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Attributed Hypergraph Clustering (AHC) aims at partitioning a hypergraph into clusters such that nodes in

the same cluster are close to each other with both high connectedness and homogeneous attributes. Existing

AHC methods are all based on matrix factorization which may incur a substantial computation cost; more

importantly, they inherently require a prior knowledge of the number of clusters as an input which, if

inaccurately estimated, shall lead to a significant deterioration in the clustering quality. In this paper, we

propose Attributed Hypergraph Representation for Clustering (AHRC), a cluster-number-free hypergraph

clustering consisting of an effective integration of the hypergraph topology and node attributes for hypergraph

representation, a multi-hop modularity function for optimization, and a hypergraph sparsification for scalable

computation. AHRC achieves cutting-edge clustering quality and efficiency: compared to the state-of-the-art

(SOTA) AHC method on 10 real hypergraphs, AHRC obtains an average of 20% higher F-measure, 24% higher

ARI, 26% higher Jaccard Similarity, 10% higher Purity, and runs 5.5× faster. As a byproduct, the intermediate

result of graph representation dramatically boosts the clustering quality of SOTA contrastive-learning-based

hypergraph clustering methods, showing the generality of our graph representation.
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1 Introduction
Attributed Graph Clustering (AGC) [21] partitions an attributed graph into a collection of disjoint

node sets where each node set is called a cluster. In addition to the topological requirement imposed

by traditional graph clustering, i.e., nodes in one cluster should be more closely connected to

each other than to the nodes in the other clusters, AGC also expects nodes in the same cluster to
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Fig. 1. An overview of our pipeline AHRC

have similar attributes [7]. Traditional graph clustering can be formulated as optimizations with

objective functions such as normalized cut [57], conductance [34], and modularity [5], or addressed

by firstly embedding the graph nodes into a vector space using eigenvalue decomposition [64] or

graph neural networks [4, 63, 71] (GNNs), and then applying K-Means for clustering. AGC can

be reduced to traditional graph clustering by edge re-weighting [50] based on attribute similarity,

or by treating each attribute as a node in an augmented graph [80]. Both, as commented in [70],

ignore the similarities between nodes that are not directly connected. Alternatively, AGC can be

addressed by computing similarities between all pairs of nodes [17], integrating both topological

and attributed similarity; such integration can also be achieved in a random walk model [70].

The state-of-the-art quality of AGC is achieved [39, 43] by graph contrastive learning [72], e.g.,

TriCL [43], which learns unsupervised representations of the graph nodes based on both graph

topology and node attributes.

With graph applications engaging more with high-order connections [3], e.g., groups in social

networks or author teams in citation networks [66], recent years have witnessed growing research

on hypergraphs [3]. Unlike traditional graphs where each edge connects two nodes (thus called

dyadic graphs), hypergraphs allow each edge to connect an arbitrary number of nodes (called

hyperedges). This paper studies Attributed Hypergraph Clustering (AHC), aiming to partition a

hypergraph into clusters such that nodes in the same cluster are close to each other with both

high connectedness and homogeneous attributes. AHC has wide applications in social community

detection [46], metabolic reactions analysis [38], image segmentation [36], and biological analy-

sis [67], especially in scenarios where data involves not only high-order topological connections

but also diverse node attributes. For example, in a coauthor network, a node represents an author.

The node attribute forms an author profile, which could be the collection of keywords used by

the author’s research work, a blurb describing the research area, or a high-dimensional vector

learned by a deep learning system based on the author’s publications. A hyperedge represents a

team of co-authors who published a paper in a joint effort. AHC identifies groups of authors with

high research relevance by jointly considering their profiles and co-authorship in hyperedges. In

a protein complex network, a node denotes a protein, node attributes describe the protein, and a

hyperedge represents a group of proteins that form a multi-protein complex. AHC uncovers groups

of proteins that share high functional similarities, providing insights into biological processes.

However, existing AHC methods face two challenges in achieving both efficiency and effectiveness:

the difficulty of hypergraph representation and limited scalability.

Firstly, existing AHC methods [10, 19, 32, 46] are all matrix factorization based. They require

prior knowledge of the number of clusters to produce quality clustering and may incur substantial

computation costs. Specifically, the cluster number of a desirable AHC is usually dataset-dependent

and unknown in advance, which, if inaccurately estimated, shall lead to a significant deterioration

in the clustering quality [65]. Besides, matrix factorization facilitated with Non-negative Matrix
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Factorization (NMF), Singular Value Decomposition (SVD), or eigendecomposition, leads to substan-

tial computational and memory costs, thereby limiting scalability [32]. The state-of-the-art AHC
method AHCKA [46] adopts a greedy iterative method to approximate the eigendecomposition,

achieving outstanding performance; however, its algorithm design and performance are still highly

sensitive to the cluster number, and the complexity of approximate eigendecomposition may hinder

a further improvement on the scalability of AHCKA.
Secondly, a more effective integration of the hypergraph topology and node attributes is desirable

for quality and scalable clustering. Existing works [22, 59, 78] focusing on only one of the two lack

a clear pathway for integration. The integration that involves matrix operations such as NMF and

SVD incurs high computation costs [10, 19, 32] and is thus not scalable. AHCKA [46] performs a

multi-hop random walk where each step has a fixed probability to walk along the attribute graph

– the graph where each node 𝑣 is connected to the nodes whose attribute sets have the largest

cosine similarity to that of 𝑣 – instead of the hypergraph. However, it is unclear why the attribute

similarity should be propagated through multi-hop random walks especially when the attribute

graph has already considered attribute similarities among all node pairs.

Given the above challenges, this paper considers three questions. Q1) How to integrate the

topological and attributed information more effectively to enhance clustering quality? Q2) How to

conduct clustering without prior knowledge of cluster numbers while achieving high scalability

over large attributed hypergraphs? Q3) Could one generate a graph representation for AHC that is

generally applicable, e.g., can improve the clustering quality of existing learning-based methods?

We provide positive answers to the above questions with Attributed Hypergraph Representation

for Clustering (AHRC), a hypergraph clustering pipeline that achieves cutting-edge efficiency

and effectiveness. AHRC comprehensively outperforms the state-of-the-art attributed hypergraph

clustering method AHCKA [46]: averaged over 10 real hypergraphs, AHRC obtained 13% higher

F-measure, 16% higher ARI, 17% higher Jaccard Similarity, 11% higher Purity, and is 5.5× faster in

running time.

Figure 1 overviews the pipeline of our AHRC. Given an attributed hypergraph, AHRC computes

an Attribute Similarity Matrix (ASM) 𝑆𝐴 and a Topology Similarity Matrix (TSM) 𝑆𝑇 to capture the

node-wise relationships in terms of attributes and hypergraph topology, respectively, and integrate

them into an Integrated Similarity Matrix (ISM) 𝑆 . 𝑆𝐴 is derived from the attribute graph while 𝑆𝑇 is

obtained by firstly sparsifying the hypergraph and then performing a random walk to capture multi-

hop relations. AHRC formulates AHC as an optimization on the objective function of multi-hop

modularity and then engages the cluster-number-free Louvain for clustering; the intermediated ISM

𝑆 can alternatively be fed into other clustering methods, e.g., contrastive learning-based clustering

method, for general useage. In the design of the pipeline, we find that excluding the attribute

similarity from the random walk and our unique presentation integration of the attribute and

hypergraph topology are highly effective in enhancing the clustering quality. To make the method

scalable, we introduce a sparsification module, which dramatically improves the efficiency without

deteriorating the clustering quality. Our contributions are summarized below.

(1) We propose a cluster-number-free AHCmethod AHRC that represents an attributed hypergraph

for clustering by effectively integrating both hypergraph topology and node attributes. The

graph representation allows a formulation of a multi-hop modularity as the objective function

for optimization and can be of independent and general use in other clustering frameworks.

(2) AHRC adopts spanning forest sparsification to further scale up the pipeline while preserving

essential features for clustering.

(3) Extensive experiments justify the outperformance of AHRC over the state-of-the-art (SOTA)

AHCmethods in both scalability and effectiveness. AHRC is efficient: averaged over all datasets,
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our AHRC speeds up the SOTA method AHCKA [46] by an average of 5.4× and up to 23×.
AHRC is effective: it obtained 20% higher F-measure than AHCKA, 24% higher ARI, 26% higher

Jaccard Similarity, 10% higher Purity.

(4) AHRC intermediate graph representation S can be of general use. Notable improvements in

clustering quality are observed by feeding S into the convolutional encoder of two cutting-edge

attributed hypergraph contrastive learning models: averaged over tested real hypergraphs, by

using S, we outperform the best-in-class model TRICL by 38% in F-measure, 147% in ARI, 47%

in Jaccard Similarity, and 22% in Purity.

The rest of this paper is organized as follows. Section 2 introduces the building blocks of our

AHRC: attribute graph construction, hypergraph random walk, and modularity-based clustering.

Section 3 presents our proposed attributed hypergraph representation approach. Section 5 describes

the sparsification module for scalable computation and contrastive learning for the general use

of the graph representation. Section 6 discusses the related work. Section 7 shows the empirical

results. Section 8 concludes the paper.

2 Preliminary
Let 𝐴 be a set of attributes. An attributed hypergraphH(𝑉 , 𝐸, att) has a node set 𝑉 , an edge set 𝐸

where each edge 𝑒 ⊆ 𝑉 is a subset of 𝑉 , and a function att : 𝑉 ↦→ 2
𝐴
that maps each node 𝑣 in 𝑉 to

a subset att(𝑣) ⊆ 𝐴 of attributes. For each node 𝑣 ∈ 𝑉 , define the degree 𝑑𝑣 (H) of 𝑣 as the number

of hyperedges in H that contain node 𝑣 , i.e., 𝑑𝑣 (H) = |{𝑒 ∈ 𝐸 |𝑣 ∈ 𝑒}|. For a set 𝐶 ⊆ 𝑉 of nodes,

denote by volH (𝐶) =
∑
𝑣∈𝐶 𝑑𝑣 (H) the volume of 𝐶 . Denote by vol(H) = volH (𝑉 ) the volume of

hypergraphH . Denote by 𝑛 = |𝑉 | number of nodes inH ,𝑚 = |𝐸 | the number of edges, 𝑑 = |𝐴|
the number of attributes. WhenH is clear in the context, we denote by 𝑑𝑣 the degree of a node 𝑣

and by vol(𝐶) the volume of a node set 𝐶 . Denote by H ∈ 𝑅𝑚×𝑛 the incident matrix ofH : for each

edge 𝑒𝑖 , 𝑖 ∈ [𝑚] and each node 𝑣 𝑗 , 𝑗 ∈ [𝑛], entry H[𝑖, 𝑗] = [𝑣 𝑗 ∈ 𝑒𝑖 ], i.e., H[𝑖, 𝑗] = 1 if 𝑣 𝑗 is incident

to 𝑒𝑖 and H[𝑖, 𝑗] = 0 if otherwise.

