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Abstract Distance labeling approaches are widely

adopted to speed up the online performance of short-

est distance queries. The construction of the distance

labeling, however, can be exhaustive especially on big

graphs. For a major category of large graphs, small-

world networks, the state-of-the-art approach is Pruned

Landmark Labeling (PLL). PLL prunes distance labels

based on a node order and directly constructs the

pruned labels by performing breadth-first searches in

the node order. The pruning technique, as well as the in-

dex construction, has a strong sequential nature which

hinders PLL from being parallelized. It becomes an ur-

gent issue on massive small-world networks whose in-

dex can hardly be constructed by a single thread within

a reasonable time. This paper first scales distance la-

beling on small-world networks by proposing a Paral-

lel Shortest-distance Labeling (PSL) scheme. PSL in-

sightfully converts the PLL’s node-order dependency

to a shortest-distance dependence, which leads to a

propagation-based parallel labeling in D rounds where

D denotes the diameter of the graph. To further scale

up PSL, it is critical to reduce the index size. This paper

proposes effective index compression techniques based

on graph properties as well as label properties; it also

explores best practices in using betweenness-based node

order to reduce the index size. The efficient between-

ness estimation of the graph nodes proposed may be

of independent interest to graph practitioners. Exten-

sive experimental results verify our efficiency on billion-
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scale graphs, near-linear speedup in a multi-core envi-

ronment, and up to 94% reduction in the index size.

Keywords Shortest Distance; 2-hop Labeling;

Betweenness; Parallelism; Compression; Ordering

1 Introduction

Given a graph G, a shortest distance query q(s, t) re-

ports a minimized length of an s-t path on G. It is a

fundamental primitive as either a main function or a

building block of applications such as geographic nav-

igation, Internet routing, socially tenuous group find-

ing [41], influential community searching [29] and event

detection [40]. Many of these applications cannot afford

frequent online distance computations, and therefore, 2-

hop labeling [17] and its variations prevail as indexing

techniques.

The index size of 2-hop labeling, however, can be

quadratic to the number n of the nodes in the graph.

For each node v, 2-hop labeling selects a set of nodes

as hubs and tags v with its distances to its hubs as

labels. A query q(s, t) minimizes, over all hubs r shared

by s and t, the 2-hop distances from s to t via r, i.e.,

dist(s, r) + dist(r, t). To report a precise distance, the

shared hubs of s and t must hit — have a common

node with — a shortest path between s and t. Such a

requirement over all pairs, s and t, of nodes is called

the 2-hop cover constraint. A label set that satisfies the

2-hop cover constraint can have a cardinality quadratic

to n, especially on dense graphs. For example, a clique

necessitates Ω(n2) labels.

Finding a global minimum index size of 2-hop label-

ing, unfortunately, is NP-hard [17]. A local minimum,

instead, can be reached by iteratively pruning redun-
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dant labels1. A label of a node v is redundant if the

remaining labels in the label set still satisfy the 2-hop

cover constraint. The pruning technique, however, has a

strong sequential nature — pruning one label will affect

the redundancy of another label. Consider two nodes u

and v on the same shortest path between two nodes s

and t. The moment when both s and t have the hub

set of {u, v}, all labels on s and t are redundant. After

pruning the label on s with the hub u, however, both

labels on s and t with the hub v become critical. Due to

such a dependency, the order of the pruning has a great

influence on the pruning outcome and effectiveness.

The optimization of the pruning order is based on

graph properties. For example, the planarity and hi-

erarchical structure of road networks have been well

explored to reach a scalable solution (see [33] as an

entrance). For a major category of real graphs, small-

world [43,45] networks, the state-of-the-art approach is

Pruned Landmark Labeling (PLL) [4].

The key to PLL’s success on small-world networks

is to encode the highly clustered topology into a node

order and construct/prune labels strictly following the

node order.

1. PLL prunes labels based on a node order that pri-

oritizes the high-centrality2 nodes. The label on a

node s to its hub t is pruned if their distance can be

answered by labels from s and t to a higher ranked

hub. Therefore, a high-centrality hub r is able to

prune labels along a large number (due to the clus-

tered topology of the graph) of shortest paths hit

by r.

2. PLL prunes a majority of labels in an implicit

way. In other words, PLL constructs pruned labels

directly as opposed to following a construct-and-

then-prune paradigm. This is done by performing

a pruned Breadth-First-Search (BFS) sourced from

a hub r with the assignment of r sequentially fol-

lowing the node order.

It is worth noting that the index construction of PLL
is highly node-order dependent: the pruning procedure

in the BFS of hub r is dependent on the pruned labels

constructed for the predecessor, in the node order, of

r. Such a strong sequential nature of PLL hinders its

parallelization.

On the other hand, the index time becomes an ur-

gent issue for massive small-world networks whose in-

dex can hardly be constructed by a single thread within

1 In many labeling approaches, the labels are pruned in an
implicit way — a label will not be generated if pruning it is
guaranteed to be safe.
2 The centrality can be defined with degree, closeness and

betweenness [31].

a reasonable time. For example, for the graph SINA3

with 58 million nodes and 261 million edges, PLL can-

not finish the indexing within 3 days. The same situa-

tion applies to UK4 which has 77 million nodes and 2.9

billion edges.

This paper focuses on the scalability issue of the 2-

hop distance labeling of small-world networks. We pro-

pose non-trivial algorithms to parallelize the indexing

process of PLL and further reduce the index size. The

scalability of our proposed approach is confirmed by ex-

tensive experiments. Our contributions are summarized

as follows.

– We propose a Parallel Shortest distance Labeling

approach PSL upon a novel and insightful conver-

sion from the node-order label dependency of PLL to

a shortest-distance label dependency. This conver-

sion leads to a non-trivial propagation based label-

ing process. The algorithm completes in D rounds

where D denotes the diameter of the graph — small

for small-world networks. The resulting labels are

identical to those constructed in the sequential al-

gorithm of PLL.
– We provide two compression techniques to reduce

the index size. The first one is based on graph prop-

erties and is thus applicable to all 2-hop labeling

approaches; the second one explores the property of

PSL, which leads to significant index reduction.

– We further explore best practices in using

betweenness-based node order to reduce the index

size. Given the quadratic time (infeasible for big

graphs) in computing exact betweenness, we intro-

duce k-betweenness — betweenness on paths with

no more than k hops — to allow i) an efficient

sampling-based approximation and ii) a holistic op-

timization of the node order for index reduction.

The novel and efficient sampling-based approximate

computation of node betweenness is the key to this

reduction and may be of independent interest.

– We conduct extensive experiments to verify the per-

formance of the proposed techniques. In a single-

core environment, our index reduction technique

dramatically shrinks the index size and improves

the index time. In a multi-core environment, our

PSL approach shows near-linear speed-up in paral-

lelism. The proposed techniques jointly enable the

index construction on networks with billion scale

offline, which verifies the efficiency of the proposed

approach.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the state-of-the-art 2-hop labeling ap-

3 http://networkrepository.com/index.php
4 http://law.di.unimi.it



Distance Labeling: on Parallelism, Compression, and Ordering 3

proach on small-world networks. Section 3 devises a

distance labeling algorithm. Section 4 introduces two

index reduction techniques. Section 5 computes the

betweenness-based node order by proposing novel ap-

proximation algorithms, which further reduced the in-

dex size. Section 6 summarizes related works. Section 7

experimentally evaluates our proposed approaches on

real small-world networks and Section 8 concludes the

paper.

2 Preliminary

2.1 Shortest Distance Problem

Let G be an unweighted graph with vertex set VG and

edge set EG. Denote by n and m the number |VG| of
nodes and |EG| of edges in the graph, respectively. For

each node v ∈ VG, denote by N(v) = {u|(u, v) ∈ EG}
the neighbors of v and deg(v) = |N(v)| the degree

of node v in G. We mainly use undirected graphs in

the paper; Appendix B extends our techniques to di-

rected graphs. Without loss of generality, we assume a

connected graph G. Our techniques can be extended to

disconnected graphs easily.

Let p(s, t) = {v1, v2, · · · , vk} with s = v1 to t = vk.

p is a path on G if, for ∀1 ≤ i ≤ k, edge (vi, vi+1) ∈ EG.

For an i ∈ [1, k], denote by p(s, t) = p(s, vi) + p(vi, t)

the concatenation of two paths. The length of a path

p(s, t) is the number of edges on the path, i.e., |p(s, t)| =
k − 1. The shortest path between s and t is the path

with shortest length. The shortest length is the length

of the shortest path, denoted as distG(s, t). Given a

graph G, a point-to-point distance query q(s, t)

with s, t ∈ V returns the shortest distance distG(s, t)

between s and t. When the context is clear, we use

V,E,N(v), deg(v), dist(s, t) to represent the node set,

edge set, neighbor set of v, the degree of v and the

shortest distance from s to t, respectively, for simplic-

ity.

V1

V9

V10 V8

V5
V12

V11

V4

V2

V6

V7

V3

Fig. 1 Graph G

Example 1 Fig. 1 shows a network G = (V,E) with

12 nodes and 23 edges. The neighbors of v6 are

N(v6) = {v2, v3, v7}. Two paths between v4 and v6
are p1(v4, v6) = {v4, v3, v6}, p2(v4, v6) = {v4, v1, v2, v6}.
The shortest path p1(v4, v6) has the shortest length 2.

2.2 2-Hop Labeling for Distance Queries

To efficiently process point-to-point distance queries, 2-

hop labeling approach [17] precomputes the distances

from each node to preselected hub nodes and uses the

2-hop distances via hubs to answer a query. Below we

introduce the 2-hop labeling approach that has been

slightly updated [4,20,26] to enable label reduction.

A labeling function L maps each node v ∈ V to a

label set L(v). L(v) consists of a set of label entries

where each entry is a key/value pair (u, dist(v, u)) with

a node u ∈ V and the distance between v and u. The

hub nodes of v are the projections of L(v) on the key,

i.e., C(v) = {u|(u, dist(v, u)) ∈ L(v)}. C is called the

hub function of L. {L(v)|v ∈ V } is a 2-hop labeling

if L satisfies the 2-hop cover constraint below.

Definition 1 (2-hop Cover Constraint [17]) A la-

beling function L satisfies the 2-hop cover constraint if

for any node pair s and t, C(s) ∩ C(t) shares a node

with a shortest path from s to t.

For a 2-hop labeling L, the label size |L(v)| of a
node v is the number of entries in L(v). Denote by δ

the largest label size of G, i.e., δ = maxv∈V (|L(v)|).
Given a 2-hop labeling L, a distance query q(s, t) is

answered with Query(s, t, L) defined below.

Query(s, t, L) = min
u∈C(s)∩C(t)

dist(s, u) + dist(u, t)

Lemma 1 For a 2-hop labeling L that satisfies the 2-

hop cover constraint, Query(s, t, L) = dist(s, t).

Proof See Appendix A.

Assume that the label entries in each label set are

stored in the ascending order of the key. The online cost

of answering q(s, t) is on retrieving and merging the en-

tries in L(s) and L(t). Thus, the query time complexity

is O(|L(s)|+ |L(t)|).

2.3 Pruned Landmark Labeling Approach

Pruned Landmark Labeling Approach (PLL) is the

state-of-the-art 2-hop labeling approach on small-world

networks.

Node Order. The effectiveness of PLL heavily relies

on a total order r on V , called the node order. For two

nodes u and v, if r(u) > r(v), we say u has a higher
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rank than v. With the node order defined, we can safely

rename the nodes such that

r(v1) > r(v2) > · · · > r(vn).

A highly prevalent node order is degree-based: the

order r prioritizes nodes with higher degrees and breaks

ties based on original node ID. Specifically, for any two

nodes v and v′, r(v) > r(v′) if

– deg(v) > deg(v′) or

– deg(v) = deg(v′) and ID(v) > ID(v′).

This paper uses degree-based node order by default un-

less another node order is specified in the context.

Example 2 We rank the nodes in Fig. 1 according to

their degrees. When two nodes have the same degree,

the tie is broken by the original ID of the node. We re-

order the nodes such that r(v1) > r(v2) > · · · > r(v12).

