and Eccentricity, respectively, of
our algorithm ECC, on the two graphs. When the graph
size increases, the processing time for all three phases
Labeling, RefPool, and Eccentricity increases. The three
phases Labeling, RefPool, and Eccentricity share a linear
trend with an increasing graph size. This indicates that ECC
has a high scalability. The curves for ECC-LS in scalability
are similar to those of ECC, which are not shown in the paper
due to the space limitation.

Exp-5: Testing distance to reference nodes We show the
results on four representative graphs in Figs. 22 and 23 while
leaving the results on the other graphs in Figs. 32 and 33 in
“Appendix J”.

Figure 22 shows the distribution of the distance λ0(u)

from a node u to its reference node z. The reference node z
of u is the node that is nearest to u in the reference-node pool.
The number k of reference nodes was set to be 16. For DBLP,
most distances fall into the range of [2, 5]. For the other three

123

784 W. Li et al.

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(a) Slashdot

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(b) Twitter

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(c) DBLP

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(d) Wiki-talk

Fig. 23 Testing average distance to reference nodes

graphs, more than 60% of nodes u have λ0(u) ≤ 2; for all
the nodes u in the graph, λ0(u) ≤ 6.

Figure 23 illustrates the average distance of a node to its
nearest reference nodewhen varying the number of reference
nodes k from 1 to 32 on the four graphs. The average distance
decreases with an increasing k on all graphs. When there is
only one reference node (k = 1), the average distance is 4.6
for DBLP and less than 3 on the other three graphs. When
k = 32, the average distance decreases to less than 3.5 for
DBLP and less than 2 on the other three graphs. This result
justifies the claim in Sect. 3.3.2.

6.2 Eccentricity maintenance

Exp-6: Testing ECC-DY To examine the performance of the
proposed dynamic algorithm ECC-DY, we report the speedup
of ECC-DY over Recomp. The speedup of ECC-DY is defined
as the ratio of the update cost of Recomp over the update
cost of ECC-DY.

We constructed an update for a data graph as follows. An
edge deletion used the date graph as the original graph G,
while an edge insertion used the data graph as the updated
graph G ′. This setting ensured that edge insertion and edge

10-3

10-2

10-1

100

101

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
im

e
C

os
t (

s)

Percentage of Edges

Recomp ECC-DY

(a) Edge Deletion

10-3

10-2

10-1

100

101

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

T
im

e
C

os
t (

s)

Percentage of Edges

Recomp ECC-DY

(b) Edge Insertion

Fig. 25 Scalability testing for ECC-DY on Superuser

deletion were updating real edges on or to real graphs. The
update edge e was uniformly selected from the edge set of
the data graph.

Each workload includes 100 updates and reports the aver-
age speedup. Figure 24 shows the result. ECC-DY takes on
average 0.66% total time of Recomp on each edge deletion
while takes on average 0.79% total time of Recomp on each
edge insertion. The largest speedup is observed on Indochina
for edge deletion and edge insertion, which is 954.90 and
863.14, respectively. Note that Recomp is using ECC-LS to
recompute the eccentricity while ECC-LS beats the state-of-
the-art eccentricity computation algorithms by up to three
orders of magnitude. ECC-DY, which is always one or two
orders faster than Recomp, therefore, justifies its superiority
in maintaining the eccentricity on real dynamic graphs.

Exp-7: Scalability testing of ECC-DY We used the tem-
poral graph Superuser to generate a sequence of real graphs
by getting the snapshots of the graph on the first 10%, 20%,
. . ., 100% edges, respectively. The performance of ECC-DY
on each snapshot was examined using workloads with 100
updates. The average cpu-time of ECC-DY and Recomp is
shown in Fig. 25a for edge deletion and Fig. 25b for edge
insertion, respectively.