An attributed dyadic graph𝐺 (𝑉 , 𝐸, att) is a special attributed hypergraph where each edge 𝑒 ∈ 𝐸
has exactly two nodes. Represent the graph 𝐺 as an adjacency matrix W: for two nodes 𝑣𝑖 and

𝑣 𝑗 , ∀𝑖, 𝑗 ∈ [𝑛], W[𝑖, 𝑗] = 1 if there is an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸; otherwise W[𝑖, 𝑗] = 0. A weighted

(dyadic) graph assigns a weight𝑤 (𝑒) to each edge 𝑒 ∈ 𝐸, its adjacency matrix hasW[𝑖, 𝑗] = 𝑤 (𝑒) if
𝑒 (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 andW[𝑖, 𝑗] = 0 if no edge in 𝐸 connects 𝑣𝑖 and 𝑣 𝑗 .

CliqueReduction [40].Given an attributed hypergraphH(𝑉 , 𝐸, att), clique reduction is a standard
process that transforms H to an attributed dyadic graph 𝐺2 (𝑉 , 𝐸2, att). Specifically, it converts
each hyperedge 𝑒 ∈ 𝐸 to a clique of nodes in 𝑒 and unions the cliques to a dyadic graph 𝐺2 with

edge set 𝐸2 = {(𝑢, 𝑣) |∃𝑒 ∈ 𝐸, 𝑠.𝑡 ., 𝑢, 𝑣 ∈ 𝑒}. We call vol(𝐺2) the dyadic volume ofH and denote it as

vol2 (H). The drawback of clique reduction is the loss of high-order information.

Property 1 (Attributed Hypergraph Clustering [46, 70]). Given an attributed hypergraph
H(𝑉 , 𝐸, att), a clustering C ofH , a disjoint partitioning of𝑉 , is desirable if it satisfies two constraints:
1) nodes in the same cluster are closely connected to each other in terms of structure, while nodes between
clusters are structurally separated, and 2) nodes in the same cluster have homogeneous attribute values,
while nodes in different clusters may have diverse attribute values.

Remarks. Property 1 shows the high-level objectives of existing AHC methods [46, 70]; however,

their solutions assume that the number of clusters |C | in a desirable clustering is known in advance,

which is not valid in reality. This paper focuses on the problem of finding a desirable AHC without

a predefined cluster number.
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2.1 Attribute Graph
To capture the attribute similarities among nodes, the techniques of K-Nearest Neighbor (KNN)

search have been widely used [30, 46, 47]. Specifically, given an attributed hypergraphH(𝑉 , 𝐸, att)
and a parameter 𝐾 , for each node 𝑣 ∈ 𝑉 , the 𝐾 nodes 𝑁𝐾 (𝑣𝑖 ) with the highest attribute similarity

with 𝑣 are computed. For two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , measure their attribute similarity with a cosine-

similarity function 𝑓 (att(𝑣𝑖 ), att(𝑣 𝑗 )) over their attribute sets. A straightforward similarity matrix

can then be derived as follows:

M[𝑖, 𝑗] =
{
𝑓 (att(𝑣𝑖 ), att(𝑣 𝑗 )), if 𝑣 𝑗 ∈ 𝑁𝐾 (𝑣𝑖 )
0, otherwise

(1)

Because M is not symmetric, AHCKA [46] constructs a symmetric Attribute Similarity Matrix

(ASM) SA ∈ R𝑛×𝑛 by letting SA = M +M⊺
and uses SA in the random walk for clustering. While

computing the exact KNN graph could take quadratic time, fast approximate KNN algorithm [11, 27]

has been adopted on large-scale attributed graphs due to its outstanding efficiency and accuracy.

The attribute graph is a weighted graph constructed according to SA.

Example 1. For example, in the hypergraph shown in Figure 1(a), node 𝑣0 shares the same attribute
“Blue” with nodes 𝑣1 and 𝑣2, yielding a cosine similarity of 1. In contrast, 𝑣0 has a different attribute
from nodes 𝑣3 − 𝑣5, their similarity is 0. As illustrated in Figure 2(a), when 𝐾 = 2, both 𝑣1 and 𝑣2 are
KNN neighbors of 𝑣0. Similarly, 𝑣0 is a KNN neighbor of 𝑣1. So, M[0,1] = M[1,0] = 1 and SA[0,1] =
M[0,1] +M[1,0] = 2.

2.2 Hypergraph RandomWalk
Random walk captures multi-hop similarities among nodes in a graph [31]. To preserve the high-

order information in a hypergraph, the random walk is conducted in two steps [28]. Step 1 walks

from a node 𝑣 to an edge 𝑒 chosen uniformly at random from all the incident hyperedges of 𝑣 . Step

2 walks from 𝑒 to a node 𝑢 chosen uniformly at random from all the nodes in 𝑒 . Formally, given an

attributed hypergraphH with incident matrix H ∈ R𝑚×𝑛 , let TV ∈ R𝑛×𝑚 and TE ∈ R𝑚×𝑛 be the
row-normalized matrices of H⊺

and H, respectively. The transition matrix of Step 1 is TV and that

of Step 2 is TE. We call T = TV × TE the hypergraph transition matrix.
Based on the hypergraph transition matrix defined above, the random walk with restart process

on dyadic graph [62] can be generalized to hypergraph, to capture the multi-hop topology in the

hypergraph. Formally, from a node 𝑢 ∈ 𝑉 , an 𝛼,𝛾-Hypergraph RandomWalk moves in 𝛾 steps

where in each step:

• With probability 𝛼 , terminates at the current node and then jumps back to the source node 𝑢;

• With probability 1 − 𝛼 , transits from the current node 𝑣𝑖 to a node 𝑣 𝑗 based on the hypergraph

transition matrix T.

2.3 Modularity-based Clustering
On dyadic graphs, a widely adopted line of clustering optimizes the modularity function proposed

by Newman-Girvan [51]. Given an unweighted dyadic graph𝐺 (𝑉 , 𝐸) and a random graph model [2]

that preserves the degree distribution of 𝐺 , the NG modularity NG(𝐶) of a subset 𝐶 of nodes in 𝐺

is defined as follows.

NG(𝐶) = |𝐸 (𝐶) | − 𝐸𝑥𝑝 [|𝐸 (𝐶) |]
𝑚

=
2|𝐸 (𝐶) |
vol(𝐺) −

(
vol(𝐶)
vol(𝐺)

)
2

(2)

where 𝐸 (𝐶) = {(𝑢, 𝑣) ∈ 𝐸 |𝑢, 𝑣 ∈ 𝐶} is the set of edges with both ends in 𝐶 . For a clustering C , the

modularity for C is the sum of modularity for each cluster 𝐶 ∈ C , i.e., NG(C ) = ∑
𝐶∈C NG(𝐶).
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Fig. 2. Illustrative examples of our pipeline AHRC

The NG modularity measures the difference between the actual number of innercluster edges of

𝐺 and the expected number of innercluster edges of a random graph. A higher modularity score

indicates a more pronounced clustering structure: nodes within the same cluster of C are more

closely connected in 𝐺 than that would be anticipated in a random graph.

Modularity-based clustering is highly popular [5, 14, 22, 33, 52] especially in large-scale graph

applications because it requires no prior knowledge of the cluster number, i.e., it decides the cluster

number automatically, and moreover, its algorithm, e.g., Louvain [5], achieves both high scalability

and clustering quality [77].

Our proposed clustering method is established based on the above building blocks, which will be

introduced in Section 3.

3 Clustering Attributed Hypergraph
In this section, we introduce the backbone (modules shaded in Figure 1) of the hypergraph clustering

pipeline of Attributed Hypergraph Representation for Clustering (AHRC) in two parts. Section 3.1

elaborates attributed hypergraph representation (AHR) which integrates hypergraph topology and

attribute information into an Integrated Similarity Matrix (ISM) S. Section 3.2 formulates, based on

S, an integrated multi-hop modularity, as the objective function for modularity-based clustering.

3.1 Attributed Hypergraph Representation
The topological similarity between nodes in a graph is computed based on 𝛼,𝛾-Hypergraph Random

Walk introduced in Section 2, which derives the Topology Similarity Matrix (TSM) ST ∈ R𝑛×𝑛

ST = 𝛼

𝛾∑︁
𝑙=0

(1 − 𝛼)𝑙T𝑙 , (3)

where entry ST [𝑖, 𝑗] is the probability that an 𝛼 ,𝛾-hypergraph random walk from 𝑣𝑖 terminates at

𝑣 𝑗 under hypergraph transition matrix T defined in Section 2.2. ST captures multi-hop topological

similarity by considering random walks up-to-𝛾 lengths. Specifically, 𝛼 controls the probability of

restarting the random walk from the initial node at each step, balancing local and global topological

information. T𝑙 represents the probability of transitioning from one node to another in exactly 𝑙

steps. The summation

∑𝛾

𝑙=0
(1 − 𝛼)𝑙T𝑙 captures the contribution of walks of different lengths (from

0 to 𝛾 hops) to the overall topological similarity.

The parameter 𝛾 can be infinite, but it is practically set to a constant for an efficient approxi-

mation [46]. Our empirical studies suggest that 𝛾 = 2 strikes a balance between the computation

cost and effectiveness and thus is set as a default value. Lemma 1 shows the computational time

and space complexities of ST when 𝛾 = 2. The proof of Lemma 1 indicates that the main cost in

computing ST arises from the large dyadic volume vol2 (H). To mitigate this issue, Section 4 will

show a sparsification process to reduce vol2 (H).
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Algorithm 1: Integrator
Input: Topological similarity matrix ST, attributed similarity matrix SA
Output: Integrated similarity matrix S

1 Compute row normalization matrices ST ← norm(ST) and SA ← norm(SA);
2 Compute S′ ← ST × SA;
3 for each entry S′ [𝑖, 𝑗] do Let S[𝑖, 𝑗] ←

√︁
S′ [𝑖, 𝑗];

4 return S;

Lemma 1. Given a hypergraphH and let 𝛾 = 2, the computation of ST takes 𝑂 ( vol2 (H)
2

𝑛
) time and

𝑂 ( vol2 (H)
2

𝑛
) memory space in the average case.