PLL with Pruned BFS. Algorithm 1 shows the

process of PLL. Given a graph G and a node order

v1, v2, · · · , vn, PLL constructs a pruned 2-hop labeling

LPLL in n rounds (Line 1). In the i-th round, i ∈ [1, n],

PLL performs a pruned BFS search (a standard BFS

search apart from Line 6-8) sourced from vi. To prune

the BFS, PLL tests if the existing index can already

report the distance between vi and a node u (Line 6).

If yes, u will neither be labeled nor expanded in this

round (Line 7); otherwise, a label with hub vi will be

added to u (Line 8) and u will be expanded right away

(Line 9-12). Obviously, on the nodes that are either

unexpanded or unreached, the labels with hub vi are

conceptually pruned.

Lemma 2 ([4]) The index of PLL satisfies the 2-hop

cover constraint.

The runtime of PLL for labeling large graphs can be

very long. As shown in Line 6 of Algorithm 1, the query

function to calculate the distance between vi and u (i.e.,

Q(vi, u, L
PLL)) takes O(δ) time. The number of func-

tion calls is Σu∈V Σr∈C(u)deg(u), which may reach δm

in the worst case. This leads to a rather high time cost

in terms of function calls for PLL, which is confirmed by

our extensive empirical studies: PLL takes more than 3

days for labeling the graph SINA with 58 million nodes

and 261 million edges.

Remarks. Note that PLL can work with any total or-

der on V . Since there are |V |! different total orders on V

(the number of permutations of nodes in V ), the selec-

tion of the node order in optimizing the space and/or

temporal efficiency of PLL remains an open problem.

It has been suggested by existing literature [31] that

Algorithm 1: PLL

Input: Graph G(V,E)
Output: The index LPLL

1 for i = 1, 2, · · · , n do
2 Q← a queue with only one element vi;
3 dist(vi)← 0 and dist(v)←∞, ∀v ∈ V \ vi;
4 while Q ̸= ∅ do
5 u← Q.pop();

6 if Query(vi, u, LPLL) ≤ dist(u) then
7 continue;

8 LPLL(u)← LPLL(u) ∪ {(vi, dist(u))};
9 for w ∈ N(u) do

10 if dist(w) =∞ then
11 dist(w)← dist(u) + 1;
12 Q.push(w);

13 return LPLL ;

betweenness-centrality-based node order may be bet-

ter than degree-based node order; however, improving

PLL based on betweenness centrality faces the two chal-

lenges listed below.

– The computation of the exact betweenness central-

ity is as expensive as computing pairwise shortest

distances, which is unaffordable on large graphs.

– The best practice of optimizing PLL based on ap-

proximate betweenness, that is, cost-effectively esti-

mating the betweenness to reduce the index size of

PLL is yet to be explored.

Part of this paper will dedicate to exploring between-

ness centrality in forming a better distance index.

Specifically, Section 2.4 will introduce the definition of

betweenness centrality; Section 5 will propose a better
algorithm for distance index construction based on a

novel sampling-based betweenness centrality computa-

tion.

2.4 Node Order: Betweenness Centrality

This paper actively explores the computation and ap-

plication of betweenness-centrality-based node order in

improving the efficiency of distance indexing. This sec-

tion introduces betweenness centrality related concepts.

Given a graph G(V,E) and two nodes s, t ∈ V , de-

note by σs,t the number of different shortest paths be-

tween s and t (note that two different shortest paths

between s and t can overlap on some nodes). Denoted

by σs,t(v), for ∀v ∈ V , the number of, among all the s-t

shortest paths, shortest paths through v. If s = t, then

σs,t = 1; if v = s or v = t, then σs,t(v) = 0. We now

define, for each node v ∈ V , its betweenness bc(v).
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Definition 2 (Betweenness) Given graph G(V,E),

for ∀v ∈ V , betweenness centrality

bc(v) =
∑

s,t∈V

σs,t(v)

σs,t
.

Example 3 For node pair v3, v10 in Fig. 1, there

are two shortest paths between them: p1(v3, v10) =

{v3, v2, v10}, and p2(v3, v10) = {v3, v1, v10}. Then,

σv3,v10 = 2. Since only p1(v3, v10) passes through v2,

then σv3,v10(v2) = 1. σv3,v10(v9) = 0 because there is no

v3-v10 shortest path through v9.

The betweenness centrality costs quadratic [13] time

to compute, which is expensive for big graphs. For effi-

ciently estimating betweenness centrality, we also resort

to k-betweenness [14], a variation of betweenness cen-

trality. Given a positive integer k, k-betweenness is de-

fined for each node v ∈ V by considering only shortest

paths whose lengths are no more than k.

Definition 3 (k-Betweenness [14]) Given a graph

G(V,E) and an integer k ≥ 0, the k-betweenness

kbc(v) =
∑

s,t∈V,dist(s,t)≤k

σs,t(v)

σs,t
, for each v ∈ V.

k-betweenness is a meaningful approximation of the be-

tweenness centrality since k-betweenness is exactly the

betweenness centrality when k approaches the diam-

eter (the longest shortest path) of the graph. It was

proposed since paths of long distances are less likely to

form new edges, e.g., friendships in a social network [12]

or a joint work in a collaboration network.

Example 4 If k is set to 2, then node pair v10, v12 con-

tributes nothing to k-betweenness of other nodes since

their shortest distance dist(v10, v12) = 3.

kbc(v) is an aggregation over all the shortest paths

of lengths no larger than k. To simplify the discussions

on the computation of kbc(v), we introduce the concept
of partial k-betweenness kbcs(v) which is the portion of

kbc(v) contributed by paths starting from node s.

Definition 4 (Partial k-Betweenness) Given graph

G(V,E), an integer k ≥ 0 and a node s ∈ V ,

for ∀v ∈ V, kbcs(v) =
∑

t∈V,dist(s,t)≤k

σs,t(v)

σs,t
.

Note that k-betweenness can be easily derived from

partial k-betweenness

kbc(v) = Σs∈V kbcs(v).

Therefore, the computation of kbc(v) boils down to

computing kbcs(v) for each node s of G. According to

the definition of kbcs(v), it can be observed that kbcs(v)
becomes zero if v is not included in any shortest path

sourced at s with ≤ k length; thus, we have Lemma 3.

Lemma 3 If dist(s, v) ≥ k or dist(s, v) = 0 then

kbcs(v) = 0.

Proof If dist(s, v) = 0, kbcs(v) = 0 since σv,t(v) = 0 for

any t ∈ V . If dist(s, v) = k, v can only be the end point

of any s-t shortest path p(s, t) with |p(s, t)| ≤ k. Then,

σs,v(v) = 0. If dist(s, v) > k, there is no s-t path via v

with |p(s, t)| ≤ k, and σs,t(v) = 0. Thus, kbcs(v) = 0.

An exact algorithm to compute k-betweenness is

presented in [14]. The basic idea is to perform a graph

traversal sourced from each s ∈ V to compute kbcs(v),
for ∀v ∈ V . Compared to betweenness computation,

calculating k-betweenness only needs to visit nodes

within a distance k to each source, thus improving the

efficiency. However, for small-world graphs, the number

of nodes within distance k (k greater than 2) to each

source may still be large [42], which makes the exact k-

betweenness computation for large graphs undesirable.

3 Parallelized Distance Labeling

Sections 3.1 -3.2 revisit PLL to identify the label proper-

ties and order dependency. Section 3.3 transforms the

order dependency in PLL to distance dependency. By

utilizing the distance dependency, Section 3.4 proposes

a practical approach in constructing the index in par-

allel.

3.1 Label Property

The labels of PLL show an important node-order prop-

erty.

Theorem 1 For any two nodes ∀u, v ∈ V , v is a hub

of u under PLL, i.e., (v, dist(v, u)) ∈ LPLL(u), if and

only if v is the highest ranked node on all the shortest

paths from u to v.

Proof Let S be the set of nodes on all the shortest paths

from u to w. Let w be the highest ranked node in S.

We prove that all nodes in S have w as their hubs

in LPLL by contradiction. Assume that there is a node

z in S such that z does not have a hub of w in LPLL.

Consider the round of Algorithm 1 where the pruned

BFS sourced w is performing. Let L′ be the snapshot of

the PLL label set right before the round begins. Given

that z has no hub of w, then either

– z is explicitly pruned: Query(z, w, L′) = dist(w, z),

or

– z is implicitly pruned: z is not reached since there

is at least a node z′ on the shortest path from

w to z explicitly pruned with Query(z′, w, L′) =

dist(w, z′).
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In either case, it requires a common hub between w and

z (or z′) to produce the query result, which is impossible

since i) z, z′ ∈ S and ii) w has the highest rank in S

and iii) L′ does not include any hub ranked higher than

w. Contradiction.

Since all nodes in S have w as their hubs in LPLL,

we prove the two directions of the theorem in two cases:

1) if w = v, that is, v is the highest ranked node in S,

then v is a hub of u ∈ S and 2) if r(w) > r(v), when

before the pruned BFS sourced from v is performed, w

is already a common hub of u and v. As w is on the

shortest path between u and v, the label with hub v on

u is pruned and not in PLL.

Lemma 4-6 are derived from Theorem 1.

Lemma 4 If v is a hub of u, r(v) > r(u).

Proof Since v has the highest rank on a shortest path

from v to u (Theorem 1), r(v) > r(u).

Lemma 5 For ∀u ∈ V , (u, 0) ∈ LPLL(u).

Proof We make the path as p(u, u) and according to

Theorem 1, (u, 0) will be always inserted to LPLL(u).

Lemma 6 For ∀(u, v) ∈ E, (u, 1) ∈ LPLL(v), if r(u) >

r(v); otherwise,(v, 1) ∈ LPLL(u).

Proof Let p(u, v) be the path with an edge. According

to Theorem 1, the higher ranked node is the hub node.

3.2 Order Dependency

To see the dependency among the labels, we partition

the labels in LPLL according to their hub nodes. Let

v1, v2, · · · , vn be the node order under which label set

LPLL was constructed.

We define two sets with particular meanings. Recall

that PLL has n rounds where the i-th round performs a

pruned BFS sourced from vi. We denote by LPLL
<i (u) the

snapshot of LPLL(u) at the beginning of the i-th round

and by LPLL
i (u) the incremental label of u built in the

i-th round.

Definition 5 (Order Specific Label Set)

LPLL
i (u) = {(vi, dist(vi, u)) ∈ LPLL},

for ∀i ∈ [1, n], u ∈ V . Let LPLL
i =

⋃
u∈V LPLL

i (u).

Definition 6 (Order Partial Label Set)

LPLL
<i (u) = {(vj , dist(vj , u)) ∈ LPLL|j < i},

for ∀i ∈ [1, n + 1], u ∈ V . Let LPLL
<i =

⋃
u∈V LPLL

<i (u).

LPLL
<n+1 = LPLL.

The following lemma shows that the pruning con-

dition in Algorithm 1 leads to an order dependency

among labels.

Lemma 7 (Order Dependency) LPLL
i (u) depends

on LPLL
<i (u). Specifically, L

PLL
i (u) ={

{(vi, dist(vi, u))} Query(vi, u, L
PLL
<i ) > dist(vi, u);

∅ otherwise.

Proof Let S be the set of nodes on the shortest path

from vi to u (including vi and u). Let w be the node

with the highest rank in S. If vi = w, according to

Theorem 1, i) vi is a hub of u and ii) for ∀v ∈ S \ vi,

v is a not a hub of vi, and thus Query(vi, u, L
PLL
<i ) >

dist(vi, u). If r(vi) < r(w), then vi is not a hub of u and

label (w, dist(w, vi)), (w, dist(w, u)) ∈ LPLL
<i and thus

Query(vi, u, L
PLL
<i ) = dist(vi, u).

Lemma 7 shows that LPLL
i (u) depends on LPLL

<i (u)

while LPLL
<i (u) depends on LPLL

i−1(u). Such a convolved

dependency can hardly be removed as long as the labels

are built in the node order.

Example 5 Table 1 illustrates how PLL constructs the

index. A cell at the row of vi and the column of vj
records the order specific label of vi at the j-th round.

In column v1, pruned BFS inserts v1 into LPLL
1 (u),

∀u ∈ V . In column v2, PLL performs pruned BFS

and v2 becomes the hub of {v2, v3, v6, v7, v10} due to

the pruning condition of LPLL
1 = {LPLL

1 (u)|u ∈ V }.
The order dependency in the column v7: partial set

LPLL
<7 =

⋃
i<7,u∈V LPLL

i (u) prunes the labels on all nodes

except on v7.