Both Recomp and ECC-DY increase the average cpu-time
almost linearly with the number of edges in the graph. But on
edge deletion, ECC-DY, whose time cost is capped by 10−1, is
more scalable than Recomp. It is not surprising since on edge
deletion, ECC-DY can update the eccentricity by computing
BFS only on Ca nodes while |Ca | � |Cb| ≤ |V |. Note that

100

101

102

103

104

Brightkite

Epinions
Gowalla

Slashdot

Twitter
Youtube

Lastfm
AstroPh

CondMat

DBLP
HepPh

Askubuntu

Mathoverflow

Superuser

Wiki-talk
Wiki-temporal

Skitter
Google

In Indochina

S
pe

ed
up

Deletion Insertion

Fig. 24 Speedup of ECC-DY over ECC-LS

123

Eccentricities on small-world networks 785

Lemma 19 Lemma 20 Lemma 21 Cb’

0

100

101

102

103

104
number of nodes

(a) Slashdot

0

100

101

102

103

104
number of nodes

(b) Twitter

0

100

101

102

103

104

105
number of nodes

(c) DBLP

0

100

101

102

103

104

105

106
number of nodes

(d) Wiki-talk

Fig. 26 Testing the average number of nodes in each step of ECC-DY for edge insertion

for ECC-DY, the time cost depends on the number of possible
affected nodes. This number is related to not only the graph
size but also the graph structure and the specific edge to be
inserted or deleted. This explains a general increase in the
maintenance cost along the increasing graph size and a mild
fluctuation observed in edge insertion (20–30%) and deletion
(50–80%). In all cases, the time of ECC-DY is bounded by
Recomp, which confirms the superior of ECC-DY in tracking
the eccentricity when the graph is continuously changing.

Exp-8: Rule-effectiveness for edge insertion Section 4
illustrated Lemmas 19–21 in determining the eccentricities
for nodes in Cb \ Cb′

. Here, we show that the size of Cb′
is

small on an edge insertion workload with 100 update gener-
ated in the same way of Exp-7.

We show the number of nodes pruned by each of Lem-
mas 19–21 and the number of nodes in Cb′

on four repre-
sentative networks in Fig. 26 while leaving the results on
the other graphs in Fig. 34 in “Appendix J”. The number of
nodes left in Cb′

is normally small, which is no larger than
102 on all the tested graphs. Moreover, forWiki-talk, the size
of Cb′

is nearly to zero. This means that Lemmas 19–21 can
determine the updated eccentricity for most of the nodes in
the graph.

7 Conclusions

This paper provides a solution to efficient eccentricity com-
putation and maintenance based on a spectrum of insights
into the bottleneck of existing approaches. The superior effi-
ciency has been confirmed by a comprehensive experimental
evaluation. It can be observed from our evaluation results that
the current bottleneck becomes the expensive construction of
the pair-wise shortest distance index of PLL. Our future work
will investigate this bottleneck to (i) speed up the construc-
tion of PLL using parallelism or (ii) identify a “hot spot” of
the posed pair-wise shortest distance queries which can be
answered by a much smaller and cheaper index.

Acknowledgements Miao Qiao is supported by Marsden Fund
UOA1732, Royal Society of New Zealand. Lu Qin is supported by
ARC DP160101513. Ying Zhang is supported by ARC FT170100128
and DP180103096. Lijun Chang is supported by ARC DP160101513

and FT180100256. Xuemin Lin is supported by NSFC 61672235,
DP170101628 and DP180103096.

A The proof of Lemma 4

BasedonDefinition3, pecc(x |V z
≤λ) = maxu∈V z

≤λ
dist(x, u).

dist(x, u) ≤ dist(x, z) + dist(z, u) ≤ dist(x, z) + λ, for
∀u ∈ V z

≤λ. Therefore, pecc(x |V z
≤λ) = maxu∈V z

≤λ
dist(x, u)

≤ maxu∈V z
≤λ

(dist(x, z) + λ) = dist(x, z) + λ.

B The proof of Lemma 5

According to the definition of a λ-partial set, V ′ ∪V z
≤λ = V ,

and the definition of the eccentricity ecc(x) = maxu∈V dist
(u, x), ecc(x) = max{pecc(x |V ′), pecc(x |V z

≤λ}.

C The proof of Lemma 9

Let a shortest path from u to x be 〈v0, v1, v2, . . . , vk〉
with v0 = u, vk = x and k = dist(x, u). Since the
new snapshot is taken on a stable state, consider edges
(v0, v1), (v1, v2), . . . , (vk−1, vk), we have eccnew(u) =
eccnew(v0) ≤ eccnew(v1) + 1 ≤ eccnew(v2) + 2 ≤ . . . ≤
eccnew(vk) + k = eccnew(x) + k. Therefore, eccnew(u) ≤
min{eccold(u), eccnew(x) + dist(x, u)}. Similar proof can
be applied on showing that eccnew(v0) ≥ eccnew(v1) − 1 ≥
. . . ≥ eccnew(vk) − k. By plugging v0 = u, vk = x and
k = dist(x, u) in the above inequality, we complete the
proof.