Proof. Given a hypergraph H , the number of non-zero entries in the transition matrix T is

𝑂 (vol2 (H)) because any two nodes have non-zero transition probability if they have at least one

common incident hyperedge. Since T is a sparse matrix, the time complexity of computing matrix

power T2
is 𝑂 ( vol2 (H)

2

𝑛
) [73]. Since the sparse matrix power takes the main computational cost,

the overall time complexity of computing ST is thus to be 𝑂 ( vol2 (H)
2

𝑛
). The space overhead is also

determined by the densest matrix T2
. For nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , we call 𝑣 𝑗 a 1-hop neighbor of 𝑣𝑖 if entry

T[𝑖, 𝑗] > 0. As there are𝑂 (vol2 (H)) non-zero entries in T, the average number of 1-hop neighbors

of a node is𝑂 ( vol2 (H)
𝑛
). Similarly, we call node 𝑣 𝑗 to be the 2-hop neighbor of 𝑣𝑖 if T2 [𝑖, 𝑗] > 0. The

average number of 2-hop neighbors of a node is thus expected to be𝑂 (( vol2 (H)
𝑛
)2). Thus, summing

up over 𝑛 nodes, the overall space complexity is expected to be𝑂 ( vol2 (H)
2

𝑛
) in the average case. □

On the other hand, we can employ a fast approximate KNN search to construct the attribute

graph and the corresponding Attribute Similarity Matrix (ASM) SA based on Section 2.1.

Integrated Similarity.With Topology Similarity Matrix (TSM) and Attribute Similarity Matrix

(ASM), we now compute the integrated similarity between nodes. We first show the steps of the

integration and then elaborate on the rationales behind the integration.

Algorithm 1 shows the pseudo code for computing the integrated similarity. Given the topological

similarity matrix ST and attribute similarity matrix SA, Line 1 performs row normalizations on

both ST and SA to convert each row into probability distributions. Consequently, entry ST [𝑖, 𝑗]
(resp. SA [𝑖, 𝑗]) denotes the topological (resp. attributed) similarity of 𝑣 𝑗 from the perspective of

𝑣𝑖 . Line 2 defines S′ ∈ R𝑛×𝑛 as S′ = ST × SA where entry S′ [𝑖, 𝑗] = ∑
𝑣𝑟 ∈𝑉 ST [𝑖, 𝑟 ] · SA [𝑟, 𝑗] is

the weighted sum of the product of ST [𝑖, 𝑟 ] and SA [𝑟, 𝑗] over all intermediate nodes 𝑣𝑟 . Line 3

transforms S′ to Integrated Similarity Matrix (ISM) S by applying a square root transformation [54],

i.e., S[𝑖, 𝑗] = 𝜌 (S′ [𝑖, 𝑗]) =
√︁
S′ [𝑖, 𝑗], for each pair 𝑖, 𝑗 ∈ [𝑛].

Example 2. Given row-normalized ST and SA, Figure 2(c) shows how to compute the entry S[2,1].
First, we calculate the dot product of ST[2,:] and SA[:,1] as S′[2,1] = ST[2,:] · SA[:,1] = 0.45. Then, the
square root transformation is applied, giving S[2,1] =

√
0.45 ≈ 0.7.

Interpretation. S′ propagates the multi-hop topological similarity across the attribute graph.

Specifically, for two nodes 𝑣𝑖 , 𝑣 𝑗 , and an intermediate node 𝑣𝑟 , the topological similarity between

𝑣𝑖 and 𝑣𝑟 is passed on to 𝑣 𝑗 if 𝑣 𝑗 has a similar set of attributes with 𝑣𝑟 . In other words, if 𝑣 𝑗
and 𝑣𝑟 are similar by nature (attribute-wise), they exchange the information of their topological

neighbors in the computation of S′. S′ [𝑖, 𝑗] reflects a similarity between 𝑣𝑖 and 𝑣 𝑗 in terms of both

topology and attributes. Integrated Similarity Matrix (ISM) S is eventually computed by applying a

square root transformation on S′ for a better similarity distribution. Specifically, in the presence
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(1) Bad clustering C ′ (0.34→ 0.25) (2) Clustering C (0.32→ 0.27)

Fig. 3. Example on how transformation affects modularity

of unbalanced graph structures [76], existing optimization methods adopting objectives (e.g., cut

ratio [42], conductance [49] and modularity [23]) empirically does not perform well. In other words,

they tend to favor graphs with balanced ground truth clusterings (i.e., each cluster has similar

volume). By applying the concave square root function, large values become less influential, leading

to a more even distribution of similarities and consequently, a better clustering quality [24]. The

choice of the smooth function is not exclusive; we conducted experiments (Exp 6 in Section 7)

which suggests square root function is an ideal candidate.

Example 3. To illustrate the impact of the square root transformation on modularity-based clus-
tering, consider Figure 3. The graph consists of a 3-clique and a 7-clique, connected by a single edge.
Naturally, each clique would be its own cluster. Without the transformation, node 𝑣 might be incorrectly
assigned to the 3-clique cluster because the clustering C ′ in Figure 3 (1) has a higher modularity
(0.34 > 0.32). However, after applying the square root transformation, the modularity of C ′ decreases
significantly to 0.25, making it lower than that of the true clustering of C = {3-𝑐𝑙𝑖𝑞𝑢𝑒, 7-𝑐𝑙𝑖𝑞𝑢𝑒} in
Figure 3 (2).

Lemma 2 shows the time and space complexities of Algorithm 1.

Lemma 2. Given a topological similarity matrix ST and an attribute similarity matrix SA, Algo-
rithm 1 takes 𝑂 (𝐾 ·vol2 (H)

2

𝑛
) time and 𝑂 (𝐾 ·vol2 (H)

2

𝑛
) memory space.

Proof. We first prove that the space complexity of S is𝑂 (𝐾 ·vol2 (H)2), where𝐾 is the parameter

for the KNN algorithm. Since the average number of non-zero entries per row in sparse matrices ST
and SA is

vol2 (H)2
𝑛2

and 𝐾 , respectively, a node can access𝑂 (𝐾 ·vol2 (H)
2

𝑛2
) number of nodes on ST × SA.

The number of non-zero entries in S (the memory cost) is thus 𝑂 (𝐾 ·vol2 (H)
2

𝑛
).

Then, we prove the time complexity. Line 1 normalizes matrices ST and SA, taking 𝑂 ( vol2 (H)
2

𝑛
+

𝐾 · 𝑛) time. Since both ST and SA are sparse matrices with 𝑂 ( vol2 (H)
2

𝑛
) and 𝑂 (𝐾𝑛) numbers of

non-zero entries, respectively, the complexity of Line 2 is 𝑂 (𝐾 ·vol2 (H)
2

𝑛
) [73]. Line 3 performs a

transformation on S, taking 𝑂 (𝐾 ·vol2 (H)
2

𝑛
) time. Overall, Algorithm 1 takes 𝑂 (𝐾 ·vol2 (H)

2

𝑛
) time. □

Remarks.We represent the attributed hypergraph with Swhich combines both graph topology and

attribute information. Specifically, consider two nodes 𝑣𝑖 and 𝑣 𝑗 . If 𝑣𝑖 and 𝑣 𝑗 are closely connected

topologically and share homogeneous attributes, the probability of a random walk connecting them

should be high, leading to a large value of S[𝑖, 𝑗]. Conversely, if 𝑣𝑖 and 𝑣 𝑗 are distant with dissimilar

attributes, and there is no node that is similar to 𝑣 𝑗 (in terms of attributes) and topplogically close

to 𝑣𝑖 , the value of S[𝑖, 𝑗] should be small. Section 3.2 defines an integrated multi-hop modularity

for clustering.
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3.2 Integrated Multi-hop Modularity
The definition ofNGmodularity fails to capture the constraints of AHC (as described in Property 1),

as it considers neither multi-hop topology nor attribute information. To address this issue, we

propose an objective function, called Integrated Multi-Hop Modularity (IMM). Specifically, given an

attributed hypergraphH , Section 3.1 computes a similarity matrix S using our proposed attributed

hypergraph representation (AHR). Regard S as the adjacency matrix of a weighted dyadic graph

where entry S[𝑖, 𝑗] = 0 indicates there is no edge between nodes 𝑣𝑖 and 𝑣 𝑗 . We call this weighted

dyadic graph the representative graph ofH , on which we define the integrated multi-hop modularity,

denoted as IMM, as follows.

Definition 1 (Integrated Multi-Hop Modularity). Given an attributed hypergraph H , a
clustering C , and a similarity matrix S under the AHR model, the integrated multi-hop modularity of
the clustering C is defined as:

IMM(C ) =
∑︁
𝐶∈C

∑
𝑣𝑖 ,𝑣𝑗 ∈𝐶 S[𝑖, 𝑗]∑
𝑣𝑖 ,𝑣𝑗 ∈𝑉 S[𝑖, 𝑗] −

(∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝑉 S[𝑖, 𝑗]∑
𝑣𝑖 ,𝑣𝑗 ∈𝑉 S[𝑖, 𝑗]

)
2

. (4)

Note that

∑
𝑣𝑖 ,𝑣𝑗 ∈𝐶 S[𝑖, 𝑗] is the sum of similarities between all pairs of nodes within cluster 𝐶 ,

and

∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝑉 S[𝑖, 𝑗] is the sum of similarities of all nodes in 𝐶 with its neighbors. Recall that the

IMM does not require a predefined cluster number 𝑘 . The subsequent process is to partition all

nodes within 𝐺 , aiming to find the clustering C = {𝐶1,𝐶2, · · · ,𝐶 |C | } such that their IMM score is

maximized. Exact modularity optimization is NP-hard [8], leading to approximation approaches

such as Louvain [5].

Remarks. Different from the classic NG modularity function, which merely relies on edges (1-hop

relation), the IMM function (Definition 1) captures multi-hop relations under our AHR model,

which encodes high-order information in H. Specifically, the random walk takes into account the

paths that start from and end at nodes within the same cluster: given a cluster 𝐶 , IMM computes

the difference between the actual possibility that paths on the data graph stay within 𝐶 and, the

expected possibility that the paths on the random graph stay within 𝐶 . A higher modularity score

indicates that the actual paths within clusters are (probabilistically) more than what would be

expected in a random graph, suggesting a good clustering structure. Paths can capture higher-order

relationships between nodes, providing a richer representation of connectivity in the data graphs.