3.3 Distance Dependency

To break the order dependency in the label con-

struction, consider the pruning condition of Line 6,

Algorithm 1. When Query(vi, u, L
PLL
<i ) = dist(u, vi)

prunes a node label on u, there must be two labels

on u and vi, respectively, to a common hub w such

that dist(u,w) + dist(w, vi) = dist(u, vi). Therefore,

dist(u,w) and dist(w, vi) must be no greater than

dist(u, vi). In other words, all the labels with distances

greater than dist(u, vi) have no effect on the query re-

sult of Query(vi, u, L
PLL
<i ) and the corresponding prun-

ing outcomes.

From the above intuition, we group the label entries

in LPLL based on their label distances. The rearranged

label sets will pave the way to our Parallel Shortest

distance Labeling (PSL) approach (Section 3.4) and are

thus called PSL label sets. Let D be the diameter of the

graph G.
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Table 1 The Index of PLL and PSL

PLL PSL
ID v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 0 1 2
v1 (v1, 0) - - - - - - - - - - - (v1, 0) - -
v2 (v1, 1) (v2, 0) - - - - - - - - - - (v2, 0) (v1, 1) -
v3 (v1, 1) (v2, 1) (v3, 0) - - - - - - - - - (v3, 0) (v1, 1) (v2, 1) -
v4 (v1, 1) - (v3, 1) (v4, 0) - - - - - - - - (v4, 0) (v1, 1) (v3, 1) -
v5 (v1, 1) - - (v4, 1) (v5, 0) - - - - - - - (v5, 0) (v1, 1) (v4, 1) -
v6 (v1, 2) (v2, 1) (v3, 1) - - (v6, 0) - - - - - - (v6, 0) (v2, 1) (v3, 1) (v1, 2)
v7 (v1, 2) (v2, 1) (v3, 1) - - (v6, 1) (v7, 0) - - - - - (v7, 0) (v2, 1) (v3, 1) (v6, 1) (v1, 2)
v8 (v1, 1) - - - (v5, 1) - - (v8, 0) - - - - (v8, 0) (v1, 1) (v5, 1) -
v9 (v1, 1) - - - - - - (v8, 1) (v9, 0) - - - (v9, 0) (v1, 1) (v8, 1) -
v10 (v1, 1) (v2, 1) - - - - - - (v9, 1) (v10, 0) - - (v10, 0) (v1, 1) (v2, 1) (v9, 1) -
v11 (v1, 2) - (v3, 2) (v4, 1) (v5, 1) - - - - - (v11, 0) - (v11, 0) (v4, 1) (v5, 1) (v1, 2) (v3, 2)
v12 (v1, 2) - (v3, 2) (v4, 1) (v5, 1) - - - - - - (v12, 0) (v12, 0) (v4, 1) (v5, 1) (v1, 2) (v3, 2)

Definition 7 (Distance Specific Label Set)

LPSL
d (u) = {(v, dist(v, u)) ∈ LPLL(u)|dist(v, u) = d},

for ∀u ∈ V, d ∈ [1, D]. Let LPSL
d = {LPSL

d (u)|u ∈ V }.

Similarly, the partial label of a node then becomes

the set of label entries with distance less than a certain

distance and is defined in Definition 8.

Definition 8 (Distance Partial Label Set)

LPSL
<d (u) = {(v, dist(v, u)) ∈ LPLL(u)|dist(v, u) < d},

for ∀u ∈ V, d ∈ [1, D+1]. Let LPSL =
⋃

u∈V LPSL(u). In

particular, LPSL(u) = LPSL
<D+1(u).

The equivalence of the index LPLL and the novel

index LPSL is given in Theorem 2.

Theorem 2 LPSL = LPLL.

Proof Since all the label (v, dist(v, u)) in LPLL has

dist(v, u) ≤ D, LPSL includes all labels in LPLL and

has no other labels according to the definition.

Example 6 Table 1 shows a rearrangement of labels in

PLL. A cell with row vi and column j denotes label set

of LPSL
j (vi) — the PLL labels of vi whose distances are

j.

Distance Dependency. Definition 7 and Definition 8

provide us an opportunity in removing the order depen-

dency in the label construction process.

Theorem 3 (Distance Dependency) LPSL
d (u)

depends on LPSL
<d . Specifically, given a node

u, for a node v ∈ V with r(v) > r(u) and

dist(u, v) = d, (v, dist(v, u)) ∈ LPSL
d (u) if and

only if Query(u, v, LPSL
<d ) > d.

Proof Consider a node v with dist(u, v) = d. Denote

by S the set of nodes on the shortest paths from u to v

and let w be the highest ranked node in S. According

to Theorem 1, we have two exclusive cases:

– w = v if and only if v is the hub of u;

– w ̸= v means that

– w is the hub of both u and v, and

– dist(u,w), dist(w, v) < d,

and therefore, Query(u, v, LPSL
<d ) = d.

Therefore, if (v, dist(v, u)) ̸∈ LPSL
d (u), namely, v is not a

hub of u, then w ̸= v, and then Query(u, v, LPSL
<d ) = d.

Besides, if (v, dist(v, u)) ∈ LPSL
d (u), namely, v is a hub

of u, v is the highest ranked node in S and there-

fore, no other node in S can be a hub of v, that is,

Query(u, v, LPSL
<d ) > d.

By transforming the order dependency to distance

dependency, it is possible to complete the index con-

struction in D rounds where D denotes the diameter of

the graph.

Example 7 In Table 1, each row corresponds to the par-

tial label of a node while each column corresponds to

the incremental labels regarding each distance value.

When d = 0, each node add to itself since the dis-

tance between itself is zero. When d = 1, we either add

nodes that are 1-hop away to a node u or prune the

1-hop away nodes. Note that according to Lemma 4,

only higher ranking nodes can be hubs of lower ranking

nodes. When d = 2, we either add nodes that are 2-hop

away to a node u or prune the 2-hop away nodes. For

instance, if u = v11, the node v1 that is 2-hop away is

added into LPSL
2 (v11). But node v8 is pruned since we

can make use of v5, which is less than two hops away

with v8, to prune it.

3.4 The Parallelized Labeling Method

To apply Theorem 3 to generate LPSL
d (u), all the node

pairs with distance equal to d are to be examined which

is also expensive. This section provides a practical al-

gorithm, Parallel Shortest distance Labeling (PSL), to
construct the index LPSL in label propagations.
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Propagation-Based Label Construction. This sec-

tion provides a positive answer to the following ques-

tion: can we build the distance specific label LPSL
d (u) by

gathering the labels of its neighbors, namely, LPSL
d−1(v),

for v ∈ N(u)? We formally show that
⋃

v∈N(u) L
PSL
d−1(v)

is sufficient to create LPSL
d (u) in Lemma 8.

Lemma 8 All the hub nodes of labels in LPSL
d (u) appear

in labels
⋃

v∈N(u) L
PSL
d−1(v) as hub nodes.

Proof We show that if a node is not a hub of any node

v ∈ N(u) in LPSL
d−1(v), then it is not a hub of u in

LPSL
d (u). Let w ̸= u be a hub of u in LPSL

d (u) but is

not a hub of any node v ∈ N(u) in LPSL
d−1(v). Note that

the PLL was built in a BFS search. Consider the round

when the pruned BFS search is sourced from w. Since

w ̸= u and w is a hub of u, there is a shortest path from

w to u such that w is a hub of all nodes on the path. Let

s be the predecessor of u on the shortest path. s ∈ N(v)

and (w, dist(w, s)) ∈ LPLL. Since dist(w, s) = d − 1, w

is a hub of LPSL
d−1(s), contradiction.

Pruning Conditions. From Lemma 8, we can con-

struct LPSL(u) in an iterative way and the initial con-

dition is given in Lemma 5 by inserting u to the label

LPSL
0 (u) as its own hub. However, pouring all nodes in⋃
v∈N(u) L

PSL
d−1(v) directly into LPSL

d (u) produces a large

set of candidate labels. Therefore, we propose two rules

to prune unnecessary label entries.

Lemma 9 A hub w in the label set
⋃

v∈N(u) L
PSL
d−1(v) is

not a hub of u if r(w) < r(u).

Proof Lemma 4.

Lemma 10 A hub w in the label set
⋃

v∈N(u) L
PSL
d−1(v)

is not a hub of u in LPSL
d (v) if Query(w, u, LPSL

<d ) ≤ d.

Proof If Query(w, u, LPSL
<d ) < d, then dist(w, u) < d,

w is not a hub of u with distance dist(w, u) = d. If

Query(w, u, LPSL
<d ) = d, we discuss in two cases.

– dist(w, u) < d, w is not a hub of u with distance d.

– dist(w, u) = d, there is a node z on the shortest

path between w and u with r(z) > r(w). According

to Theorem 1, w is not be a hub of u in LPLL.

Therefore, w is not a hub of u if Query(w, u, LPSL
<d ) ≤ d.

Based on the above pruning rules, we propose our

label propagation function to find the exact LPSL
d (u),

∀u ∈ V .

Denote by Cd(v) the set of hub nodes in label set

LPSL
d (v), for ∀v ∈ V and d ∈ [1, D + 1].

Theorem 4 (Label Propagation Function)

LPSL
d (u) =

⋃
w∈Cd−1(v), for ∀v∈N(u)

LPSL
d (u,w) (1)

where LPSL
d (u,w) ={

∅, if r(w) < r(u) or Query(w, u, LPSL
<d ) ≤ d;

{(w, dist(w, u))}, otherwise.
(2)

Proof Denote by L′ the label set computed from Equa-

tion (1). We show that L′ = LPSL
d (u) in two direc-

tions. Due to the correctness of Lemma 8 and the prun-

ing conditions, the label set LPSL
d (u) ⊆ L′. The follow

parts prove L′ ⊆ LPSL
d (u). Let (w, dist(w, u)) be a la-

bel in L′. Equation (2) shows that r(w) > r(u) and

Query(w, u, LPSL
<d ) > d.

If in LPLL, w is not a hub of u, then according to

Theorem 1, there is a node s that in S — the set of

all nodes in the shortest path between w and u — with

r(s) > r(w) > r(u). Therefore, dist(w, s), dist(s, u) < d

and dist(w, u) ≤ d, and thus, Query(w, u, LPSL
<d ) ≤ d,

contradiction.

Therefore, w is a hub of u in LPLL. Besides, if

dist(w, u) < d, Query(w, u, LPSL
<d ) = dist(w, u) < d,

contradiction. Thus, dist(w, u) = d. Now we have

proved that w is a hub of u in LPLL with dist(w, u) = d,

i.e., w is a hub of u in LPSL
d (u) which completes the

proof.

The PSL Algorithm. Algorithm 2 puts all parts of

PSL together. LPSL
0 (u) is obtained by add u to itself

(Line 1). Then, for each edge, the higher ranked node

v is added into lower ranked node u to form LPSL
1 (u)

according to Lemma 6 (Line 2-4). If LPSL
d−1 is empty —

the path with length d−1 is covered by LPSL
<d−1 —we find

the final index (Line 6). Otherwise, nodes are parallelly

processed to build LPSL
d for d > 1 (Line 7-12): each node

u first finds its superset cand(u) (Lemma 8) (Line 8)

and then, pruning conditions 9-10 apply (Line 10-11).

Entry (w, dist(w, u)) is then added to LPSL
d (u) (Line 11-

12).

Example 8 In Fig. 2(a), each node u ∈ V is added to

LPSL
0 (u) for d = 0. In Fig. 2(b), for each edge (u, v),

v is added to LPSL
1 (u) if r(v) > r(u). For instance,

LPSL
1 (v3) = {(v1, 1), (v2, 1)}, LPSL

1 (v2) = {(v1, 1)},
LPSL
1 (v7) = {(v2, 1), (v3, 1), (v6, 1)}, In Fig. 2(c), for

each node u, hubs in {LPSL
1 (w)|w ∈ N(u)} are candidate

hubs and then added to LPSL
2 (u) if the pass pruning con-

ditions. v6 has three neighbors v2, v3, v7. Then, candi-

date nodes are {v1, v2, v3, v6, v7}. (v1, 2) will be put into
LPSL
2 (v6) since the current index gives the answer∞ and

r(v1) > r(v6). {v2, v3, v6} will be pruned by the cur-

rent index while v7 will be pruned since r(v7) < r(v6).