D The proof of Lemma 10

Observe that in Step 2) of the iterative update, ecc(l) of node
l will be updated only if ecc(r) of its neighbor r is small
enough such that ecc(l) > ecc(r) + 1. Once the update
takes place, we conceptually associate with ecc(l) a source
ecc(l).s ← r to record the source of the bound. Note that this

123

786 W. Li et al.

source field may be overwritten upon a subsequent update;
however, it will not be removed once created.

eccnew(y).s exists since ecc(y) must have been updated
to let eccnew(y) < eccold(y). Now, we trace from y via the
source link of eccnew(·).s, generating a path 〈v′

0, v
′
1, . . . , v

′
k′ 〉

with v′
0 = y, v′

i = eccnew(v′
i−1).s, for each i ∈ [1, k′]

while eccnew(v′
k′) does not have a source. Note that in this

sequence, we have eccnew(v′
i−1) = eccnew(v′

i) + 1 for all
i ∈ [1, k′]; thus, the sequence cannot contain a loop and thus
k′ ≤ n. We have eccnew(y) = eccnew(v′

0) = eccnew(v′
k′) +

k′.
We prove that v′

k′ must be the trigger node x . If other-
wise, eccnew(v′

k′) has no source, and thus, eccnew(v′
k′) =

eccold(v′
k′). Therefore, eccold(y) > eccnew(y) = eccold

(v′
k′) + k′. According to pigeon principle, there must be

∃ j ∈ [1, k′] such that eccoldv′
j−1 > eccoldv′

j +1—violating
the assumption that the old snapshot is stable.

The fact that v′
k′ = x implies three important results:

1. For v′
j with j ∈ [0, k′), eccnew(v′

j) < eccold(v′
j): if

otherwise, the path would have stopped at j instead of
k′.

2. eccnew(x) = ubx < eccold(x). Since if eccnew(x) =
eccold(x), there will be a violation to the assump-
tion that the old snapshot is stable. Besides, eccnew(x)
has no source; thus, it has not been updated in Step
2) of the iterative update. Therefore, eccnew(x) =
min{eccold(x), ubx } = ubx < eccold(x).

3. 〈v′
0, v

′
1, . . . , v

′
k′ 〉 is a shortest path from y to x . Since k′ is

the length of a path from x to y, k′ ≥ dist(x, y). Based on
Lemma 9, that is, eccnew(y) ≤ eccnew(x) + dist(x, y),
it can be assured that k′ = dist(x, y) since eccnew(y) =
eccnew(x) + k′.

From the above three results, we complete the proof.

E The proof of Lemma 13

We only prove the lemma for the case of edge insertion since
the case of edge deletion can be symmetrically proved. Let
p (and p′, resp.) be a shortest path from v to w in G (and
in G ′, resp.) with length L(p) (or L(p′), resp.). If p′ does
not include edge e, then both p and p′ are paths between v

and w in both G and G ′. Since p and p′ are shortest paths
of G and G ′, respectively, dist(v,w) = L(p) = L ′(p) =
dist ′(v,w), contradiction. Therefore, p′ must include e.

F The proof of Lemma 14

We only consider the case of inserting the edge of e(a, b)
to G since the case of edge deletion can be symmetri-

cally proved. For two nodes u, v ∈ V , if dist(u, v) �=
dist ′(u, v), then all of the shortest paths from u to v on
graph G ′ must pass e (Lemma 13), i.e., either dist ′(u, a) =
dist ′(u, b) − 1 or dist ′(u, b) = dist ′(u, a) − 1. When
dist ′(u, a) = dist ′(u, b)−1, since dist ′(b, v) = dist(b, v)

and dist ′(u, a) = dist(u, a) (the shortest paths from
u to a and from b to v on G ′ do not include e), and
dist(u, v) �= dist ′(u, v), we have dist(u, b) �= dist ′(u, b),
and dist(v, a) �= dist ′(v, a), u ∈ Cb and v ∈ Ca . Similarly,
when dist(u, b) = dist(u, a) − 1, u ∈ Ca and v ∈ Cb.