Implicitly generalizing modularity from edges to paths 1) allows the extraction of more informative

features on the data graphs, 2) is an alternative approach to overcome the resolution limit of

modularity (struggling to identify small clusters) [18], and thus 3) often brings higher clustering

quality [25].

3.3 The AHRC Algorithm
The process of AHRC starts with an attributed hypergraph as input, computes the integrated

similarity matrix as representation to capture both graph topological and attribute information

using the AHR model, and performs clustering based on this representation.

Algorithm 2 shows the pseudo code of the AHRC. It takes as input an attributed hypergraph

H(𝑉 , 𝐸, att), the attribute similarity matrix SA ofH , a decay factor 𝛼 , and the number of iteration

𝛾 for hypergraph random walk. Two additional inputs, a sparsification parameter 𝜏 and a boolean

indicator 𝑠𝑝𝑎𝑥 will also be taken when AHRC applies the proposed spanning forest sparsification

process (will be described in Section 4). In Line 1, AHRC first extracts the incident matrix H ofH
followed by computing the row normalization matrices TV and TE in Line 2. Then, the transition

matrix T of 𝛼,𝛾-Hypergraph Random Walk is computed (Line 3). After that, in Line 6, AHRC
computes the TSM ST according to Equation 3. Algorithm 1 is then called in Line 7 to compute the
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Algorithm 2: AHRC
Input: Attributed hypergraphH(𝑉 , 𝐸, att), attribute similarity matrix SA, decay factor 𝛼 , number of

iteration 𝛾 , sparsification parameter 𝜏 , and boolean 𝑠𝑝𝑎𝑥 : switch of the sparsification

Output: Clustering C
1 H← incident matrix ofH ;

2 Compute row normalization matrices TV ← norm(H⊺) and TE ← norm(H);
3 Compute transition matrix T← TV × TE;

4 if 𝑠𝑝𝑎𝑥 then
5 Perform matrix sparsification T← Sparsifier(T, 𝜏);
6 Compute topological similarity matrix ST ← 𝛼

∑𝛾
𝑙=0
(1 − 𝛼)𝑙T𝑙 ;

7 Compute integrated similarity matrix S← Integrator(ST, SA);
8 C ← Louvain(S);
9 return C ;

ISM S. Based on the obtained S, the Louvain method is then applied to do the clustering (Line 8).

Line 9 returns the resulting clustering C . Lemma 3 analyzes the time complexity of the AHRC
algorithm without spanning forest sparsification.

Lemma 3. When 𝛾 = 2, the time complexity of Algorithm 2 without spanning forest sparsification is
𝑂 (𝐾 ·vol2 (H)

2

𝑛
).

Proof. Since the number of non-zero entries in sparsematrixH is vol(H), Line 2 takes𝑂 (vol(H))
time. Both sparse matrices TV ∈ R𝑛×𝑚 and TE ∈ R𝑚×𝑛 have vol(H) non-zero entries, their multi-

plication takes𝑂 ( vol(H)
2

𝑛
) time [73] in Line 3. According to Lemma 1, Line 6 takes𝑂 ( vol2 (H)

2

𝑛
) time.

Line 7 then calls Algorithm 1 to multiply matrices ST and SA, taking 𝑂 (𝐾 ·vol2 (H)
2

𝑛
) time according

to Lemma 2. Since the matrix S has 𝑂 (𝐾 ·vol2 (H)
2

𝑛
) non-zero entries, the Louvain method called in

Line 8 is thus to be 𝑂 (𝐾 ·vol2 (H)
2

𝑛
). Therefore, the total time complexity of the AHRC algorithm is

𝑂 (𝐾 ·vol2 (H)
2

𝑛
). □

4 Spanning Forest Sparsification
This section introduces the module of spanning forest sparsification (Figure 1) which addresses the

main scalability bottleneck of AHRC. Lemma 3 indicates that the main scalability bottleneck of

AHRC is the large dyadic volume vol2 (H) resulting from the dense hypergraph transition matrix

T. It’s a natural idea to consider how to reduce vol2 (H) through sparsification. In this section, we

propose a linear-time graph sparsification method called Spanning Forest Sparsification. Recall the

definition of T and hypergraph random walk in Section 2.2, we have a Lemma as follows.

Lemma 4. Given a hypergraph transition matrix T, define a binary matrix of BT such that BT [𝑖, 𝑗] =
1 if T[𝑖, 𝑗] > 0 and BT [𝑖, 𝑗] = 0 otherwise. Then, BT is a symmetric matrix.

Proof. To prove that BT is a symmetric matrix, we show that BT [𝑖, 𝑗] = BT [ 𝑗, 𝑖] for every 𝑖, 𝑗 .
For any pair of nodes 𝑣𝑖 and 𝑣 𝑗 , assume T[𝑖, 𝑗] > 0. It implies that 𝑣𝑖 can transit to 𝑣 𝑗 through a

one-step random walk. According to the definition of hypergraph random walk, 𝑣𝑖 can transit to 𝑣 𝑗
if and only if they share at least one incident hyperedge. Thus, 𝑣𝑖 and 𝑣 𝑗 share at least one incident

hyperedge, and through this shared hyperedge, 𝑣 𝑗 can also transit to 𝑣𝑖 , leading to T[ 𝑗, 𝑖] > 0.

Therefore, we have T[ 𝑗, 𝑖] > 0 if T[𝑖, 𝑗] > 0. We can prove that T[𝑖, 𝑗] > 0 if T[ 𝑗, 𝑖] > 0 similarly

by reversing the roles of 𝑣𝑖 and 𝑣 𝑗 . Thus, for every 𝑖, 𝑗 , we have T[ 𝑗, 𝑖] > 0 if and only if T[𝑖, 𝑗] > 0,

and therefore BT [ 𝑗, 𝑖] = BT [𝑖, 𝑗]. □

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 59. Publication date: February 2025.



On Graph Representation for Attributed Hypergraph Clustering 59:11

Algorithm 3: Sparsifier
Input: Transition matrix T and sparsification parameter 𝜏

Output: Sparsified transition matrix T′

1 Initialize cumulative matrixM+ ← 0;
2 Initialize residual matrixM- ← T + T⊺

;

3 for 𝑖 ← 1 to 𝜏 do
4 Find maximum spanning forest Fi ← Kruskal(M-);
5 Update M- ← M- − Fi andM+ ← M+ + Fi;
6 T′ ← 0;
7 for each non-zero entry M+ [𝑖, 𝑗] then T′ [𝑖, 𝑗] ← T[𝑖, 𝑗];
8 return T′;

In this section, we represent T, and hence the random walk, as a weighted directed graph [28]

𝐺 with edge set {𝑒 (𝑖, 𝑗) |T[𝑖, 𝑗] > 0}, where the edge weight of 𝑒 (𝑖, 𝑗) is the transition probability

from node 𝑣𝑖 to 𝑣 𝑗 . According to Lemma 4,𝐺 has an undirected structure: for any node pairs (𝑣𝑖 , 𝑣 𝑗 ),
there is an edge from 𝑣𝑖 to 𝑣 𝑗 if and only if there is another edge from 𝑣 𝑗 to 𝑣𝑖 . 𝐺 has asymmetric

weights: due to the asymmetry of the hypergraph random walk, the weights of edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) may

not equal to that of 𝑒 (𝑣 𝑗 , 𝑣𝑖 ).
Given a graph 𝐺 with aforementioned properties, our method constructs the union of a set of

edge-disjoint maximum spanning forests, resulting in a sparsified graph that 1) is a structurally con-

nected subgraph of 𝐺 , 2) maintains the asymmetric edges weights of 𝐺 , and 3) preserve significant

relationships carrying large edge weights.

Given a transition matrix T and a parameter 𝜏 , we first compute the symmetric matrix T + T⊺
,

combining transition probabilities in both directions between nodes, yielding an adjacency matrix

of an undirected graph, denoted as 𝐺𝑠𝑦𝑚 . This symmetrization allows us to apply Kruskal’s algo-

rithm [37], which is designed to find the maximum spanning tree (forest) on undirected graphs. Next,

on 𝐺𝑠𝑦𝑚 , we generate the union of a set of edge-disjoint maximum spanning forests 𝐹1, 𝐹2, · · · , 𝐹𝜏 .
Each 𝐹𝑖 is a maximum spanning forest on𝐺𝑠𝑦𝑚 after removing those edges in 𝐹1, 𝐹2, · · · , 𝐹𝑖−1. The
union of these forests is denoted as 𝐹 = ∪𝑖∈[𝜏 ]𝐹𝑖 . 𝐹 can be computed iteratively. Specifically, we

maintain two graphs: a residual graph 𝐺− and a cumulative graph 𝐺+. Initially, 𝐺− is the same as

𝐺𝑠𝑦𝑚 and 𝐺+ has the same node set as 𝐺𝑠𝑦𝑚 but starts with an empty edge set. In each iteration 𝑖 ,

we generate a maximum spanning forest 𝐹𝑖 for 𝐺
−
by Kruskal’s algorithm. We then update𝐺− by

subtracting the set of edges in 𝐹𝑖 from 𝐺− , and update 𝐺+ by taking the union of the edge sets of

𝐹𝑖 and 𝐺
+
. The process repeats 𝜏 times. After termination, the edge set of 𝐺+ is the edge set of 𝐹 .

Finally, for each undirected edge 𝑒 (𝑖, 𝑗) in 𝐹 , we retain a pair of directed edges 𝑒 (𝑖, 𝑗) and 𝑒 ( 𝑗, 𝑖) in
the sparsified transition matrix T′.

Example 4. Consider the hypergraph in Figure 1(a) where the asymmetric transition probabilities
between 𝑣0 and 𝑣1 is T[0,1] = 0.2 and T[1,0] = 0.3, respectively. In Figure 2(b-i), we first compute the
symmetric matrix of T, yielding an undirected graph where edge 𝑒 (𝑣0, 𝑣1) has a weight of 0.2+0.3 = 0.5.
Figure 2(b-ii) then shows the spanning tree on the graph, preserving connectivity and prioritizing
larger edge weights. The asymmetric transition probability T[0,1] and T[1,0] can then be recovered
from the tree.

Algorithm 3 presents the pseudo code of the sparsification method, where the residual graph

𝐺− , cumulative graph𝐺+, and maximum spanning forest 𝐹𝑖 is represented by the adjacency matrix

M-
,M+

, and Fi, respectively. Algorithm 3 takes the transition matrix T and a parameter 𝜏 as inputs.