Therefore, LPSL
2 (v6) = {(v1, 2)}.
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Fig. 2 The execution of PSL from d = 0, d = 1 to d = 2

Algorithm 2: PSL

Input: Graph G(V,E)
Output: The index LPSL

1 Insert (u, 0) into LPSL
0 (u), ∀u ∈ V ;

2 for (u, v) ∈ E do
3 if r(u) > r(v) then Insert (u, 1) into LPSL

1 (v);

4 else Insert (v, 1) into LPSL
1 (u);

5 d← 2;

6 while LPSL
d−1 is not empty do

7 for u ∈ V in parallel do
8 cand(u)← hubs in LPSL

d−1(v), ∀v ∈ N(u);

9 for each node w ∈ cand(u) do
// Pruning Condition Lemma 9

10 if r(w) < r(u) then continue;
// Pruning Condition Lemma 10

11 if Query(w, u, LPSL
<d) ≤ d then continue;

12 Insert (w, d) into LPSL
d (u);

13 d← d+ 1;

14 return LPSL;

Theorem 5 The time complexity of PSL under one

core environment is O(δ2 ·m).

Proof Let LPSL = LPSL
<D+1 = LPLL. For each label in

LPSL(v), it has been collected by each of v’s neighbors

once as candidates (Line 11). For each candidate, a

query (Line 15) is called in O(δ) time. The total cost is

Σv∈V δd(v)× δ = O(δ2m).

4 Index Size Reduction

Parallel index construction reduces the index time while

leaving the index size LPSL = LPLL unchanged. This

section improves the scalability of the PSL by reducing

the index size. Section 4.1 reduces the graph size using

the equivalence relationships among nodes. Section 4.2

optimizes the index size of PSL based on an observation

on the label distribution.

4.1 Equivalence Relation Reduction

We consider the equivalence of two nodes u and v based

on their neighbors. Depending on whether u and v have

an edge, we define two types of equivalence relations.

Definition 9 (Node Equivalence Relations) For

u, v ∈ V ,

– u ≃1 v if N(u) = N(v);

– u ≃2 v if N(u) ∪ {u} = N(v) ∪ {v}.

It can be verified that ≃1 and ≃2 are equivalence rela-

tions. Their reflexive, symmetric and transitive proper-

ties are inherited from the equality operator over node

sets.

Since u ̸∈ N(u), u ≃1 v requires that u and v have

no edge while u ≃2 v requires that u and v must have

an edge.

Each equivalence relation partitions V into disjoint

equivalent classes: the equivalent class of a node v in-

cludes all the nodes that are equivalent to v. We say

an equivalent class is non-trivial if it includes at least

two nodes. Definition 10 obtains nodes in non-trivial

equivalent classes under the two equivalence relations

and Lemma 11 shows that these non-trivial equivalent

classes are disjoint.

Definition 10 Define three vertex sets V1, V2 and V3

with

– V1 = {u ∈ V |there exists v ̸= u such that u ≃1 v}
– V2 = {u ∈ V |there exists v ̸= u such that u ≃2 v}
– V3 = V \ V1 \ V2.

Example 9 In Fig. 3, V1 = {v11, v12} since N(v11) =

N(v12) = {v4, v5}; V2 = {v6, v7} since {N(v6) ∪ v6} =

{N(v7) ∪ v7} = {v2, v3, v6, v7}.

Lemma 11 V1,V2 and V3 is a partition of the graph G.

Proof Since V3 is the complement of V1 ∪ V2, the three

vertex sets jointly cover V . It remains to prove that

V1 ∩ V2 = ∅. Let u be a node u ∈ V1 ∩ V2. According to
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Fig. 3 Equivalence Relation Reduction

the definition, there exist two nodes v ̸= u and w ̸= u

such that u ≃1 v and u ≃2 w. In other words, N(u) =

N(v) and N(u) ∪ {u} = N(w) ∪ {w}. Since v has no

edge to u while w has an edge to u, v ̸= w. Thus,

w ∈ N(u) = N(v), namely, there is an edge between w

and v. Since v ∈ N(w) \ {u} ⊆ N(u), u and v have an

edge, contradiction. Therefore, V1 ∩ V2 = ∅.

According to Lemma 11, each node belongs to at

most one non-trivial equivalence class constructed un-

der the two equivalence relations. Therefore, we define

the mapping function f that maps a node to the node

with the smallest node ID in the corresponding non-

trivial equivalent class.

Definition 11

f(u) =


min{v|v ≃1 u}, if u ∈ V1;

min{v|v ≃2 u}, if u ∈ V2;

u, if u ∈ V3;

(3)

Example 10 In Fig. 3, f(v11) = f(v12) = v11; f(v6) =

f(v7) = v6; f(u) = u, for u ∈ V3.

Graph Reduction. We compress the graph by elimi-

nating all the nodes u in V1 and V2 and their incident

edges unless f(u) = u. This operation transforms G to

its subgraph Gs.

Example 11 In Fig. 3, f(v7) ̸= v7, we delete v7. Simi-

larly, f(v12) ̸= v12, we delete v12. Nodes u with f(u) =

u are kept.

Lemma 12 For any two nodes s, t with f(s) ̸= f(t),

distG(s, t) = distGs(f(s), f(t)).

Proof Let p(s, t) = {v1, v2, · · · , vk} be a short-

est path on G from s to t and let ps(s, t) =

{f(v1), f(v2), · · · , f(vk)}.
This paragraph proves that for any nodes x and y on

p with x ̸= y, f(x) ̸= f(y). We first show that for all v ̸=
t on p, f(v) ̸= f(t): if otherwise the predecessor pre(v)

of v on the path p — pre(v) exists since f(s) ̸= f(t) —

can link to t directly and then reduces the path length,

contradiction. Therefore, any node v with f(v) ̸= f(t)

has a successor on p. Secondly, let u ̸= t be a node on

p; denote by S the equivalent class of u; let z be the

last node in S on the path. suc(z), the successor of z

on the path exists since f(u) = f(z) ̸= f(t) (from the

first point). There is an edge from u to suc(z) since 1)

z has an edge to suc(z), 2) u, z ∈ S and 3) suc(z) ̸∈ S.

Thus, if suc(z) is not the successor of u then p is not a

shortest path. Therefore, all nodes on p have different

f(·) values.
It is easy to verify that if f(u) ̸= f(v) and there is an

edge between u and v, then there is an edge between

f(u) and f(v). Thus, ps(s, t) is a path on Gs. Since

GS is a subgraph of G, distG(s, t) ≤ distGS (s, t) ≤
distG(s, t).

Table 2 Reduce Index Size with Equivalence Relations

Number of Reduced Nodes Index Space (MB)
Dataset |V | |V1 \ F (V1)| |V2 \ F (V2)| Before After
YOUT 3,223,590 1,068,666 14,405 2141.512 1474.86
TPD 1,766,010 312,166 11,912 1783.192 1495.05

Example 12 Denote by F (V ′) = {v ∈ V ′|v = f(v)} the

remained nodes in a set under equivalence reduction.

Table 2 shows the effectiveness of the equivalence re-

lations on index reduction. For YOUT (TPD), around
33.15% (17.67%) and 0.45% (0.67%) of nodes are elim-

inated by the first and the second equivalence relation,

respectively and the index size are reduced by 31.13%

(16.16%).

Query Processing. With the compressed graph, the

query processing has to be adapted. We answer query

q(s, t) in the following four cases. 1) If s = t, return

0. 2) If f(s) = f(t) under s ≃1 t then return 2. 3) If

f(s) = f(t) under s ≃2 t, return 1. 4) Otherwise, return

q(f(s), f(t)) in Gs.

4.2 Local Minimum Set Elimination

The index reducing technique in this section is moti-

vated by an observation on the PLL label distribution.

For PLL with nodes ordered in node degrees, Fig. 4

shows the label size distribution of two representative

small-world networks: Youtube (denoted by YOUT) is a
social network and UK-Tpd (denoted by TPD) is a web

graph. The maximum degrees of YOUT and TPD are

91751 and 63731, respectively. It can be observed that

low degree nodes have significantly larger label sizes

than the high degree nodes. This observation motivates

the elimination of node labels on the nodes ranked low-

est among its neighbors.
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Fig. 4 PLL: Degree and Label Size

V1

V9

V8

V5

V4

V2

V6 V3

Fig. 5 Local Minimum Set

Definition 12 (Local Minimum Set) A node is lo-

cal minimum node if it has the lowest rank among its

neighbors. Local minimum set constitutes of local min-

imum nodes:

M(G) = {u ∈ V |for ∀v ∈ N(u), r(u) < r(v)}.

Example 13 In Fig. 5, M(G) = {v7, v10, v11, v12}. For
example, node v7 has the lowest rank among its neigh-

bors.

An ideal property of a local minimum node v is that

v is referred to by no node other than v itself as a hub.

Lemma 13 For any node ∀v ∈ M(G) and any node

∀u ∈ V , v is a hub of u in LPSL if and only if v = u.

Proof According to Theorem 1, v is a hub of u if v is

the highest ranked node in S — the set of all nodes on

the shortest path from u to v. Unless u = v, for any

shortest path from u to v, there is a node w ∈ N(v)

on the path. If v is a local minimum node, r(v) < r(w)

and v cannot be a hub of u.

Construct Labels for V \ M(G). Lemma 13 shows

that removing nodes in M(G) does not affect the label

set of any node in V \M(G). However, in our propagation

based label construction, LPSL
d (v) is built from LPSL

d−1(u),

∀u ∈ N(v). In other words, for a node u ∈ N(v) ∩
M(G), without LPSL

d−1(u) we cannot construct LPSL
d (u)

using Theorem 4.

To tackle the above problem, the key finding is that

nodes inM(G) are independent. That is, there is no edge
between nodes in M(G). Thus, a node u with some of

its neighbor from M(G) can be saved by resorting to

u’s two-hop neighbors via nodes in M(G). These 2-hop

neighbors will certainly fall in V \M(G) and their labels

are ready for use.

Definition 13 (Generalized Neighbors) Given a

node v ∈ V \ M(G), we define two neighbor sets.

N1(v) = N(v) \M(G) includes the neighbors of v that

fall in V \M(G) and N2(v) = {w|w ∈ (N(u)\{v}),∀u ∈
(N(v)∩M(G))} includes the two-hop neighbors of v con-

nected via nodes in M(G).

Example 14 In Fig. 5, since v9 ∈ V \ M(G), N1(v9) =

{v1, v8}, N2(v9) = {v1, v2}.

We show that the generalized neighbors are not in

M(G).

Lemma 14 Given a node v ∈ V \ M(G), N1(v) ∩
M(G) = ∅ and N2(v) ∩M(G) = ∅.

Proof N1(v) ∩ M(G) = ∅ by Definition 13. Let x ∈
N2(v) be a node expanded from y ∈ N(v)∩M(G). If x ∈
M(G), then r(y) < r(x) and r(x) < r(y), contradiction.

Example 15 In Fig. 5, N2(v9) = {v1, v2}, which are all

in the set V \M(G).

We show a label propagation function on V \M(G)

below.

For ∀v ∈ V and d ∈ [1, D+1], denote, by Cd(v), the

set of hub nodes in label set LPSL
d (v).

Theorem 6 For each node u ∈ V \M(G)

LPSL
d (u) =

⋃
w∈Cd−1(v), for ∀v∈N1(u)

w∈Cd−2(v
′), for ∀v′∈N2(u)

LPSL
d (u,w), (4)

where LPSL
d (u,w) ={

∅, if r(w) < r(u) or Query(w, u, LPSL
<d ) ≤ dist(w, u);

(w, dist(w, u)), otherwise.

Proof Let L′′ be the labels drawn from Equation (4).

We reuse the proof of Theorem 4 by showing that the

hubs L′ constructed in Equation (1) is a subset of the

hubs in L′′. According to Lemma 8,
⋃

v′∈N2(u) Cd−2(v
′)

is a super set of
⋃

v∈N(v)∩M(G) Cd−1(v), besides, N(u) =

N1(u) ∪ (N(u) ∩ M(G)), thus
⋃

v∈N(u) Cd−1(v) ⊆⋃
v∈N1(u) Cd−1(v) ∪

⋃
v′∈N2(u) Cd−2(v

′) which com-

pletes the proof.