G Comparison with approximatemethods

We show that computing exact eccentricities is necessary by
evaluating the approximate algorithms ofHybridEcc [27] and
kBFSEcc [26] on four graphs: Twitter, Youtube, Lastfm, and
Indochina. The algorithms of HybridEcc and kBFSEcc have
been introduced in Sect. 5; the descriptions of the four real
graphs and the computation time of ECC are given in Table 5.
All algorithms were run with a single thread.

We measure an approximate algorithm with its accu-
racy—the percentage of nodes whose eccentricities are
correctly estimated—and its running time.

Table 5 shows the running timeandaccuracyofHybridEcc.
In comparison with ECC, HybridEcc shows a trade-off
between the precision and efficiency. On Twitter, HybridEcc
uses longer running time to achieve a high accuracy (higher
than 96%). On Indochina, HybridEcc performs well both in
terms of accuracy and running time. OnYoutube and Lastfm,
the running time ofHybridEcc is significantly lower than that
of ECC while the accuracy is below 66%. HybridEcc has its
accuracy varying dramatically on different graphs and thus
fails in providing stable and reliable estimations.

The performance of kBFSEcc is highly dependent on a
key parameter of k, and we show the accuracy of kBFSEcc
in Fig. 27 and running time in Fig. 28 with k varying from 1
to 214 = 16,384. Note that, in order to eliminate the impact
of randomness, we used the same random seed for different
values of k. Thismeans that the sampled node set S of Phase 1
(see Sect. 5) of a smaller k is a subset of that of a larger k.

Figure 27 shows the accuracy of kBFSEcc. On 2 out of
4 graphs, kBFSEcc achieves 100% accuracy with a small k:
k = 24 on Youtube, k = 28 on Indochina. In contrast, on
Twitter, it requires a large k = 214 to reach 100% accuracy
while it never achieves 100% accuracy on Lastfm. A weird
fluctuation of the accuracy of kBFSEcc has been observed.
Note that this phenomena is random-seed independent—
similar phenomena can be observed under other random
seeds. On all four graphs, an increase of k can dramatically
reduce the accuracy. For example, the accuracy drops from
95.59% to 39.01% on Lastfm when k is increased from 23 to
24. In this sense, kBFSEcc still needs analysis on the relation-

123

Eccentricities on small-world networks 787

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

20 21 22 23 24 25 26 27 28 29 210211212213214

k

Accuracy (%)

(a) Twitter

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

20 21 22 23 24 25 26 27 28 29 210211212213214

k

Accuracy (%)

(b) Youtube

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

20 21 22 23 24 25 26 27 28 29 210211212213214

k

Accuracy (%)

(c) Lastfm

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

20 21 22 23 24 25 26 27 28 29 210211212213214

k

Accuracy (%)

(d) Indochina

Fig. 27 Testing the accuracy of kBFSEcc

kBFSEcc ECC

10-2

10-1

100

101

102

103

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214

k

Time Cost (s)

(a) Twitter

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214

k

Time Cost (s)

(b) Youtube

10-1

100

101

102

103

104

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214

k

Time Cost (s)

(c) Lastfm

100

101

102

103

104

105

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214

k

Time Cost (s)

(d) Indochina

Fig. 28 Testing the running time of kBFSEcc and ECC

Table 4 Testing ECC on road networks

Dataset n m r d Labeling (s) RefPool (s) Eccentricity (s) Total (s) BoundEcc(s)

Luxembourg 114,599 119,666 669 1337 5.17 0.38 104.1 109.65 30.06

Usroads 126,146 161,950 309 617 39.73 0.46 3894.79 3934.98 161.56

RoadNetPA 1,087,562 1,541,514 402 794 887.95 4.96 – – 8789.47

Table 5 Dataset description and
the results of HybridEcc

Dataset n m r d ECC (s) HybridEcc

Time (s) Accuracy

Twitter 81,306 1,342, 296 4 7 40.1 89.0 99.2%

Youtube 1,134, 890 2,987, 624 12 24 89.5 1.8 51.4%

Lastfm 1,191, 805 4,519, 330 5 10 1733.8 110.3 65.9%

Indochina 7,320, 539 149,054, 854 22 43 5900.33 67.24 99.9%

ship between k and the accuracy to establish the reliability
of the estimation.