In Line 1, the matrix M+
is initialized as a zero matrix with the same shape as T. In Line 2, the
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Fig. 4. TCL+: AHRC for Contrastive Learning based Clustering

matrix M-
is initialized to be T + T⊺

. Lines 3-5 iteratively find the maximum spanning forest Fi by
calling the Kruskal’s algorithm and update the matricesM-

andM+
. Lemma 5 analyzes the time

complexity of the AHRC algorithm with sparsification.

Lemma 5. When 𝛾 = 2, the time complexity of Algorithm 2 using the spanning forest sparsification
method is 𝑂̃ (vol2 (H)).

Proof. Since the transitionmatrixT has𝑂 (vol2 (H)) number of non-zero entries according to the

proof of Lemma 1, Algorithm 3 takes𝑂 (𝜏 ·vol2 (H) log𝑛) time [37] for performing the sparsification.

Therefore, in Algorithm 2, Line 4-5 takes 𝑂 (𝜏 · vol2 (H) log𝑛) time by calling Algorithm 3. Given

that 𝜏 forests have 𝑂 (𝜏𝑛) edges in total, the sparsified transition matrix has 𝑂 (𝜏𝑛) number of

non-zero entries. According to Lemma 1, Line 6 of Algorithm 2 then takes 𝑂 (𝜏2𝑛) time to compute

matrix ST with 𝑂 (𝜏𝑛) non-zero entries. Line 7 multiplies matrices ST and SA, taking 𝑂 (𝜏𝐾𝑛) time

according to Lemma 2. The resulting matrix S has𝑂 (𝜏𝐾𝑛) non-zero entries. The Louvain algorithm

called in Line 8 thus takes 𝑂 (𝜏𝐾𝑛) time. Therefore, the overall time complexity of Algorithm 2 is

𝑂 (𝜏 · vol2 (H) log𝑛 + (𝜏 +𝐾)𝜏𝑛). Assuming 𝜏 and 𝐾 are small constants, the overall time complexity

of AHRC with sparsification is 𝑂̃ (vol2 (H)). □

Limitation. The proof of Lemma 5 shows that the spanning forest sparsification reduces the

dyadic volume vol2 (H) of a hypergraph for clustering, which brings dramatic improvement in the

clustering computation. In the spanning forest sparsification itself, however, AHRC still faces a

limitation as a main-memory algorithm. In other words, if the vol2 (H) of the original hypergraph
exceeds the memory limit, T cannot be computed in main memory. A possible remedy to this

limitation is to resort to external memory spanning forest sparsification, which has been listed

as our future work. According to the proof of Lemma 5, with T computed, the computational

complexity of the remaining processes in AHRC becomes 𝑂 ((𝜏 + 𝐾)𝜏𝑛) when 𝛾 = 2, thereby

bypassing the dependence on vol2 (H).

5 Enhancing Contrastive Learning with AHRC

This section introduces the module of contrastive learning as a general application of our graph

representation S. In the context of GNN-based attributed graph clustering, Graph Contrastive

Learning (GCL) [72] has emerged as a popular framework. It learns an encoding function that

takes node attributes and graph topology as input, and produces node embeddings as output. These

embeddings can then be used for clustering by applying k-Means algorithm. In this section, we

show how the attributed hypergraph representation generated by our AHRmodel enhances existing

GCL methods.

We proposed two models TCL+ and GRC+, as enhanced variants of the state-of-the-art GCL

methods TRICL [43] and GRACE [81], respectively, based on our AHRC. Figure 4 elaborates the
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module of contrastive learning + k-means in Figure 1 when it comes to TCL+. It consists of four
major components: graph augmentation, encoder, projection head, and contrastive loss. Typically,

the encoder is composed of one or more graph neural network layers built on the underlying

graph structure. Under our AHRC, we propose an AHR layer that enriches embeddings with the

comprehensive multi-hop topological and attribute information captured by the AHRC.
AHR Layer. The AHR layer is built on the Integrated Similarity Matrix (ISM) S under our AHRC
pipeline. Given an attributed hypergraph, we first compute ISM S using AHRC. Regarding S as a
weighted directed graph 𝐺 (𝑉 , 𝐸), graph convolution is then applied to the underlying unweighted

structure of 𝐺 to generate node embeddings for the contrastive learning process. Specifically, the

AHR Layer iteratively propagates embeddings through the unweighted structure of 𝐺 , updating

the embedding of each node by aggregating the embedding of its adjacent nodes. Let z(𝑖 )𝑣 be the

embedding of node 𝑣 ∈ 𝑉 at the 𝑖-th AHR layer, defined as:

z(𝑖 )𝑣 = 𝑓 (z(𝑖−1)𝑣 , {z(𝑖−1)𝑢 : 𝑒 (𝑢, 𝑣) ∈ 𝐸}) (5)

where 𝑓 is the aggregation rule. Then, our proposed models, TCL+ and GRC+, incorporate the
AHR layers to the encoders of TRICL and GRACE, respectively.
TCL+Model Architecture. Figure 4 overviews the architecture of our proposed model TCL+. We

briefly introduce it in the following.

(1) Graph augmentation. Given an attributed hypergraphH , we first compute an ISM S using
the AHRC pipeline. Next, we augment S by performing random edge removing [81], which

we refer to as AHR edge removing, to generate two alternate views on S. In these views, a

portion (controlled by a hyperparameter 𝑝𝑑 ) of non-zero entries in S are randomly set to be

zero. Additionally, we perform hypergraph masking to augment the hypergraph topology and

attributes by performing random membership masking [43] and node feature masking [81] to

generate two alternate views of the hypergraph.

(2) Encoder. The encoder produces embeddings for the views generated in (1). As Figure 4(b)

shows, TCL+ employs a two-level encoder, each of which consists of one AHR layer and one

hypergraph layer. All layers use the element-wise mean pooling aggregation rule as a special

instance of Equation 5. Specifically, the AHR layer can be represented in the matrix form:

Z(𝑖 ) = 𝜎 (D−1BZ(𝑖−1)W(𝑖 ) ) (6)

whereB is a binary adjacency matrix such thatB[𝑖, 𝑗] = 1 if S[𝑖, 𝑗] > 0 andB[𝑖, 𝑗] = 0 otherwise,

representing the unweighted structure of 𝐺 . The initial node embeddings Z(0) are set to the

node attributes. D is the diagonal degree matrix where D[𝑖, 𝑖] = ∑
𝑗 B[𝑖, 𝑗],W(𝑖 )

is the trainable

weight for the 𝑖-th layer, and 𝜎 is the activation function ReLU(𝑥 ) = max(0, 𝑥). The hypergraph
layer applied on the hypergraph topology follows the same structure as that of [43].

(3) Projection head and contrastive loss. With the embeddings from encoder, we project them

by performing non-linear transformation [12] using the same projection heads as [43]. For node

embeddings generated by both hypergraph layers and AHR layers, we adopt the same objective

function as [43, 81]. The overall loss is computed as follows:

L𝑛 = L𝐻 +𝑤𝑠 · L𝐴 (7)

where L𝐻 and L𝐴 is the contrastive loss on the node embeddings generated by the hypergraph

layers and AHR layers, respectively.𝑤𝑠 is the weight balancing two losses.

GRC+Model Architecture.GRACE is a state-of-the-art GCL method on dyadic graphs, employing

a two-layer encoder. On hypergraphs,GRACE can be applied on a dyadic graph𝐺 ′ that is converted
from a given attributed hypergraph through clique reduction. Our proposed model,GRC+, enhances
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GRACE by replacing the layers built on 𝐺 ′ with the AHR layers built on the ISM S under our AHC
model.

6 Related Works
Attributed Hypergraph Clustering. Graph clustering [23, 56] has been extensively studied

on dyadic graphs. Traditional clustering optimizes objective functions such as modularity [15],

conductance [6], normalized cut [58], etc. Exact modularity optimization is computationally hard,

leading to approximation approaches [5, 16, 20, 52]. Among these, Louvain [5] has been widely

used in industry due to its scalability and clustering quality [77]. A hypergraph can be transformed

into a dyadic graph using clique reduction [1, 41], and then dyadic graph clustering methods can

be applied. However, this approach loses high-order information in hypergraphs. Other methods

represent a hypergraph using a hypergraph random walk transition matrix [28, 78] or a normalized

Laplacian [44, 45], transforming it into a weighted dyadic graph. Another line of research [14, 22]

models a hypergraph with a random hypergraph model, then clusters the hypergraph by iteratively

maximizing the modularity-based objective scores.

Attributed hypergraph clustering (AHC) has also been studied. Existing AHC methods [10, 19,

32, 46] predominantly rely on matrix factorization techniques, leading to high computational

and memory costs, thereby limiting scalability [32]. Additionally, they require prior knowledge

of the number of clusters to produce quality clustering. However, the number of clusters for a

desirable AHC is usually data-dependent and unknown beforehand, without knowing which, the

performance can drop dramatically [65]. Specifically, JNMF [19] first represents an attributed

hypergraph by a hypergraph Laplacian and an attribute matrix. It then integrates both by adopting

a Non-negative Matrix Factorization (NMF) objective function that consists of an NMF part for the

hypergraph topology and the attributes, respectively. [32] transforms an attributed hypergraph to

an attributed dyadic graph and then extends GNMF [10], an NMF-based high-dimensional data

clustering method, to three clustering algorithms GNMFA, GNMFC, GNMFL by clique reduction

or hypergraph normalized Laplacian. However, the clique reduction hinders clustering effectiveness

due to the information loss, and the NMF operations incur high computational and memory costs.

To address the issue, GRAC [32] represents hypergraph topology by a less costly hypergraph

Laplacian and then performs hypergraph convolution on node attributes to obtain a similarity

matrix such that they better integrate the topological and attribute information. However, the

following Singular Value Decomposition operations for clustering are still expensive, limiting its

scalability.

Discussion on Similarity in Algorithm Flow with Existing Works. As summarized in Table 1,

our AHRC shares three similar modules with existing works [28, 46]: an attribute graph module

(AGM) for exploiting attribute information, a randomwalk module (RWM) for capturing topological

information, and a clustering module (CLM). One of the major differences lies in how attribute

and topology are integrated. Specifically, our AHRC first computes attribute similarities in AGM

and topological similarities in RWM separately, and then integrates them in the representation

integration module. In CLM, our method maximizes a modularity-based objective using the Louvain

algorithm. In the solution of EDVW [28], all three modules, AGM, RWM, and CLM, are used.