Example 16 Table 3 shows the effectiveness on reduc-

ing the index size using local minimum set. For YOUT
(TPD), the local minimum set eliminates about 70.95%

(65.18%) nodes and reduces the index size by 42.4%

(44.5%).
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Table 3 Reduced Index Size with Local Minimum Set

Node Number Index Space (MB)
Dataset |V | |M(G)| Before After
YOUT 3,223,590 2,287,357 2141.512 1234.377
TPD 1,766,010 1,151,224 1783.192 989.567

Query Processing. The reduced index provides the

labels for nodes in V \M(G). When it comes to query

processing, we can recover the labels of nodes in M(G)
with the union of the labels of neighbors. For a query

q(s, t), without loss of generality, if s ∈ M(G) and t ∈
V \M(G), we swap s and t. To reduce the online cost,

we use a hash join to produce the 2-hop distances. Let

H be a table of size |V \M(G)| where H(w) records the

labelled distance in LPSL(s) with hub w. H(w) = ∞ if

w is not a hub of s. Since the label set LPSL(s) may not

be available, we construct H in two cases.

– If s ∈ V \ M(G), we hash the labels in LPSL(s) by

letting H(v) = dist(s, v) for each hub v of s.

– Otherwise, we construct labels of s by visiting

neighbors w ∈ N(s) of s and update H(v) with

dist(v, w) + 1 for each hub v of w — H(v) only

keeps the minimum value along the updates.

After H being constructed, we generate labels of t

in a similar way and instead of updating the table H,

we fetch the value stored in the table H under the same

hub node and then compose a 2-hop distance.

Note that, the hash table H can be maintained

across different queries without initialization: we keep

a dirty log and recover H after processing each query.

Lemma 15 When s, t ∈ M(G), the time cost of dis-

tance query is O(Σa∈N(s)|LPSL(a)|+Σb∈N(t)|LPSL(t)|).

Proof For s, we store nodes in {LPSL(a)|a ∈ N(s)}
in H. For t, we scan the nodes in {LPSL(b)|b ∈
N(t)} to gain the distance. The linear scan takes

O(|{LPSL(a)|a ∈ N(s)}| + |{LPSL(b)|b ∈ N(s)}|) time

in total.

Table 4 Local Minimum Set: Index and Query Time

Index Time (sec) Query Time (sec)
Dataset Before After Before After
YOUT 23.805 15.786 1.13E-06 1.71E-06
TPD 18.997 13.71 1.80E-06 3.71E-06

Example 17 Table 4 shows the index time and query

time in a 45-core environment. Local minimum set tech-

nique reduces, for YOUT (TPD), the index time by

33.69% (27.83%) at a cost of 1.5× (2.06×) query time.

The trade-off is worthwhile since the query time is still

in micro-seconds.

5 Index Optimization with Betweenness-based

Node Order

The PSL proposed in Section 3 parallelizes PLL in a

multi-core environment, and the main bottleneck of

this labeling method is the unaffordable index size. The

two index reduction techniques proposed in Section 4

are built upon a node order which is, by default, de-

gree based. To further reduce the index size, this sec-

tion investigates the application of betweenness-based

node order in PSL. As suggested by [31] and verified

by our preliminary experimentation (Exp-9, Section 7),

betweenness-based node order leads to a smaller in-

dex size. The difficulty in applying the betweenness-

centrality to PSL is two-fold. 1) The computation of the

betweenness centrality for all the nodes is computation-

ally expensive (O(mn) [13]) for big graphs. 2) The best

practice of cost-effectively optimizing PSL with approx-

imate betweenness is unknown. A better estimation of

k-betweenness leads to a smaller index size; however,

improving estimation precision can be exhaustive. Sec-

tion 5.1 first proposes a sampling-based approach for es-

timating k-betweenness; to further improve the estima-

tion efficiency, Section 5.2 presents a pool-based sam-

pling algorithm. Section 5.3 introduces an algorithm in

engaging the betweenness estimation in PSL for index

reduction.

5.1 Basic Sampling

Exact k-betweenness of a node v ∈ V summarizes the

partial betweenness kbcs(v) over all source nodes s in V .

However, only a small number of sources s contribute to

the computation of kbc(v): Lemma 3 shows that nodes

s with dist(s, v) = 0 or dist(s, v) ≥ k has kbcs(v) = 0.

These useless sources can be safely removed for v.

Definition 14 (k-Reachable Set) The k-reachable

set of a vertex v ∈ V is defined as R(v) = {s|0 <

dist(s, v) < k}.

Example 18 To estimate kbc(v9) (with k = 2) in

Fig. 1, we only consider source nodes in R(v9) =

{v1, v2, v3, v4, v5, v8, v10} since nodes w outside R(v9)
make the partial betweenness kbcw(v9) zero.

Under the framework of betweenness approxima-

tion [7], random samples need to be selected from R(v).
Suppose we randomly select some nodes S from R(v) for
a node v. For each sample s ∈ S, kbcs(v) can be com-

puted by undertaking a graph traversal from s [14]. We

estimate kbc(v) with

k̃bc(v) = (
∑
s∈S

kbcs(v)) ·
|R(v)|
|S|

.
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Lemma 16 shows that k̃bc(v) is an unbiased estimator

of kbc(v).

Lemma 16 E(k̃bc(v)) = kbc(v), for ∀v ∈ V .

Proof For ∀s ∈ R(v), we define a random variable Xs =

kbcs(v) · |R(v)|. We have E(Xs) =
∑

s∈R(v)
1

|R(v)|Xs =∑
s∈R(v)

1
|R(v)|kbcs(v) · |R(v)| = kbc(v). When aggre-

gating Xs over samples s in S, we have E(k̃bc(v)) =

E(
∑

s∈S kbcs(v)· |R(v)||S| ) = E(
∑

s∈S Xs · 1
|S| ) = E(Xs) =

kbc(v).

Lemma 17 Suppose K = maxs∈S(kbcs(v)),

P (|k̃bc(v)− kbc(v)| > ϵ) ≤ 2 exp (−2|S| · ( ϵ

K · |R(v)|
)2)

Proof Let X1, X2, · · · , Xq be independent random vari-

ables with values in [a, b], and X =
X1+X2+···+Xq

q , then

P (|E(X) − X| > ϵ) ≤ 2 exp (−2n · ( ϵ
b−a )

2) by Hoeffd-

ing’s inequality [23]. For any s ∈ S, we define Xs =

kbcs(v) · |R(v)|, then E(Xs) = kbc(v), Xs = k̃bc(v),
q = |S|, a = 0, b = K · |R(v)|. Plugging these terms into

Hoeffding’s inequality proves the lemma.

Discussion. Given a node v ∈ V , by Lemma 17, for a

given ϵ ∈ R+ and δ ∈ (0, 1), if |S| ≥ ln( 2
δ )·K

2·|R(v)|2

2ϵ2 , we

obtain an estimation of kbc(v) within an additive error

ϵ with a probability at least δ [23]. The required sam-

ple size, unfortunately, is very large. Although there are

techniques to reduce the sample size [11,37,38], there

are two drawbacks of this basic sampling approach: i)

each node v needs to compute |R(v)| to reach an unbi-

ased estimator k̃bc(v) of kbc(v); ii) node v precomputes

R(v) to select samples. The cost of obtaining R(v) (and
|R(v)|) for ∀v ∈ V by performing n = |V | BFS (with

a length limited to k) is no better than the exact k-

betweenness computation.

5.2 Pool-based Sampling

Size Estimation. To solve the first drawback of the

above sampling method, we select a pool Ssize of nodes

to approximate |R(v)| for all nodes v ∈ V . Specifically,

for each node s ∈ Ssize, we conduct a k-bounded BFS

from s which only visits nodes that are < k hops away

from s. Suppose v has been visited nsize(v) times by

the k-bounded BFS from s (that is, there are nsize(v)

samples in Ssize that belong to R(v)), we estimate |R(v)|
with

R̃(v) = nsize(v) ·
n

|Ssize|
.

Lemma 18 shows that R̃(v) is an unbiased estimator of

|R(v)|.

Lemma 18 E(R̃(v)) = |R(v)|, for ∀v ∈ V .

Proof For each sample s ∈ Ssize, we define a random

variable Xs to indicate whether s is in R(v), that is,

Xs =

{
1, if s ∈ R(v)
0, otherwise

. Then, P (Xs = 1) = |R(v)|
n and

E(Xs) = |R(v)|
n . Thus, E(nsize(v)) =

∑
s∈Ssize

E(Xs) =
|R(v)|

n · |Ssize|, and E(R̃(v)) = |R(v)|.

Algorithm 3: Size Estimation

Input: Graph G(V,E), hop k, time budget Ts

Output: Ssize, nsize(v) for ∀v ∈ V
1 Ssize ← ∅;
2 nsize(v)← 0, for ∀v ∈ V ;
3 for sampling time ≤ Ts do
4 s← a node chosen uniformly at random from V ;
5 Ssize ← Ssize ∪ {s};
6 Let σs,s ← 1 and dist(s)← 0;
7 For ∀v ∈ V \ {s}, let σs,v ← 0 and dist(v)← −1;
8 curr ← {s}; next← ∅;
9 for i = 0, 1, · · · , k − 2 do

10 for ∀v ∈ curr and ∀w ∈ N(v) do
11 if dist(w) = −1 then
12 dist(w)← dist(v) + 1;
13 nsize(w)← nsize(w) + 1;
14 next← next ∪ {w};

15 curr ← next, next← ∅;

16 return Ssize, nsize(v) for ∀v ∈ V ;

Algorithm 3 estimates, for ∀v ∈ V , the size nsize(v)

of R(v), within the sampling time budget Ts. For a ran-

dom sample s (Line 4), we append s in Ssize (Line 5),

and perform a k-bounded BFS from s (Line 6-15). For

each newly visited node v (i.e., s ∈ R(v)), nsize(v) is in-

creased by 1 (Line 13). The process continues until the

sampling time goes beyond the budget Ts (Line 3).

Partial Betweenness Estimation. To solve the sec-

ond drawback of the basic sampling approach, we select

a pool of nodes Sbc to compute k-partial betweenness

for all nodes v ∈ V . Among the samples in Sbc, suppose

nbc(v) nodes (denoted as Sv) are included in R(v) for a
certain v, we summarize the partial k-betweenness of v

over Sv to obtain κ(v), for each individual node v ∈ V ;

κ(v) shall be used to estimate kbc(v).

κ(v) =
∑
s∈Sv

kbcs(v).

In this way, we avoid sampling from R(v) for each node

in V .

Algorithm 4 estimate κ(v) and nbc(v), for ∀v ∈ V

(Line 1-27) within time budget Ts. We repeatedly select

a sample s (Line 3) uniformly at random, until the time
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budget Ts is consumed (Line 2). Given s, we follow

the method introduced in [14] to compute kbcs(v), for
∀v ∈ V . Note that in this process, kbcs(v) is added to

κ(v), and nbc(v) is increased by 1.

We first conduct a k-bounded BFS from s (Line 1-

18), aiming at computing σs,v, the number of shortest

paths from s to v, for ∀v ∈ R(s) (equivalently s ∈
R(v)). Specifically, we use curr and next to store nodes

expanded in the current round and the nodes to expand

in the next round. σs,v is initialized with zero for all

v ∈ V , except for s, whose σs,s is set to 1; dist(v) is

initialized to −1 for all v, except for s, which is set to 0

(Line 6-7). We first insert s into curr to start the BFS

(Line 8), and then we explore nodes within distance

k to s (Line 9): for each node v ∈ curr (Line 10), we

check v’s neighbor w (Line 11). If w is not visited before

(Line 12), dist(w) is updated to dist(v) + 1 (Line 13),

and w is appended to next and S (Line 14-15). If w is

one hop farther than v regarding s, we increase σs,w by

adding σs,v to it (Line 16-17). Then, next is assigned

to curr for the next round (Line 18).

When all nodes within distance k to s have been

stored in stack S, we perform a backward BFS to com-

pute kbcs(v), for ∀v ∈ V (Line 19-27). Specifically,

kbcs(v) is initialized as zero (Line 19), and we visit

nodes w in S reversely – in the order of non-increasing

distance to s (Line 21). For each neighbor v of w, if v is

one hop closer than w regarding s, kbcs(w) is used to

update kbcs(v) (Line 22-24). For each v ̸= s, kbcs(v) is
added to κ(v), and nbc(v) is increased by 1 (Line 26-27).