Figure 28 shows the running time of kBFSEcc that
increases linearly with k. In general, kBFSEcc reaches a high
accuracywithin 10%of the running timeofECC. In particular,
on Indochina, kBFSEcc reached 100% accuracy 17.5× times
faster than ECC. However, this superiority is not guaranteed:
when ECC completed its computation on Twitter (k = 28),
kBFSEcc can only achieve an accuracy of 93.10%. In conclu-
sion, in comparison with ECC, kBFSEcc provides a faster yet
less reliable estimation on the eccentricity distribution.

H Corner case on road networks

We show the applicability of our algorithm by conduct-
ing experiments on road networks whose diameters are
large. Three road networks Luxembourg,Usroads, andRoad-
NetPA were used (downloaded from Network Repository7).
Tables 4, 5 show the comparison of ECC and BoundEcc on
road networks. ECC is slower than BoundEcc in all three
graphs; ECC cannot finish the computation within one day
on RoadNetPA. Since our algorithm is highly dependent on
the features of small-world networks, it is not applicable to
graphs with large diameters.

7 http://networkrepository.com/networks.php.

123

http://networkrepository.com/networks.php

788 W. Li et al.

I Detailed explanation of PLL

Algorithm 7 illustrates the main steps of the PLL approach. In
iteration i , node vi performs pruned BFS (Lines 1–4). When
vi visits a node u (Line 5), we first check whether the current
labels S can answer the distance between vi and u. If so,
u is pruned and we stop the traversal from u (Lines 6–7).
Otherwise, (vi , dist(vi , u)) is inserted into S(u) (Line 8).
Moreover, we continue BFS from u by adding the neighbors
of u into the queue Q (Lines 9–12). Finally, the total set
S = {S(v)|v ∈ V } is returned as the answer PLL (Line 13).

J Additional experimental results

This section shows the results on the graphs apart from
Slashdot, Twitter, DBLP, andWiki-talk in the following four
experiments.

– Exp-2: Testing ECC. Figure 29 shows the performance of
ECC under a varying number k of reference nodes.

Algorithm 7: The PLL Approach
Input: Graph G(V , E)

Output: The index PLL
1 for i = 1, 2, · · · , n do
2 Q ← a queue with only one element vi ;
3 dist(vi) ← 0 and dist(vi) ← ∞,∀v ∈ V \ vi ;
4 while Q �= ∅ do
5 u ← Q.pop();
6 if Query(vi , u, S) ≤ dist(u) then
7 continue;

8 Insert (vi , dist(u)) into S(u);
9 for w ∈ N (u) do

10 if dist(w) = ∞ then
11 dist(w) ← dist(u) + 1;
12 Q.push(w);

13 return {S(v)|v ∈ V }

– Exp-3: Testing ECC-LS. Figure 30 shows the processing
time when varying the number k of reference nodes. Fig-
ure 31 shows the number of PLL queries for ECC and
ECC-LS.

– Exp-5: Testing distance to reference nodes Figure 32
shows the distribution of the distance λ0(u) from a node

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(a) Brightkite

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(b) Epinions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(c) Gowalla

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32

T
im

e
C

os
t (

s)
Reference Nodes

RefPool
Eccentricity

(d) Youtube

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(e) Lastfm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(f) AstroPh

 0

 0.05

 0.1

 0.15

 0.2

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(g) CondMat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(h) HepPh

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(i) Askubuntu

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(j) Mathoverflow

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(k) Superuser

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(l) Wiki-temporal

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(m) Skitter

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(n) Google

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(o) In

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

RefPool
Eccentricity

(p) Indochina

Fig. 29 Testing ECC (varying # reference nodes)

123

Eccentricities on small-world networks 789

10-3

10-2

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(a) Brightkite

10-2

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(b) Epinions

10-3

10-2

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(c) Gowalla

100

101

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(d) Youtube

102

103

104

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(e) Lastfm

10-2

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)
Reference Nodes

ECC
ECC-LS

(f) AstroPh

10-2

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(g) CondMat

10-2

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(h) HepPh

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(i) Askubuntu

10-2

10-1

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(j) Mathoverflow

10-1

100

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(k) Superuser

100

101

102

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(l) Wiki-temporal

100

101

102

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(m) Skitter

100

101

102

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(n) Google

100

101

102

103

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(o) In

102

103

104

1 2 4 8 16 32

T
im

e
C

os
t (

s)