Specifcially, the AGM calculates tf-idf for each node-hyperedge pair to compute a weighted incident

matrix. Then, the RWM constructs random-walk-based hypergraph Laplacians using the weighted

incidence matrix. Note that, different from AHRC which computes the two similarities separately,

EDVW computes them sequentially. Finally, the CLM adopts a cut-based objective function to

obtain clustering via matrix factorization over the constructed Laplacians. Unlike our approach,

EDVW carries out integration in the AGM module by directly computing the weighted incidence

matrix. AHCKA [46] also uses AGM, RWM, and CLM. AGM first exploits attributes by using the

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 59. Publication date: February 2025.



On Graph Representation for Attributed Hypergraph Clustering 59:15

Module
Attribute graph (AGM) Random walk (RWM) Clustering (CLM)

[28] weighted incident matrix topology cut-based objective

[46] KNN attribute graph topology + attribute cut-based objective

ours KNN attribute graph topology modularity-based objective

Table 1. Similarity in Algorithm Flow with Existing Methods

KNN algorithm to compute an attribute graph. The RWM then integrates the attribute graph

with hypergraph topology through a joint random walk process. Specifically, the random walk

intertwines these two graphs: At each step, a walk can either move to a neighbor in the attribute

graph or to a neighbor in the hypergraph, with a certain probability. However, it is unclear why

the attribute similarity should and could be transmitted through random walk, especially when the

attribute graph has considered attribute relations among all node pairs. Finally, the CLM adopts a

cut-based objective function to obtain clustering by iteratively approximating the eigenvectors of

the similarity matrix derived from the joint random walk. In contrast to our approach, AHCKA
integrates the unweighted hypergraph topology and the attribute graph through a joint random

walk in the RWM module.

We experimentally prove that our AHRC outperforms AHCKA [46] in the clustering quality;

EDVW [28] primarily focuses on text datasets, and cannot be directly applied to the hypergraphs

used in our experiments.

Measure the Similarity Among Nodes. The measures of node-wise topological [26, 55, 60, 65, 74]

and attribute [30, 47, 70, 79] similarity in graphs have been extensively studied. These similarities

can be stored in a similarity matrix, serving as an input for clustering algorithms such as Louvain

and spectral method. A line of methods uses Gaussian similarity [65], L2 distance [74], or random

walk [26, 55, 60] to compute node-wise similarities based on graph topology. However, these

methods fail to capture the attribute information. Another line of methods [70, 79] augments the

data graph by treating the attributes as ‘nodes’ and establishing a set of node-attribute associations.

They then perform randomwalks on the augmented graph to integrate both topological and attribute

information. However, these methods suffer from high computational costs on large graphs with

multi-dimensional attributes. Additionally, considering all attributes with potential inconsistencies

can diminish clustering effectiveness [46]. To capture sufficient attribute information while reducing

computational cost and noise, methods [30, 47] employ the KNN algorithm to measure the attribute

similarity.

Graph Contrastive Learning. Graph contrastive learning (GCL) methods [43, 68, 75, 81] learn

an encoding function that takes node attributes and graph topology as input and produces node

embeddings as output. This process involves using GNN layers to propagate and aggregate infor-

mation based on the underlying graph structure. The embeddings can then be used for clustering

by applying the k-Means algorithm. On dyadic graphs, the state-of-the-art GRACE [81] generates

two graph views by randomly removing a portion of edges and node attributes, then learns node

embeddings by maximizing the agreement that is measured by contrastive loss on node embeddings

in these two views. However, GRACE cannot be directly applied to hypergraphs, necessitating the

representation of hypergraphs into dyadic graphs through techniques such as clique reduction.

There is still a lack of efficient and effective hypergraph representationmethods. Among hypergraph

contrastive learning methods [43, 68, 75], TRICL [43] achieves the state-of-the-art performances. It

aggregates information directly on the underlying hypergraph structure, which can be represented

by a hypergraph transition matrix capturing the local topology of 1-hop neighbors. However, as

existing models are rather shallow – GRACE consists of two layers and TRICL has one layer only –
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Name Dataset 𝑛 𝑚 vol(H) vol2 (H) 𝑑

C13 C13-C [19] 693 545 3,475 26,908 4,728

WIK Wiki [32] 1,999 2,184 16,321 91,479 4,973

COA Cora-A [46] 2,708 1,072 4,585 17,136 1,433

COC Cora-C [46] 2,708 1,579 4,786 5,687 1,433

CIC Citeseer-C [46] 3,312 1,079 3,453 6,007 3,703

NEW 20News [46] 16,242 100 65,451 34,234,847 100

PBC Pubmed-C [32] 19,717 7,963 34,629 186,155 500

DBA DBLP-A [46] 41,302 22,363 99,561 906,564 1,425

AMZ Amazon [53] 2,249,006 4,285,799 72,816,145 5,993,189,994 1,000

TWB Tweibo [69] 2,320,895 50,133,382 100,266,764 61,186,099 1,657

MAG MAGPM [46] 2,353,996 1,082,711 17,279,202 517,767,530 1,000

Table 2. Data Statistics

they are inadequate to capture the global information. Under our AHR model, the AHR layer we

proposed captures multi-hop relationships between nodes in both topological and attribute senses,

effectively integrating global information to enhance the performance of contrastive learning on

hypergraphs.

7 Experiments
This section evaluates the performance of our proposed AHRC method on 10 real-world attributed

hypergraphs with ground truth clustering. To further demonstrate the scalability of our AHRC
method, we include an additional attributed dyadic graph, TWB, with 2.3 million nodes and 50

million edges in the scalability test. Table 2 shows the data statistics. For the algorithmic AHC
methods, all the experiments were conducted on a CPU server (Intel Xeon Gold 6230 CPU 2.10GHz,

376GB RAM, and Ubuntu 5.8.0-38-Generic). All methods were run 10 times to report the average.

The cut-off running time was set to be 12 hours. For contrastive-learning-based AHC methods, all

the experiments were conducted on a GPU server with an NVIDIA RTX A6000 48GB GPU.

Baselines. We compare our AHRC with 6 state-of-the-art algorithmic attributed hypergraph

clustering methods that are introduced in Section 6: GNMFA, GNMFC, GNMFL [10], JNMF [19],
GRAC [32], and AHCKA [46]. Additionally, we compare our contrastive learning methods TCL+
and GRC+ with the state-of-the-art contrastive learning methods TRICL [43] and GRACE [81]. For

a fair comparison, we use the objective computed on node embeddings in TRICL.
Parameters. For all baselines, we adopt the default parameter values as suggested in their respective

papers. Given that the number of clusters 𝑘 in a desirable clustering is often not available in reality,

our AHRC produces a reasonable 𝑘 based on Property 1. For consistent comparison [22], this value

of 𝑘 will be used for baselines that require a predefined 𝑘 . For our AHRC, unless otherwise specified,
we set the default values of parameter 𝛼 = 0.2 following [46], 𝜏 = 3, and 𝛾 = 2 based on our

sensitivity analysis in Exp 5 and Exp 6.

Hyperparameters.We adopt a standard practice for hyperparameter tuning and model evaluation

in graph contrastive learning [43, 61, 81]. We randomly divide graph nodes into a validation set (20%)

and a test set (80%). We perform a grid search for hyperparameters (i.e., the learning rate, 𝑝𝑑 and

𝑤𝑠 in TCL+, and 𝑝𝑒 and 𝑝𝑎 in GRC+) based on validation clustering performance in F-measure, and

choose the hyperparameters that yield the best performance. Then we use these hyperparameters

on the test set. The selected hyperparameter values and detailed sensitivity tests are provided in

the report.
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F-measure ARI
C13 WIK COA COC CIC NEW PBC DBA AMZ MAG C13 WIK COA COC CIC NEW PBC DBA AMZ MAG

GNMFA 0.13 0.35 0.23 0.22 0.19 \ 0.13 0.42 \ \ 0.01 0.24 0.01 0.00 0.02 \ 0.00 0.20 \ \
GNMFC 0.12 0.35 0.26 0.24 0.29 \ 0.17 0.41 \ \ 0.01 0.24 0.07 0.03 0.15 \ 0.04 0.19 \ \
GNMFL 0.14 0.30 0.28 0.27 0.42 \ 0.20 0.49 \ \ 0.02 0.17 0.14 0.07 0.28 \ 0.03 0.37 \ \
JNMF 0.19 0.30 0.33 0.26 0.33 0.12 0.08 0.42 \ \ 0.09 0.19 0.20 0.14 0.21 0.01 0.00 0.22 \ \
GRAC 0.39 0.32 0.38 0.33 0.28 0.14 0.14 0.56 \ \ 0.32 0.20 0.27 0.22 0.11 0.07 0.05 0.45 \ \
AHCKA 0.38 0.40 0.46 0.40 0.49 0.18 0.17 0.62 0.34 0.38 0.31 0.32 0.35 0.31 0.38 0.11 0.07 0.53 0.28 0.34
AHRC 0.40 0.41 0.55 0.51 0.46 0.28 0.17 0.62 0.61 0.43 0.33 0.34 0.46 0.41 0.36 0.20 0.06 0.53 0.54 0.37

Jaccard Similarity Purity
C13 WIK COA COC CIC NEW PBC DBA AMZ MAG C13 WIK COA COC CIC NEW PBC DBA AMZ MAG

GNMFA 0.07 0.21 0.13 0.12 0.11 \ 0.07 0.26 \ \ 0.21 0.54 0.29 0.26 0.23 \ 0.12 0.47 \ \
GNMFC 0.07 0.21 0.15 0.14 0.17 \ 0.09 0.26 \ \ 0.21 0.54 0.36 0.31 0.41 \ 0.20 0.46 \ \
GNMFL 0.07 0.18 0.16 0.15 0.26 \ 0.11 0.33 \ \ 0.22 0.49 0.42 0.44 0.55 \ 0.24 0.60 \ \
JNMF 0.10 0.17 0.20 0.15 0.19 0.06 0.04 0.27 \ \ 0.25 0.47 0.50 0.38 0.47 0.18 0.06 0.52 \ \
GRAC 0.24 0.19 0.24 0.19 0.16 0.08 0.07 0.38 \ \ 0.39 0.56 0.56 0.45 0.40 0.19 0.14 0.69 \ \
AHCKA 0.24 0.25 0.30 0.25 0.33 0.10 0.09 0.45 0.21 0.23 0.39 0.54 0.61 0.55 0.64 0.22 0.19 0.74 0.71 0.63
AHRC 0.25 0.26 0.38 0.34 0.30 0.17 0.09 0.45 0.44 0.28 0.41 0.57 0.71 0.67 0.62 0.37 0.19 0.74 0.65 0.59