To analyze the estimation accuracy of the pool-

based sampling, we focus on Sv = {v ∈ Sbc|v ∈ R(v)}
and its size nbc(v) = |Sv|, for each v ∈ V . We show that

for each v, the size nbc(v) is proportional to |R(v)|.

Lemma 19 E(nbc(v)) = |Sbc| × |R(v)|
n .

Proof For a node that is chosen uniformly at random

from V , it falls in R(v) with probability |R(v)|
n . Aggre-

gating this probability over all nodes in Sbc derives the

expectation E(nbc(v)) = |Sbc| × |R(v)|
n .

Order Generation. With the outputs of size estima-

tion and partial betweenness estimation, we show that

k̃bc(v) =
κ(v)

nbc(v)
· (nsize(v) ·

n

|Ssize|
) (5)

is an unbiased estimator of kbc(v).

Lemma 20 E(k̃bc(v)) = kbc(v), for ∀v ∈ V .

Proof Given a node v ∈ V , we define a random vari-

able Xs = kbcs(v) · nsize(v) · n
|Ssize| , for ∀s ∈ R(v). Then,

E(Xs) = 1
|R(v)| ·

∑
s∈R(v) kbcs(v) · E(nsize(v) · n

|Ssize| ) =

Algorithm 4: Partial Betweenness Estimation

Input: Graph G(V,E), hop k, time budget Ts

Output: nbc(v), κ(v) for ∀v ∈ V
1 nbc(v)← 0, κ(v)← 0, for ∀v ∈ V ;
2 while sampling time ≤ Ts do
3 s← a random node in V ;

// Forward BFS

4 curr ← ∅, next← ∅;
5 S ← an empty stack;
6 For ∀v ∈ V \ {s}, σs,v ← 0, dist(v)← −1;
7 σs,s ← 1, dist(s)← 0;
8 curr ← curr ∪ {s};
9 for i = 0, 1, · · · , k − 1 do

10 for ∀v ∈ curr do
11 for ∀w ∈ N(v) do
12 if dist(w) = −1 then
13 dist(w)← dist(v) + 1;
14 next← next ∪ {w};
15 S ← S ∪ {w};
16 if dist(w) = dist(v) + 1 then
17 σs,w ← σs,w + σs,v;

18 curr ← next, next← ∅;
// Backward BFS

19 kbcs(v)← 0, ∀v ∈ V ;
20 while S ̸= ∅ do
21 w ← pop from S;
22 for v ∈ N(w) do
23 if dist(w) ̸= dist(v) + 1 then continue;

24 kbcs(v)← kbcs(v) +
σs,v

σs,w
· (1 + kbcs(w));

25 if v ̸= s then
26 κ(v)← κ(v) + kbcs(v);
27 nbc(v)← nbc(v) + 1;

28 return nbc(v), κ(v) for ∀v ∈ V ;

Algorithm 5: Order Generation

Input: Graph G(V,E), hop k, time budget T , θ
Output: r(v) for ∀v ∈ V

1 Ssize, nsize(v)← Algorithm 3(G, k, θT ), for ∀v ∈ V ;
2 nbc(v), κ(v)← Algorithm 4(G, k, (1− θ)T ), for
∀v ∈ V ;

3 k̃bc(v)← κ(v)

nbc(v)
· (nsize(v) · n

|Ssize|
), for ∀v ∈ V ;

4 Generate r(v) in non-increasing order of k̃bc(v);
5 return r(v) for ∀v ∈ V ;

∑
s∈R(v) kbcs(v) = kbc(v) (size estimation and be-

tweenness estimation are independent). Suppose sam-

ples Sbc are used to estimate the betweenness, among

which nodes Sv ⊆ Sbc are included in R(v). The size

of Sv is nbc(v). Then, E(k̃bc(v)) = E(
∑

s∈Sv
kbcs(v) ·

nsize(v)
nbc(v)

· n
|Ssize| ) = E(

∑
s∈Sv

Xs· 1
nbc(v)

) = E(Xs) = kbc(v).

By applying Lemma 17, the accuracy is given below.

Lemma 21 Suppose K = maxs∈Sv (kbcs(v)),

P (|k̃bc(v)−kbc(v)| > ϵ) ≤ 2 exp (−2nbc(v) · (
ϵ

K · |R(v)|
)2).
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With the estimation k̃bc(v) of kbc(v) computed for

each node v ∈ V , the betweenness-based node order r

is set such that for any u, v ∈ V , r(u) > r(v) if

– k̃bc(u) > k̃bc(v);

– k̃bc(u) = k̃bc(v), ID(u) > ID(v).

Algorithm 5 shows the order generation algorithm.

First, Algorithm 3 (with sampling time budget θT ) and

Algorithm 4 (with sampling time budget (1− θ)T ) are

called to estimate size and partial betweenness of each

node (Line 1-2). Then, k̃bc(v) is computed based on

Equation 5 (Line 3). Finally, r(v) is determined by the

above rule (Line 4). The parameter θ controls the time

used in Algorithm 3 and Algorithm 4. In practice, we

set the parameter θ as 0.2 since it leads to a good effect

when k-betweenness is used for ordering nodes.

Lemma 22 The time cost of Algorithm 5 is O(|S|(n+
m)) where |S| is the number of samples used in stage 1

and stage 2.

Remarks. In Algorithm 5, instead of giving a pre-

defined sample size, the sample size is controlled adap-

tively by the sampling time – the estimation accuracy

will improve if more time is given.

5.3 Improved Betweenness-based Node Order

Recall that the index reduction techniques proposed

in Section 4 remove the local minimum set M(G)
which, in the current node order, is determined by

the k-betweenness of nodes in V . The remaining nodes

V \M(G), however, may have different k-betweenness in

the updated graph structure. Therefore, it is desirable
to recompute k-betweenness for V \M(G) once M(G) is
eliminated for a better approximation.

Virtual Graph. To recompute k-betweenness, one

challenge is that if two nodes u, v ∈ V \M(G) are con-

nected only by nodes in M(G), then u and v are dis-

connected in the updated graph. To this end, given a

graph G(V,E), we define a virtual graph G(V ,E) with

V = V \M(G) as its node set. Recall Definition 13, we

add two types of edges to E for each node u ∈ V , (u, v)

with l(u, v) = 1 for every v ∈ N1(v) and (u, v) with5

l(u, v) = 2 for every v ∈ N2(v) \N1(v). The edge set is

sufficient to keep the connectivity: due to the property

of the local minimum reduction, if u ∈ M(G) for some

node u ∈ V , then N(v)∩M(G) = ∅; therefore, to retain

the connectivity, we only need to consider u, v ∈ V that

are connected only by one node in M(G).

5 For the convenience of presentation, we replace an edge
(u, v) of length 2 with two unit-weighted edges (u,w), (w, v)
with a new node w interpolated in between.

Example 19 In Fig. 5, since v8 ∈ N1(v9), we have the

edge (v9, v8) with weight 1 in G; since v2 ∈ N2(v9) \
N1(v9), we have the edge (v9, v2) with weight 2 in G.

Algorithm 6: Improved Order Generation

Input: Graph G(V,E), hop k, sample time T , θ
Output: r(v), for ∀v ∈ V

1 k̃bc(v), ∀v ∈ V ← Algorithm 5(G, k, (1− 2θ)T );
2 M(G)← ∅;
3 for v ∈ V do
4 for w ∈ N(v) do

5 if k̃bc(v) > k̃bc(w) then continue;

6 M(G)← M(G) ∪ {v};
7 V ← V \M(G);

8 E ← {(u, v)|u, v ∈ V \M(G)};
9 for v ∈ V do

10 N1(v)← ∅, N2(v)← ∅;
11 for w ∈ N(v) ∩ V do insert w → N1(v);
12 for w ∈ N(v) ∩M(G) do
13 for u ∈ N(w) do
14 if u ̸= v then
15 Insert u→ N2(v);

16 for w ∈ N1(v) do
17 Insert edge (v, w) with weight 1 in E;

18 for w ∈ N2(v) \N1(v) do
19 Insert edge (v, w) with weight 2 in E;

20 For ∀v ∈ V , Ssize, nsize(v) ← Algorithm 3(G(V ,E), k,
θT );

21 For ∀v ∈ V , κ(v), nbc(v)← Algorithm 4(G(V ,E), k,
θT );

22 k̃bc(v)← κ(v)

nbc(v)
· (nsize(v) · n

|Ssize|
), for ∀v ∈ V ;

23 Sort r(v) in non-increasing order of k̃bc(v), for

∀v ∈ V ;
24 Set r(v) as the minimum among its neighbors, for

∀v ∈ {V \ V } ;
25 return r(v), for ∀v ∈ V ;

Improved Order Generation. The sampling algo-

rithm considering local minimum set M(G) elimination

is in Algorithm 6. Similar to Algorithm 5, we set θ to

0.2 in practice. First, Algorithm 5 is invoked to compute

k̃bc(v), ∀v ∈ V (Line 1), and nodes v with the minimum

k̃bc(v) among N(v) constitute M(G) (Line 2-6). Then,

for each node v ∈ V = V \ M(G), N1(v) and N2(v)

are formed according to the Definition 13 (Line 8-15),

where edges E are formed in Line 8 and Line 16-19.

Afterwards, Algorithm 3 approximates the size of

R(v) in G, for ∀v ∈ V ; Algorithm 4 obtains k-partial be-

tweenness k̃bc(v) in G, for ∀v ∈ V . The k-betweenness

of v ∈ V in G is then computed by the outputs of the

above two algorithms (Line 22). For nodes in V , their

orders are defined by k̃bc(v) in G (Line 24), while we
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enforce nodes in V \ V to have the minimum orders —

these nodes remains to be local minimum set after the

re-computing (Line 25).

6 Related work

Indexing shortest distances for fast online query pro-

cessing has been extensively studied. A recent experi-

mental comparison on distance labeling algorithms can

be found in [31].

Distance Labeling on Small-world Networks. To

index shortest distances for small-world networks, ex-

isting solutions either build a partial index to assist the

online search algorithms [5,20,22] or build a complete

index to fully support the distance query [4,26]. The

solutions in the latter category require a larger index

but will obtain much faster query processing time.

In the first category, Is-label approach first deter-

mines the vertex hierarchy through the independent set

and then creates the label for each node by this hier-

archy structure [20]. Tree decomposition is used in [5]

to discover the core-fringe structure of social-networks

and then index is created on these two separate parts.

Shortest path trees of high degree nodes are used [22]

as index to guide the online searching to process the

distance query.

In the second category, PLL [4] constructs the in-

dex by performing pruned BFS whose detail is given in

Section 2.3. The hop doubling approach in [26] applies

generation rules to join the short paths to long paths,

until the whole paths are covered. Compared to PLL,
the algorithm proposed in [26] uses less memory but
will spend much more index time.

Distance Labeling on Road Networks. For dis-

tance indexing approaches on road networks, the ap-

proach in [2] constructs the index by eliminating the

high ranking nodes and add it to the labels of its neigh-

bors. The approach proposed by Wei [46] first decom-

poses the graph into a tree as the index, and then the

distance of two nodes are answered through this in-

dex using dynamic programming. The pruned highway

labeling approach proposed by Akiba et al. [3] decom-

poses the road network into disjoint paths and the la-

bel of a node include the distance to some nodes of

the paths. A hierarchical hop-based index is proposed

in [33] to answer shortest distance queries in a road

network with bounded query processing time and in-

dex size. More details about the distance query on road

networks can be found in [47,31].

Approximate Distance Labeling. For approximate

distance labeling algorithms, the basic idea is to select

nodes as landmarks and then precompute the distances

from the landmarks to all the other nodes. The distance

between any node pair can be estimated using trian-

gle inequality [35,15]. Online processing on landmarks

is used to improve the precision [44,36]. However, on

small-world networks, the relative error becomes sig-

nificant since the distances are bounded by the small

diameter.