Reference Nodes

ECC
ECC-LS

(p) Indochina

Fig. 30 Testing ECC-LS (processing time for Eccentricity)

104

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(a) Brightkite

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(b) Epinions

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(c) Gowalla

106

107

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(d) Youtube

108

109

1010

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(e) Lastfm

104

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(f) AstroPh

104

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(g) CondMat

104

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(h) HepPh

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(i) Askubuntu

104

105

106

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(j) Mathoverflow

105

106

107

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(k) Superuser

107

108

109

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(l) Wiki-temporal

106

107

108

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(m) Skitter

106

107

108

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(n) Google

106

107

108

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(o) In

107

108

109

1 2 4 8 16 32

P

LL
 Q

ue
rie

s

Reference Nodes

ECC
ECC-LS

(p) Indochina

Fig. 31 Testing ECC-LS (# PLL queries)

123

790 W. Li et al.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

Distance

(a) Brightkite

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5 6 7

P
er

ce
nt

ag
e

Distance

(b) Epinions

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

0 1 2 3 4 5 6 7

P
er

ce
nt

ag
e

Distance

(c) Gowalla

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

0 1 2 3 4 5 6 7 8 9 10 11 12

P
er

ce
nt

ag
e

Distance

(d) Youtube

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4

P
er

ce
nt

ag
e

Distance

(e) Lastfm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5 6 7
P

er
ce

nt
ag

e
Distance

(f) AstroPh

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6 7

P
er

ce
nt

ag
e

Distance

(g) CondMat

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

Distance

(h) HepPh

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4 5

P
er

ce
nt

ag
e

Distance

(i) Askubuntu

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4

P
er

ce
nt

ag
e

Distance

(j) Mathoverflow

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4 5

P
er

ce
nt

ag
e

Distance

(k) Superuser

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4 5

P
er

ce
nt

ag
e

Distance

(l) Wiki-temporal

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

0 1 2 3 4 5 6 7 8 9 10111213141516171819

P
er

ce
nt

ag
e

Distance

(m) Skitter

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
er

ce
nt

ag
e

Distance

(n) Google

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

0 1 2 3 4 5 6 7 8 9 101112131415161718192021

P
er

ce
nt

ag
e

Distance

(o) In

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 1 2 3 4 5 6 7 8 9 101112131415161718192021

P
er

ce
nt

ag
e

Distance

(p) Indochina

Fig. 32 Testing distribution of distance to reference nodes

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(a) Brightkite

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(b) Epinions

 2.1
 2.15
 2.2

 2.25
 2.3

 2.35
 2.4

 2.45
 2.5

 2.55
 2.6

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(c) Gowalla

 2.55
 2.6

 2.65
 2.7

 2.75
 2.8

 2.85
 2.9

 2.95
 3

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(d) Youtube

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(e) Lastfm

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(f) AstroPh

 2.5
 2.6
 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(g) CondMat

 2.6
 2.65

 2.7
 2.75

 2.8
 2.85

 2.9
 2.95

 3
 3.05

 3.1

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(h) HepPh

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(i) Askubuntu

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(j) Mathoverflow

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(k) Superuser

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(l) Wiki-temporal

 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4
 3.5
 3.6
 3.7

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(m) Skitter

 3.2
 3.3
 3.4
 3.5
 3.6
 3.7
 3.8
 3.9

 4
 4.1
 4.2

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(n) Google

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(o) In

 4.2

 4.3

 4.4

 4.5

 4.6

 4.7

 4.8

 4.9

1 2 4 8 16 32

A
vg

 D
is

ta
nc

e

Reference Nodes

(p) Indochina

Fig. 33 Testing average distance to reference nodes

123

Eccentricities on small-world networks 791

Lemma 19 Lemma 20 Lemma 21 Cb’