Balanced Accuracy NMI
C13 WIK COA COC CIC NEW PBC DBA AMZ MAG C13 WIK COA COC CIC NEW PBC DBA AMZ MAG

GNMFA 0.51 0.71 0.51 0.50 0.51 \ 0.50 0.66 \ \ 0.12 0.46 0.05 0.02 0.02 \ 0.00 0.30 \ \
GNMFC 0.51 0.71 0.54 0.52 0.57 \ 0.52 0.65 \ \ 0.12 0.46 0.11 0.05 0.18 \ 0.15 0.28 \ \
GNMFL 0.53 0.68 0.56 0.54 0.65 \ 0.51 0.69 \ \ 0.16 0.46 0.20 0.21 0.27 \ 0.09 0.43 \ \
JNMF 0.59 0.64 0.59 0.56 0.59 0.51 0.50 0.66 \ \ 0.18 0.38 0.27 0.21 0.23 0.03 0.00 0.31 \ \
GRAC 0.80 0.68 0.62 0.59 0.56 0.53 0.52 0.73 \ \ 0.43 0.46 0.36 0.34 0.22 0.19 0.16 0.53 \ \
AHCKA 0.80 0.69 0.67 0.63 0.69 0.54 0.53 0.77 0.61 0.63 0.42 0.48 0.44 0.42 0.37 0.29 0.17 0.60 0.54 0.52
AHRC 0.78 0.69 0.73 0.69 0.67 0.58 0.53 0.77 0.77 0.67 0.44 0.52 0.49 0.46 0.36 0.27 0.14 0.61 0.47 0.49

Table 3. ClusteringQuality of Different Algorithmic Methods

7.1 Effectiveness and Scalability
In this section, we show the experimental results on clustering quality and scalability. Clustering

quality is evaluated in the alignment to the ground truth clustering with 6 widely used metrics:

F-measure [48], Adjusted Rand Index (ARI) [29], Jaccard Similarity [29], Purity [48], Balanced

Accuracy [9], and Normalized Mutual Information (NMI) [35]. For all the above metrics, a larger

score indicates better clustering quality.

Exp 1. Clustering Quality. Table 3 shows the clustering performance of our AHRC and 6 algo-

rithmic baselines on datasets with ground truth. Top-2 scores for each dataset are highlighted with

bold&underline and bold, respectively. ‘\’ denotes no result due to time-out or out-of-memory rea-

son. Baselines GNMFA, GNMFC, and GNMFL fail on dataset NEW as they regard the entire graph

as a single cluster. In general, our AHRC achieves the best overall performance. Specifically, on

F-measure, AHRC surpasses all 6 baselines (in top-down order as listed in Table 3 unless otherwise

specified) by 102%, 83%, 61%, 80%, 41%, and 20%, respectively, averaged over all datasets. In terms of

ARI, AHRC outperforms all 6 baselines by 8, 329%, 776%, 598%, 6, 585%, 85%, and 24%, respectively.

On Jaccard Similarity, AHRC is 133%, 104%, 86%, 107%, 53%, and 26% higher than the 6 baselines.

For Purity, AHRC outperforms the baselines by 98%, 60%, 34%, 75%, 34%, and 10%, respectively. On

Balanced Accuracy, AHRC outperforms baselines by 26%, 22%, 18%, 17%, 9%, and 5%, respectively.

On NMI, AHRC is 4, 645%, 237%, 83%, 2, 370%, and 24% higher than GNMFA, GNMFC, GNMFL,
JNMF, and GRAC, respectively. AHRC obtains a similar (by an average of −1% lower) NMI to

AHCKA.
Exp 2. Clustering Quality. Table 4 shows the clustering performance of our TCL+, GRC+, and 2

contrastive learning baselines on datasets with ground truth. Due to the out-of-memory reason,

none of the methods could run on the datasets with millions of nodes such as MAG. In general, our

TCL+ achieves the best overall performance among all 4 methods. Averaged across all datasets,

TCL+ obtains 694%, 45%, and 147% higher ARI than GRACE, GRC+, and TRICL, respectively, and
outperforms them by 78%, 33%, and 25% in terms of NMI, respectively.
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F-measure ARI
C13 WIK COA COC CIC NEW PBC DBA C13 WIK COA COC CIC NEW PBC DBA

GRACE 0.14 0.36 0.26 0.31 0.28 \ 0.18 \ 0.01 0.28 0.05 0.16 0.07 \ 0.07 \
GRC+ 0.29 0.40 0.35 0.31 0.35 0.19 0.16 \ 0.21 0.33 0.22 0.19 0.21 0.11 0.05 \
TRICL 0.17 0.21 0.44 0.37 0.45 0.19 0.16 0.56 0.04 0.06 0.34 0.26 0.35 0.12 0.07 0.44

TCL+ 0.39 0.39 0.46 0.43 0.46 0.23 0.20 0.65 0.31 0.31 0.37 0.32 0.36 0.14 0.07 0.57
Jaccard Similarity Purity

C13 WIK COA COC CIC NEW PBC DBA C13 WIK COA COC CIC NEW PBC DBA
GRACE 0.07 0.22 0.15 0.18 0.16 \ 0.10 \ 0.26 0.52 0.40 0.47 0.39 \ 0.20 \
GRC+ 0.17 0.25 0.21 0.18 0.21 0.11 0.09 \ 0.35 0.56 0.55 0.48 0.50 0.26 0.19 \
TRICL 0.09 0.12 0.28 0.23 0.29 0.11 0.08 0.39 0.28 0.35 0.61 0.54 0.59 0.22 0.17 0.71

TCL+ 0.24 0.24 0.30 0.27 0.30 0.13 0.11 0.49 0.38 0.55 0.62 0.59 0.61 0.27 0.24 0.77
Balanced Accuracy NMI

C13 WIK COA COC CIC NEW PBC DBA C13 WIK COA COC CIC NEW PBC DBA
GRACE 0.52 0.67 0.53 0.58 0.55 \ 0.53 \ 0.22 0.51 0.17 0.29 0.16 \ 0.19 \
GRC+ 0.68 0.68 0.61 0.59 0.61 0.54 0.52 \ 0.34 0.54 0.31 0.28 0.29 0.24 0.15 \
TRICL 0.61 0.58 0.65 0.62 0.66 0.54 0.53 0.75 0.22 0.29 0.43 0.40 0.38 0.32 0.19 0.58

TCL+ 0.79 0.68 0.66 0.65 0.66 0.55 0.53 0.78 0.44 0.47 0.44 0.45 0.39 0.33 0.21 0.64

Table 4. ClusteringQuality of Different Contrastive Learning Methods

C13 WIK COA COC CIC NEW PBC DBA AMZ MAG
Time Space Time Space Time Space Time Space Time Space Time Space Time Space Time Space Time Space Time Space

GNMFA 23.69 0.15 113 0.30 31.31 0.27 27.30 0.27 165 0.35 295 2.21 415 4.29 1550 20.17 \ \ \ \
GNMFC 23.90 0.15 118 0.27 32.54 0.23 27.30 0.23 164 0.31 302 2.14 411 4.27 1502 20.17 \ \ \ \
GNMFL 23.81 0.15 121 0.21 29.55 0.17 28.92 0.17 168 0.17 316 2.13 483 4.34 2382 20.11 \ \ \ \
JNMF 1.58 0.15 6.40 0.31 10.73 0.21 11.04 0.24 30.19 0.29 285 2.15 494 4.29 2716 20.11 \ \ \ \
GRAC 35.15 0.23 89.51 0.39 32.97 0.36 14.17 0.36 61.27 0.41 30.60 0.29 19.29 0.43 525 1.32 \ \ \ \
AHCKA 0.74 0.03 2.93 0.14 1.98 0.02 3.47 0.13 2.67 0.04 42.48 0.13 43.86 0.19 8.74 0.21 18799 6.16 11064 5.34
AHRC 0.16 0.03 0.47 0.04 0.48 0.02 0.74 0.02 0.47 0.02 33.37 0.16 3.70 0.07 9.53 0.19 6214 21.80 4236 16.19

Table 5. Time and Memory Cost of Different Algorithmic Methods (Time in Seconds, RAM in GBs)

To better demonstrate the effectiveness of our models and AHR layer, we group TCL+with TRICL,
andGRC+withGRACE, highlighting the best score within each group for each dataset. Specifically,

our TCL+ constantly outperforms TRICL on all datasets across all 6 metrics. Specifically, TCL+
achieves 38% higher F-measure, 147% higher ARI, 47% higher Jaccard Similarity, 22% higher Purity,

7% higher Balanced Accuracy, and 25% higher NMI compared to TRICL, averaged over all datasets.

Comparing our GRC+ and GRACE, GRC+ constantly surpasses GRACE on all datasets except PBC
across all 6 metrics: averaged over all datasets, GRC+ achieves 28%, 425%, 36%, 18%, 10%, and 33%

higher F-measure, ARI, Jaccard Similarity, Purity, Balanced Accuracy, and NMI, respectively, than

GRACE.
Exp 3. Time and Memory Cost. Table 5 shows the time and memory cost of AHRC and the

algorithmic baselines on 10 hypergraphs. On the largest hypergraphs AMZ and MAG, the baselines
GRAC failed with out-of-time errors, and the other baselines failed with out-of-memory errors. In

terms of running time,AHRC is in general the fastest among all 7 methods, showing the effectiveness

of ourmethod. Specifically, over all datasets,GNMFA,GNMFC,GNMFL, JNMF,GRAC, andAHCKA
is on average 140, 141, 156, 68, 85, and 4 times slower than our AHRC, respectively. In terms of

memory cost, averaged over all datasets, GNMFA, GNMFC, GNMFL, JNMF, and GRACE take 29,

28, 26, 28, and 10 times more memory space than our AHRC, respectively. On AMZ and MAG,
we take 2.5 and 2 times more memory space than AHRC, respectively. It is because we store the
transition matrix T of a hypergraph for spanning forest sparsification, while AHCKA maintains

3 small matrices: i) a matrix of size 𝑂 ((𝑘 + 1)𝑛) to approximate the top 𝑘 + 1 eigenvectors (𝑘 is

the number of clusters) of T for clustering, ii) the 𝑂 (vol(H)) incident matrix, and iii) the 𝑂 (𝐾𝑛)
transition matrix of the KNN attribute grap (𝐾 is the number of neighbors in the attribute graph).