Betweenness Computation. Betweenness was pro-

posed by Freeman [19]. The best exact computation

algorithm incurs O(nm) [13], which has been con-

firmed to be almost optimal for both sparse [10] and

dense graphs [1]. Due to the complexity, numerous ap-

proximation algorithms are given to trade accuracy

for speed. Pioneering work was done in [24] by us-

ing a sampling-based approach, and subsequent studies

aimed at reducing the sampling costs [37,38,11]. For

example, Matteo et al. [37] applied VC-dimension the-

ory to calculate the sample size required to achieve the

desired approximation. The computed sample size is in-

dependent of the number of vertices but depends only

on the graph diameter (i.e., the longest shortest path in

the graph). To eliminate the dependence on the graph

diameter and to further reduce the required sample size,

Matteo et al. [38] used the concepts of Rademacher av-

erages and pseudodimension to accelerate the between-

ness approximation. An experimental comparison of ap-

proximate algorithms is presented in the literature [6]

to validate the efficiency and accuracy of various meth-

ods. Another line of direction investigates variations of

betweenness to reduce the computation costs [14,34,

18]. k-betweenness used in this paper belongs to this

category [14], and we devise approximation algorithms

to compute it fast.

k-betweenness is an approximate notion of between-

ness: when k reaches the graph diameter (the length of

the longest shortest path in the graph), k-betweenness

becomes betweenness. We use k-betweenness to holisti-

cally optimize the node order given the time resource in

computing the node order. An adequate k strikes a bal-

ance between i) the gap between the k-betweenness and

betweenness and i) the gap introduced by the sampling-

based estimation of the k-betweenness — a larger k re-

duces the first gap while increases the second gap. In

this paper, k is carefully chosen to holistically optimize

the node order. As a type of centrality measures, k-

betweenness can be used to identify important nodes in

networks, such as biological networks [25], virus propa-

gation networks [32], terrorist networks [16], and trans-

portation networks [21]. The approximation algorithms

proposed in the paper can produce elegant estimation

in a given sampling time budget and thus be beneficial

for the tasks on the above networks.
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Table 5 The Description of the Datasets

Name Dataset n m Type
DELI Delicious6 536,109 1,365,961 Social Network
GP GPlus6 211,188 1,506,896 Social Network
LAST Lastfm6 1,191,806 4,519,330 Social Network
GOOG Google7 875,713 5,105,039 Web Graph
AMAZ Amazon8 735,323 5,158,388 Social Network
DIGG Digg6 770,800 5,907,132 Social Network
FLIX Flixster9 2,523,386 7,918,801 Social Network
TREC Trec9 1,601,787 8,063,026 Web Graph
YOUT Youtube9 3,223,589 9,375,374 Social Network
SKIT Skitter9 1,696,415 11,095,298 Internet Topology
TWIT Twitter7 456,631 14,855,875 Social Network
HUDO Hudong6 1,984,485 14,869,484 Web Graph
PET Petster9 623,766 15,699,276 Social Network
BAID Baidu6 2,141,301 17,794,839 Web Graph
TPD UK-Tpd8 1,766,010 18,244,650 Web Graph
DBLP DBLP9 1,314,050 18,986,618 Coauthorship
TOPC Topcats7 1,791,489 28,511,807 Web Graph
POK Pokec7 1,632,803 30,622,564 Social Network
FLIC Flickr9 2,302,925 33,140,017 Social Network
HOST UK-Host8 4,769,354 50,829,923 Web Graph
STAC Stack7 6,024,271 63,497,050 Interaction
LJ Ljournal8 5,363,260 79,023,142 Social Network
FB Facebook6 58,790,783 92,208,195 Social Network
INDO Indochina8 7,414,866 194,109,311 Web Graph
SINA Sina6 58,655,850 261,321,071 Social Network
WIKI Wiki9 12,150,976 378,142,420 Web Graph
ARAB Arabic8 22,744,080 639,999,458 Web Graph
IT IT-20048 41,291,594 1,150,725,436 Web Graph
SK SK-20058 50,636,154 1,949,412,601 Web Graph
UK UK-20068 77,741,046 2,965,197,340 Web Graph

Extensions from [30]. This work is an extension of

the conference version [30]. Compared to [30], we make

the following novel contributions. (1) In Section 2.3,

the benefits (index reduction) and challenges (quadratic

computation) of using betweenness-based node order

in distance labeling are discussed. (2) In Section 2.4,

betweenness related concepts are introduced, includ-

ing betweenness and its variation k-betweenness. (3) In

Section 5, approximation algorithms for k-betweenness

computation and how to use betweenness estimation

in the index construction process are presented. (4)

In Section 7, corresponding experiments are conducted

to verify the effectiveness of distance labeling using

betweenness-based node order.

7 Experimental Results

In this section, we first validate the effects of parallelism

and compression techniques in Section 7.1, followed by

the evaluation of k-betweenness as a node order in Sec-

tion 7.2.

All algorithms used in the experiments were imple-

mented in C++ and compiled with GNU GCC 4.8.5

and -O3 level optimization. All experiments were con-

ducted on a machine with 48 CPU cores and 384 GB

main memory running Linux (Red Hat Linux 4.8.5,

64bit). Each CPU core is Intel Xeon 2.1GHz. The paral-

lelized programs are supported by the OpenMP frame-

work. We set the cut-off time as 24 hours.

7.1 Test of Parallelism and Compression

Algorithms. We compare our proposed algorithms

against the state-of-the-art algorithm PLL [4]. Our tech-

niques include the following three methods:

– PSL: the parallelized distance labeling technique in-

troduced in Section 3.

– PSL+: PSL with the equivalence relation elimination

technique as introduced in Section 4.1.

– PSL∗: PSL with the equivalence relation elimina-

tion technique plus the local minimal set elimination

technique as introduced in Section 4.2.

Datasets. We conducted experiments on 30 real-world

graphs whose properties are shown in Table 5. The

largest graph has more than 2.9 billion edges. The

datasets are from various types of small-world net-

works including social networks, web graphs, internet

topology graphs, coauthorship graphs, and interaction

networks. All graphs were downloaded from Network

Repository6[39], Stanford Large Network Dataset Col-

lection7[28], Laboratory for Web Algorithms8 [9,8], and

the Koblenz Network Collection9 [27].

Exp 1: Index Time on a Single Core. We compare

the index time of PLL with PSL, PSL+ and PSL∗ on a

single core. Note that, the bit-parallel technique intro-

duced in [4] is used for all methods since it is a separate

optimization which can be plugged into all distance la-

beling methods.

Fig. 6 shows that PSL has an index time comparable

to PLL while PSL+ and PSL∗ reduce the index time of

PLL— a by-product of the index reduction. For exam-

ple, on the dataset ARAB, PSL+ and PSL∗ successfully

constructed the index while PLL and PSL failed.

Exp 2: Index Time on Multiple Cores. Fig. 7

shows the index time of PSL, PSL+ and PSL∗ on 45

cores. Compared to the single-core results shown in

Fig. 6, all the three methods have a significant speedup.

This speedup allows PSL to index multiple massive

graphs, e.g., LJ, ARAB and SK, that cannot be indexed
on a single core. PSL∗ succeeded in indexing all the

graphs while both PSL and PSL+ failed on FB and UK—
thanks to the index reduction. The results show that

6 http://networkrepository.com/index.php
7 http://snap.stanford.edu/data/
8 http://law.di.unimi.it
9 http://konect.uni-koblenz.de/
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Fig. 6 The Comparison of the Index Time on One Core

the parallelism together with the index reduction tech-

niques scale up the distance labeling to handle larger

graphs.

Exp 3: Index Size. Fig. 8 shows the index size of PLL,
PSL, PSL+ and PSL∗. The label size of PLL and PSL is

the same, which conforms to the analysis in Section 3.3.

Both index reduction techniques are effective. PSL+ re-

duces the index size of PSL on SK by more than 50%.

Moreover, only PSL∗ can index massive graphs such

as UK while the other approaches ran out of memory.

This verified the effectiveness of our index reduction

approaches.

Exp 4: Query Time. We compare the average query

time of PSL, PSL+ and PSL∗ on 106 random queries.

Fig. 9 shows that PSL+ and PSL∗ have a query time

comparable to PSL. For PSL+, the additional query cost

on checking equivalence relations is negligible. Since Gs

is smaller than G, the query time of PSL+ is sometimes

smaller than PSL. For example, the query time of PSL+

on DELI is 1.17E-6 seconds while the query time of PSL
is 1.31E-6 seconds. For PSL∗, although the labels of

nodes in M(G) need to be constructed on-the-fly, the

query time of PSL∗ is within twice the query time of

PSL on average, remaining in micro-second level.

Exp 5: Indexing Speedup on Multi Cores. The

speedup of the index time of an approach on x cores is

calculated by

speedup =
the index time of the approach with 1 core

the index time of the approach with x cores
.

According to the above equation, when the core num-

ber is 1, the speedup is constantly 1; when an approach

fails in indexing on 1 core within the time limit, its

speedup cannot be derived. Fig. 10 shows the index

time speedup of PSL, PSL+ and PSL∗ with the core

number varying from 1, 12, 23, 34, to 45 on six net-

works, DBLP, POK, LJ, FB, WIKI, and SK, respectively.
A near linear speedup has been observed for all the

three approaches along with the increasing number of

cores. The speedup of each approach is relatively sta-

ble over different graphs. On 45 cores, PSL shows, over

all datasets, an average speedup of 30 and a maximum

speedup of 32, PSL+ shows average 28 and maximum

31 while PSL∗ shows average 27 and maximum 31. The

index reduction techniques have little influence on the

speedup: the lines of the three approaches clutter, espe-

cially on DBLP. A mild slowdown in the speedup when

the core number gets close to 45 can be explained by the

imbalance resource allocation introduced by more cores.

The index size reduction techniques can be critical: PSL
failed on FB even when 45 cores were engaged while

PSL∗ removed redundant nodes to achieve an comple-

tion.

Exp 6: Scalability on Index Time. We randomly

divided the nodes of a graph into 5 groups, each group

consisted of 1/5 of the nodes. We created 5 graphs while

the i-th test case is the induced subgraph on the first

i node groups. The experiments were performed on the

5 graphs, respectively.

Fig. 11 shows that the index time of PSL∗ increases

almost linearly with the number of nodes of the graph.

For example, the index time is about 48 times on 100%

nodes than on 20% nodes of DBLP and is about 8 times

for FB. For PSL and PSL+, although there is a situa-

tion where these two methods fail to create the index,

the index time increases smoothly when the number of

nodes increases. Therefore, the above results justify the

scalability of PSL for index time.

Exp 7: Scalability on Index Size. The setting is

the same as the former experiment. Fig. 12 shows that

the space consumption grows smoothly with the graph

size for all three methods. For example, the index space

on 100% nodes of DBLP is about 184.6, 251.2, 182.5

times larger than that on 20% nodes for PSL, PSL+,
and PSL∗ respectively. Therefore, the smooth increase

of the index space shows the scalability of PSL for the

index size.

Exp 8: Scalability on Query Time. Fig. 13 shows

that the query time of the proposed approaches grows

smoothly with the graph size. For example, on LJ, the
query time on 100% nodes is about 368.34, 372.92 and

546.26 times larger than that on 20% nodes for PSL,
PSL+, and PSL∗ respectively. Other graphs show a simi-

lar trend. Combining the above experiments on the scal-
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ability test, we draw the conclusion that the proposed

methods all show excellent scalability.

7.2 Test on Node Ordering

Algorithms. For PSL, we use PSLD to denote PSL
whose order is determined by degrees and PSLB to de-
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note PSL whose order is determined by k-betweenness.

Furthermore, to test the effect of removing local mini-

mum set on computing k-betweenness, we impose differ-

ent node orders on PSL∗, which includes the following

three methods:

– PSL∗D: PSL
∗ using degrees to determine node order.

– PSL∗B: PSL
∗ using k-betweenness computed by the

pool-based sampling method (Algorithm 5) for or-

dering.

– PSL∗I: PSL
∗ using k-betweenness computed by the

improved sampling method (Algorithm 6) for order-

ing.

Datasets. Experiments were performed on 30 real-

world graphs in Table 5. Moreover, to further test the

effect of different ordering methods, we provide two

Table 6 The Description of Added Datasets

Name Dataset n m Type
UK75 UK-2007-058 105,896,555 3,738,733,648 Web Graph
UK07 UK-20078 133,633,040 5,507,679,822 Web Graph

additional datasets, as shown in Table 6. The largest

added graph has more than 5.5 billion edges.