0

100

101

102

103

104

105
number of nodes

(a) Brightkite
0

100

101

102

103

104
number of nodes

(b) Epinions
0

100

101

102

103

104

105
number of nodes

(c) Gowalla
0

100

101

102

103

104

105

106
number of nodes

(d) Youtube

0

100

101

102

103

104

105

106
number of nodes

(e) Lastfm
0

100

101

102

103

104
number of nodes

(f) AstroPh
0

100

101

102

103
number of nodes

(g) CondMat
0

100

101

102

103

104
number of nodes

(h) HepPh

0

100

101

102

103

104

105
number of nodes

(i) Askubuntu
0

100

101

102

103

104
number of nodes

(j) Mathoverflow
0

100

101

102

103

104

105
number of nodes

(k) Superuser
0

100

101

102

103

104

105

106
number of nodes

(l) Wiki-temporal

0

100

101

102

103

104

105

106
number of nodes

(m) Skitter
0

100

101

102

103

104

105

106
number of nodes

(n) Google
0

100

101

102

103

104

105

106
number of nodes

(o) In
0

100

101

102

103

104

105

106
number of nodes

(p) Indochina

Fig. 34 Testing the average number of nodes in each step of ECC-DY for edge insertion

u to its reference node z. Figure 33 illustrates the average
distance of a node to its nearest reference node.

– Exp-8: Rule-effectiveness for edge insertion. Figure 34
shows the number of nodes pruned by each of Lem-
mas 19–21 and the number of nodes in Cb′

.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estima-
tion of diameter and shortest paths (without matrix multiplication).
SIAM J. Comput. 28(4), 1167–1181 (1999)

2. Akiba, T., Iwata, Y., Kawata, Y.: An exact algorithm for diame-
ters of large real directed graphs. In: International Symposium on
Experimental Algorithms, pp. 56–67. Springer, Berlin (2015)

3. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In: Pro-
ceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pp. 349–360. ACM, New York (2013)

4. Almeida, P., Baquero, C., Cunha, A.: Fast distributed computation
of distances in networks. In: 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pp. 5215–5220. IEEE, New York
(2012)

5. Bisenius, P., Bergamin, E., Angriman, E., Meyerhenke, H.: Com-
puting top-k closeness centrality in fully-dynamic graphs. In: 2018
Proceedings of the TwentiethWorkshop onAlgorithmEngineering
and Experiments (ALENEX), pp. 21–35. SIAM (2018)

6. Borassi, M., Crescenzi, P., Habib, M., Kosters, W.A., Marino, A.,
Takes, F.W.: Fast diameter and radius bfs-based computation in
(weakly connected) real-world graphs: With an application to the

six degrees of separation games. Theoret. Comput. Sci. 586, 59–80
(2015)

7. Chan, T.M.: All-pairs shortest paths for unweighted undirected
graphs in o (mn) time. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm, pp. 514–523.
Society for Industrial and Applied Mathematics (2006)

8. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan,
R.E.,Williams,V.V.: Better approximation algorithms for the graph
diameter. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1041–1052. Society for
Industrial and Applied Mathematics, Philadelphia (2014)

9. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic
all pairs shortest path algorithms. ACMTrans. Algorithm. (TALG)
2(4), 578–601 (2006)

10. Fujiwara, Y., Onizuka, M., Kitsuregawa, M.: Real-time diameter
monitoring for time-evolving graphs. In: International Conference
on Database Systems for Advanced Applications, pp. 311–325.
Springer, Berlin (2011)

11. Gaston, M.E., Kraetzl, M., Wallis, W.D.: Using graph diameter
for change detection in dynamic networks. Australas. J. Comb. 35,
299–311 (2006)

12. Guare, J.: Six Degrees of Separation: A Play. Vintage, New York
(1990)

13. Henderson, K.: Opex: Optimized eccentricity computation
in graphs. Technical report, Lawrence Livermore National
Lab.(LLNL), Livermore, CA (2011)

14. Johnson, D.B.: Efficient algorithms for shortest paths in sparse
networks. J. ACM (JACM) 24(1), 1–13 (1977)

15. Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness cen-
trality for dynamically changing social networks. In: Proceedings
of the 2013 IEEE/ACM International Conference on Advances in

123

792 W. Li et al.

Social Networks Analysis andMining, pp. 1250–1258. ACM,New
York (2013)

16. Leskovec, J., Krevl, A.: Snap datasets: Stanford large network
dataset collection (2014). http://snap.stanford.edu/data

17. Li, Z., Sun, D., Xu, F., Li, B.: Social network based anomaly detec-
tion of organizational behavior using temporal pattern mining. In:
Proceedings of the 2017 IEEE/ACM International Conference on
Advances in SocialNetworksAnalysis andMining 2017, pp. 1112–
1119. ACM, New York (2017)

18. Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou,
T.: Vital nodes identification in complex networks. Phys. Rep. 650,
1–63 (2016)

19. Nathan, E., Zakrzewska, A., Riedy, J., Bader, D.: Local community
detection in dynamic graphs using personalized centrality. Algo-
rithms 10(3), 102 (2017)

20. Newman, M.E.J.: A measure of betweenness centrality based on
random walks. Social Netw. 27(1), 39–54 (2005)

21. Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness central-
ity for large-scale social networks. In: International Workshop on
Frontiers in Algorithmics, pp. 186–195. Springer, Berlin (2008)

22. Riondato, M., Upfal, E.: Abra: Approximating betweenness cen-
trality in static and dynamic graphs with rademacher averages.
ACM Trans. Knowl. Discov. Data (TKDD) 12(5), 61 (2018)

23. Roditty, L., Vassilevska Williams, V.: Fast approximation algo-
rithms for the diameter and radius of sparse graphs. In: Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Com-
puting, pp. 515–524. ACM, New York (2013)

24. Sagharichian, M., Langouri, M.A., Naderi, H.: A fast method to
exactly calculate the diameter of incremental disconnected graphs.
World Wide Web 20(2), 399–416 (2017)

25. Sariyüce, A.E., Kaya, K., Saule, E., Çatalyiirek, Ü.V.: Incremental
algorithms for closeness centrality. In: 2013 IEEE International
Conference on Big Data, pp. 487–492. IEEE, New York (2013)

26. Shun, J.: An evaluation of parallel eccentricity estimation algo-
rithms on undirected real-world graphs. In: Proceedings of the 21th
ACMSIGKDDInternationalConference onKnowledgeDiscovery
and Data Mining, pp. 1095–1104. ACM, New York (2015)

27. Takes, F., Kosters, W.: Computing the eccentricity distribution of
large graphs. Algorithms 6(1), 100–118 (2013)

28. Takes, F.W., Kosters, W.A.: Determining the diameter of small
world networks. In: Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, pp.
1191–1196. ACM, New York (2011)

29. Then, M., Kaufmann, M., Chirigati, F., Hoang-Vu, T.-A., Pham,
K., Kemper, A., Neumann, T., Huy, T.V.: The more the merrier:
efficient multi-source graph traversal. Proc. VLDB Endow. 8(4),
449–460 (2014)

30. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-
world’networks. Nature 393(6684), 440 (1998)

31. West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice
Hall, Upper Saddle River, NJ (1996)

32. Williams, R.: Faster all-pairs shortest paths via circuit complexity.
In: Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, pp. 664–673. ACM, New York (2014)

33. Yen, C.-C., Yeh, M.-Y., Chen, M.-S.: An efficient approach to
updating closeness centrality and average path length in dynamic
networks. In: 2013 IEEE 13th International Conference on Data
Mining, pp. 867–876. IEEE, New York (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://snap.stanford.edu/data

	Eccentricities on small-world networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Pair-wise shortest distance

	3 Eccentricity computation
	3.1 The state of the art
	3.2 Problem analysis
	3.3 Exact eccentricity computation for a node
	3.3.1 Computing ecc(x) under a fixed reference node
	3.3.2 Reference-node pool

	3.4 Bound update optimization
	3.4.1 Iterative update
	3.4.2 Local spread
	3.4.3 Putting all parts together

	4 Eccentricity maintenance
	4.1 Pair-wise distances affected by edge updates
	4.2 Scope the maintenance dirty nodes
	4.3 Refine the eccentricity update
	4.3.1 Update eccentricities upon an edge deletion
	4.3.2 Update eccentricities upon an edge insertion
	4.3.3 Eccentricity maintenance

	5 Related work
	5.1 Eccentricity computation
	5.2 Eccentricity maintenance

	6 Experiments
	6.1 Eccentricity computation
	6.2 Eccentricity maintenance

	7 Conclusions
	Acknowledgements
	A The proof of Lemma 4
	B The proof of Lemma 5
	C The proof of Lemma 9
	D The proof of Lemma 10
	E The proof of Lemma 13
	F The proof of Lemma 14
	G Comparison with approximate methods
	H Corner case on road networks

	I Detailed explanation of PLL

	J Additional experimental results
	References