However, the running time of AHCKA is much higher than that of AHRC for the iterative matrix
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Fig. 5. Scalability: Time Cost of AHRC by Varying Node Number
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Fig. 6. Sensitivity: ClusteringQuality of AHRC by Varying 𝜏

multiplications. Specifically, AHCKA iteratively updates the approximations by recomputing matrix

multiplications on these matrices in each iteration.

Exp 4. Scalability. Figure 5 shows the time cost of AHRC (on the left 𝑦-axis) and the dyadic

volume of the graphs (on the right 𝑦-axis) when varying the number of nodes of the graph. Due

to the space limit, we only show the results on 4 largest datasets. For each graph, we created 5

induced subgraphs, containing 10%, 30%, 50%, 70%, and 90% of nodes randomly selected from the

original graph, respectively, and reported the running time on them. Figures 5 shows that the time

cost exhibits approximately a linear trend with the dyadic volume vol2 (H). This result echoes the
complexity of AHRC proved by Lemma 5. It also underscores the primary scalability limitation

discussed in Section 4, where the growing vol2 (H) impacts scalability.

7.2 Sensitivity
Exp 5. Sensitivity Test on 𝜏 . We conduct a sensitivity test by varying the parameter 𝜏 from 1 to 6

to test its impact on the clustering quality and time cost of AHRC. Figure 6 reports the scores for
6 metrics on 8 datasets. As a general trend, increasing 𝜏 slightly improves the clustering quality.

With a small 𝜏 , the sparsified graph captures insufficient topological relationships, which degrades

the clustering quality. As 𝜏 increases, the clustering quality improves, as more topological structure

is preserved. When 𝜏 becomes greater than 4, the quality may slightly degrade on some datasets

(e.g., NEW and DBA). Overall, the clustering quality exhibits minor sensitivity to the change in 𝜏 .

As 𝜏 increases from 1 to 6, the metric scores change by 4.5%, −0.6%, 2.4%, −0.7%, and 0.7% at each

step, respectively, averaged on all metrics and datasets. Figure 7 shows the time cost of AHRC. In
general, the running time of AHRC rises as 𝜏 increases. Specifically, when 𝜏 increases from 2 to 6,
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Fig. 7. Sensitivity: Time Cost of AHRC by Varying 𝜏
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Fig. 8. Sensitivity: ClusteringQuality of AHRC by Varying 𝛾

AHRC takes 53%, 107%, 158%, 205%, and 221% more time compared to 𝜏 = 1. This result echoes the

complexity proved by Lemma 5. To achieve a good balance between the clustering effectiveness

and efficiency, we set 𝜏 = 3 as the default value.

Exp 6. Sensitivity Test on 𝛾 . We evaluate the clustering quality and time cost of AHRC when

the parameter 𝛾 varies from 1 to 6. Figure 8 reports the scores for 6 metrics on 8 datasets. As

a general trend, the clustering quality increases sharply when 𝛾 increase from 1 to 2 and then

remains relatively stable as 𝛾 grows larger. Specifically, as 𝛾 increases from 1 to 6, the metric scores

change by 7.9%, −1%, 2.2%, −0.8%, and 0.8% at each step, respectively, averaged on all metrics and

datasets. Figure 9 shows the time cost of AHRC. In general, the running time of AHRC rises as 𝛾

increases. Specifically, when 𝛾 increases from 2 to 6, AHRC takes 76%, 224%, 470%, and 789% more

time compared to 𝛾 = 1. This result echoes Lemma 1. Thus, considering the efficiency, we set 𝛾 = 2

as the default value.

Exp 7. Sparsification Methods. We conduct a sensitivity test to evaluate how different sparsifica-

tion methods impact the clustering quality of AHRC. In addition to spanning forest sparsification

(SPF), we tested 6 top-performing deterministic sparsification methods from [13]: K-Neighbor (KN),

ER-unweighted (ER), ER-weighted (ERW), Local Similarity (LSim), LSpar (LS), and Local Degree
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Fig. 9. Sensitivity: Time Cost of AHRC by Varying 𝛾

C13 WIK COA COC CIC NEW PBC DBA AMZ MAG
F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time

KN 0.37 0.34 0.42 0.86 0.54 0.57 0.49 0.65 0.46 1.04 0.28 21.92 0.15 5.12 0.64 21.86 0.26 6705 0.40 6934

ER 0.35 5.66 0.43 18.88 0.54 12.90 0.49 19.95 0.47 20.66 0.26 10863 0.29 466 0.60 2368 \ \ \ \
ERW 0.33 3.82 0.44 13.41 0.53 0.83 0.49 16.68 0.47 15.88 0.25 7704 0.27 405 0.63 1756 \ \ \ \
LSim 0.24 1.93 0.47 7.40 0.51 1.37 0.48 1.27 0.46 2.38 \ \ 0.21 50.73 0.61 82.95 \ \ \ \
LS 0.27 1.55 0.45 6.14 0.51 1.15 0.48 1.10 0.46 1.74 \ \ 0.22 44.18 0.62 66.34 \ \ \ \
LD 0.35 0.38 0.42 1.23 0.51 1.87 0.49 1.67 0.46 1.67 0.32 17.71 0.31 32.91 0.62 29.98 0.50 3305 0.37 5098
SPF 0.37 0.11 0.41 0.32 0.55 0.54 0.51 0.34 0.46 0.34 0.28 23.75 0.17 2.72 0.62 6.12 0.60 6214 0.43 4236

Table 6. Sensitivity: ClusteringQuality and Time Cost of AHRC with Different Sparsification Methods

F-measure ARI
C13 WIK COA COC CIC NEW PBC DBA AMZ MAG C13 WIK COA COC CIC NEW PBC DBA AMZ MAG

AHRC (LIN) 0.36 0.46 0.45 0.43 0.38 0.22 0.13 0.52 0.16 0.21 0.29 0.41 0.36 0.34 0.28 0.15 0.05 0.43 0.12 0.15

AHRC (LOG) 0.36 0.45 0.34 0.34 0.33 0.22 0.13 0.48 0.14 0.15 0.30 0.41 0.24 0.25 0.24 0.15 0.04 0.37 0.11 0.10

AHRC (EXP) 0.24 0.47 0.43 0.39 0.38 0.22 0.13 0.50 0.16 0.21 0.17 0.42 0.34 0.29 0.28 0.15 0.05 0.40 0.13 0.15

AHRC (SQR) 0.40 0.41 0.55 0.51 0.46 0.28 0.17 0.62 0.61 0.43 0.33 0.34 0.46 0.41 0.36 0.20 0.06 0.53 0.54 0.37

Table 7. Sensitivity: ClusteringQuality of AHRC with Different Transformation Functions

(LD). For a fair comparison, all methods were set to the same sparsification level, with each node

having 6 neighbors. Table 6 reports the F-measure score and time cost on 10 datasets. SPF in general

achieves the fastest performance. Specifically, KN, ER, ERW, LSim, LS, and LD are on average

40%, 98%, 91%, 85%, 82%, and 53% slower than SPF, respectively, over all datasets. In terms of the

clustering quality, SPF outperforms KN, LSim and LS by 15%, 5% and 3%, and outperforms slightly

worse than ER, ERW and LD by −3%, −2% and −1%. Note that on the largest datasets AMZ and

MAG, ER, ERW, LSim, and LS exceeded the time limit due to their low efficiency. Among the rest,

our SPF achieves the best clustering quality. Overall, SPF provides the best trade-off between the

effectiveness and efficiency, making it the most suitable choice for AHRC pipeline.

Exp 8. Transformation Functions. We evaluate the clustering performance of AHRC using

the square root transformation compared to other transformation methods. We compare four

variants of our method using 4 transformation functions 𝜌 : AHRC (LIN) denotes our algorithm
using 𝜌 (𝑠) = 𝑠 , AHRC (LOG) uses 𝜌 (𝑠) = 𝑠

log(1/𝑠+1) , AHRC (EXP) uses 𝜌 (𝑠) = exp(𝑠 )−1
exp(1)−1 , where

exp(1) = 2.71828 · · · , and AHRC (SQR) uses 𝜌 (𝑠) =
√
𝑠 . Table 7 reports the F-measure and ARI

scores. In general,AHRC (SQR) achieves the best clustering performance. Specifically, on F-measure,

AHRC (SQR) outperforms the other 3 variants (in top-down order as listed in Table 7) by 22%, 40%,
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F-measure
C13 WIK COA COC CIC NEW PBC DBA AMZ MAG

AHRC \ ATM 0.14 0.16 0.21 0.11 0.10 0.23 0.02 0.27 0.22 0.34

AHRC\RWM 0.38 0.34 0.47 0.48 0.40 0.19 0.23 0.59 0.26 0.38
AHRC \ ST 0.21 0.40 0.29 0.29 0.29 0.24 0.14 0.45 0.12 0.12

AHRC \ SA 0.16 0.13 0.05 0.06 0.01 0.01 0.02 0.06 0.01 0.01

AHRC 0.37 0.41 0.55 0.51 0.46 0.28 0.17 0.62 0.60 0.43

Table 8. Impact of Individual Modules on ClusteringQuality

and 29%, respectively, averaged over all datasets. On ARI, it outperforms the other 3 variants by

27%, 56%, and 38%, respectively.

Exp 9. Ablation Studies. To quantify the impact of different modules, we conduct ablation studies

by creating 4 variants of our method. For the attribute graph module, AHRC\ATM replaces the

KNN graph with a KNN adjacency graph, where each node selects its 𝑘 most similar neighbors

based on attribute similarity among its adjacent nodes. For the random walk module, AHRC\RWM
skips random walk. For the integration module, AHRC\TSM uses only SA and AHRC \ ASM
uses only ST. Table 8 shows the F-measure score on 10 datasets. Overall, AHRC achieves the best

performance. Specifically AHRC achieves 231%, 23%, 104%, and 2108% higher F-measure scores

than the other variants (in top-down order as listed), respectively, averaged over all datasets. The

ablation studies show the impact of each module on the clustering performance.

8 Conclusions
This paper proposes AHRC, an attributed hypergraph clustering approach with cutting-edge

clustering quality and scalability. The performance of AHRC attributes to three new designs of

AHRC compared to existing methods: 1) a novel integration of multi-hop hypergraph topology and

attributed information, 2) a new formulation multi-hop modularity for clustering, 3) an effective

sparsification for improving the scalability, and 4) generalizability to enhance contrastive learning.

Our experiments show that AHRC significantly outperforms the state-of-the-art methods on real-

world hypergraphs and in particular, it is up to two orders of magnitude faster than the baseline

methods.
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