Exp 9: Degree-based and Betweenness-based

Node Orders on PSL. We study the effect of node

orders (using degree and betweenness) on PSL index

sizes. Among them, we obtain the node orders deter-

mined by betweenness in two ways: PSLB whose order is

determined by our proposed k-betweenness algorithm,

and we set the parameter k to 4; and PSLC whose or-

der is determined by classical betweenness. We use the
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method ABRA10 in [38] to estimate the classical be-

tweenness values, and its parameters are set according

to those in [38]. For PSLB and PSLC, we stop sampling

when the sampling time exceeds the same time thresh-

old. We compared the index sizes of PSLD, PSLC and

PSLB on all graphs where PSLD can create indexes. The

results are shown in Fig. 14.

First, we compare PSLB with PSLD to show that

using betweenness is superior to using degree as the

node order. As can be seen in Fig. 14, the index size

of PSLB is always smaller than that of PSLD, and the

index size of PSLB can be more than five times smaller

than that of PSLD on ARAB. These results show that

setting betweenness to node order is useful for reducing

the index size.

Then, we compare PSLB with PSLC to illustrate the

necessity of the proposed k-betweenness approximation

algorithm. In 19 out of 24 graphs, the index size of PSLB
is smaller than that of PSLC (by a factor of up to 2.45

on WIKI); on other graphs, the index size of PSLB is

comparable to that of PSLC. This result illustrates why
new betweenness approximation methods need to be

designed for distance labeling: replacing classical be-

tweenness with k-betweenness leads to a considerable

reduction in the index size of PSLB compared to PSLC,
especially for large graphs.

Exp 10: Effect of Node Order on the Index Size

of PSL∗. The primary goal of determining the node

order using k-betweenness is to reduce the index size

10 We chose ABRA for two reasons. First, as pointed out
in [38], ABRA outperforms the method of [37]. Second,
ABRA can be terminated at any time during execution, which
leads to a fair comparison with our method. The source code
of ABRA is also the code used in the literature [6], and has
been implemented in parallel with OpenMP.

— on a multiple core environment, the failure of la-

beling methods mainly results from the unaffordable

index size. We compared PSL∗ using different node or-

dering methods, where the hop number k is set to 4, and

the sampling time T is set to 3600 seconds. The effect

of parameters T and k on the index size will be dis-

cussed later, and the results on all 32 graphs are given

in Fig. 15.

Fig. 15 indicates that replacing degrees (PSL∗D)
with k-betweenness (PSL∗B and PSL∗I) enables the in-

dexing on large graphs UK75 and UK07. This demon-

strates the meaning of adopting k-betweenness as a

node order. Moreover, on the 30 graphs where PSL∗D
finished labeling, the index size of PSL∗I is, on average,

1.48 times smaller on average than that of PSL∗D, and
the size of PSL∗D is reduced by about 4 times at most.

We then verify that it is useful to consider the local

minimum set (M(G)) elimination in the computation

of k-betweenness. As shown in Fig. 15, the index size

of PSL∗B can be sometimes larger than that of PSL∗D:
PSL∗B’s index size is 1.22 times and 1.3 times that of

PSL∗D on FB and SK, respectively. In contrast, the in-

dex of PSL∗I is always smaller than that of PSL∗D. Fur-
thermore, the index size of PSL∗I is, on average, 1.12

times smaller than that of PSL∗B, and the size of PSL∗B
is reduced by more than 1.67 times at most. These re-

sults are encouraging because it shows that takingM(G)
into account can effectively reduce the index size under

the same sampling time.

Exp 11: Effect of Node Order on Query Time

of PSL∗. Fig. 16 compares PSL∗D, PSL
∗
B, and PSL∗I

in query time. On average, PSL∗B takes 0.91 times as

long as PSL∗D, while PSL∗I takes only 1.04 times as

long as PSL∗D. This means that reducing the size does
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not affect the query time — PSL∗B shortens the query

time of PSL∗D, and PSL∗I’s query time is close to that

of PSL∗D.

Exp 12: Effect of Node Order on Index Time

of PSL∗. We show the index time (including one-hour

sampling time for PSL∗B and PSL∗I) for different order-
ing methods, and the results are given in Fig. 17. On

all the graphs, the index time of PSL∗B does not exceed

the index time of PSL∗D by more than 2 hours, while

the index time of PSL∗I does not exceed the index time

of PSL∗D by more than 1.5 hours. Note that the addi-

tional overhead in index time is acceptable: on the one

hand we need time to estimate k-betweenness, on the

other hand adopting k-betweenness as the node order

does not significantly improve the index time.

It is also interesting to observe that on some graphs

the index time is reduced when we replace PSL∗D by

PSL∗I: on UK, the index time of PSL∗D is 11986.17

seconds while the time is 9599.761 seconds for PSL∗I.
Furthermore, note that PSL∗D cannot index on large

graphs such as UK75 and UK07 due to the exhaustive

index size. These results support the idea of adopting

k-betweenness as the node order, provided that index

time can be dramatically reduced in a multi-core envi-

ronment.

Exp 13: Effect of k on Index Size. We examine

the effect of hop number k on the index size, where

k is the parameter that defines k-betweenness. Since

PSL∗I performs better than PSL∗B in reducing the index

size, we only present the results of PSL∗I. We varied the

number k from 2, 3, 4, 5, to 6, and the results are shown

in Fig. 18. Note that the red line in the figures are the

index size when k is set as the diameter of the graph.

Fig. 18 shows that different graphs have different

trends: as k increases, the index size first decreases and

then increases on DBLP, POK, LJ, and WIKI; on FB,
the index size decreases continuously; on SK, the index

size first increases then decreases. The different trends

suggest that we adopt k-betweenness rather than be-

tweenness (when k is infinite) is desirable: given a lim-

ited sampling time, a larger k does not imply a smaller

index. Furthermore, setting k to 4 allows a reasonably
small index size on all graphs, and 4 is the default hop

number for k-betweenness.

Exp 14: Effect of k on Query Time. We examine

the effect of hop number k on the query time, where all

experimental settings are the same as Exp 13. Fig. 19

shows that different graphs have different trends: as k

increases, the query time first decreases and then in-

creases on POK, LJ, and FB; the query time first in-

creases then decreases on WIKI; the query time fluc-

tuates on DBLP and SK. Also, by comparing with the

query time obtained using betweenness (when k is set

to infinity), we find that the query time obtained using

k-betweenness are comparable. This shows that using

k-betweenness as the node order can reduce the index

size without sacrificing the query time.

Exp 15: Effect of Sampling Time T . PSL∗I
adopts a sampling-based algorithm to approximate k-

betweenness. Instead of giving the total sample size,

PSL∗I provides the time limit T for the sampling pro-

cess. To evaluate the effect of sampling time T on the
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Fig. 16 The Effect of the Node Order on the Query Time
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Fig. 17 The Effect of the Node Order on the Index Time
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Fig. 18 The Effect of the Hop Number k on the Index Size (PSL∗
I)

index size of PSL∗I, we changed T from 900, 1800, 3600,

5400, to 7200 seconds, and the results are given in

Fig. 20.

On all the graphs, the index size does not increase

as more sampling time is given. This is reasonable, as

an increasing T leads to a more accurate estimation of

k-betweenness. Furthermore, for some graphs, such as

DBLP and FB, the index size reduce smoothly after one

hour, which explains why 3600 seconds is the default

sampling time for PSL∗I. However, on large graphs such

as LJ and SK, the index size keeps decreasing. This

verifies the benefits of our method in handling large

graphs when more sampling time is given.

Exp 16: Effect of Sampling Time T on Query

Time. We examine the effect of sampling time T on

the query time, where all experimental settings are the

same as the Exp 15. Fig. 21 shows that the difference in

query time across all graphs is insignificant when T is

changed: despite the different trends in query time on

various graphs, the ratio between the maximum and

minimum query time on all graphs does not exceed

2.83. This result further highlights that k-betweenness

as node order can guarantee good query time while re-

ducing index size.

Exp 17: Overall Index Size Reduction Ratio. Af-

ter the reduction of index time using multi-core par-
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Fig. 19 The Effect of the Hop Number k on the Query Time
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Table 7 Overall Index Size Reduction Ratio

Name PSLD PSL∗
I Ratio Name PSLD PSL∗

I Ratio
(MB) (MB) % (MB) (MB) %

DELI 364.05 110.474 69.65 GP 355.24 107.495 69.74
LAST 1997.52 314.168 84.27 GOOG 589.11 196.834 66.59
AMAZ 9025.18 4150.954 54.01 DIGG 1178.41 278.791 76.34
FLIX 11444.23 657.548 94.25 TREC 2208.96 300.507 86.40
YOUT 2141.51 919.85 57.05 SKIT 2209.91 691.007 68.73
TWIT 582.58 414.14 28.91 HUDO 3738.98 1442.207 61.43
PET 519.32 305.785 41.12 BAID 4493.61 1717.496 61.78
TPD 1783.19 809.296 54.62 DBLP 50996.04 18300.504 64.11
TOPC 2365.64 1557.537 34.16 POK 44414.19 23996.3 45.97
FLIC 2839.96 845.43 70.23 HOST 8005.39 2230.982 72.13
STAC 7495.68 2686.053 64.17 LJ 94950.66 33542.286 64.67
INDO 17731.95 1581.035 91.08 WIKI 45447.10 15302.388 66.33
ARAB 146394.20 9587.213 93.45 SK 190216.16 42533.59 77.64

allelization, the study of index size reduction becomes

important. This paper proposes two ways in reducing

the index size of PSLD: i) index compression by remov-

ing redundant information (e.g., equivalent relationship

reduction and local minimum set elimination); and ii)

setting the node order using k-betweenness. The final

PSL∗I combines the above two reduction techniques. To

further highlight the significance of size reduction, we

compared the index size between PSLD and PSL∗I. We

use the metric ratio to show the percentage of index

size reduction that PSL∗I achieves compared to PSLD,
where ratio = 100%− Index size of PSL∗

I

Index size of PSLD
×100%. Table 7

lists the ratio on all graphs that PSLD can complete the

labeling process.

Table 7 shows that PSL∗I can compress PSLD’s in-

dex size by 94.25% on FLIX— PSLD’s index size is

decreased by more than an order of magnitude. Fur-

thermore, PSL∗I can build the index on large graphs

where PSLD fails, demonstrating the necessity in using
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Fig. 21 The Effect of Sampling Time T on the Query Time

index reduction techniques for distance labeling even in

a multi-core environment.

8 Conclusions

In this paper, we propose a novel parallelized labeling

scheme for distance queries on small-world networks.

Our method accelerates the index construction by con-

currently creating labels with the same label distances.

Moreover, the index size is reduced by removing redun-

dant nodes from the graph and removing labels of local

minimum sets from the index. Scalable approximation

algorithms for k-betweenness computation is proposed,

so that k-betweenness can be used as a node order to

further reduce the index size. Extensive experimental

results illustrate the superior efficiency of our approach.

In particular, our approach enables the building of the

index for networks at billion scales. Experimental re-

sults verify the near-linear speedup of our algorithms

in a multi-core environment.
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A Proof of Lemma 1

According to triangle inequality, for any node u ∈ V ,
dist(s, u) + dist(u, t) ≥ dist(s, t). For a node u′ on a shortest
path from s to t, dist(s, t) = dist(s, u′) + dist(u′, t). Since
C(s) ∩ C(t) shares a node with a shortest path from s to t,
minv∈C(s)∩C(t) dist(s, v) + dist(v, t) = dist(s, t).

B Extend PSL to Directed Graphs

For directed graphs, each node v ∈ V is associated with
a set of hub nodes CIN(v), where w ∈ CIN(v) can reach v
and another set of hub nodes COUT(v), where v can reach
w ∈ COUT(v). Combined with the distance, we obtain two
labels LIN(v) = {(u, dist(u, v))|u ∈ CIN(v)} and LOUT(v) =
{(u, dist(v, u))|u ∈ COUT(v)} for the node v. To compute the
labels LOUT(v), we run PSL on G; To compute LIN(v), we re-
verse the edge direction of graph and run PSL on the reversed
graph. To process the distance query q(s, t), we make use of
Query(s, t, L) defined in the following equation.

Query(s, t, L) = minu∈COUT(s)∩CIN(t)(dist(s, u) + dist(u, t)).


