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Attributed Hypergraph Clustering (AHC) aims at partitioning a hypergraph into clusters such that nodes in
the same cluster are close to each other with both high connectedness and homogeneous attributes. Existing
AHC methods are all based on matrix factorization which may incur a substantial computation cost; more
importantly, they inherently require a prior knowledge of the number of clusters as an input which, if
inaccurately estimated, shall lead to a significant deterioration in the clustering quality. In this paper, we
propose Attributed Hypergraph Representation for Clustering (AHRC), a cluster-number-free hypergraph
clustering consisting of an effective integration of the hypergraph topology and node attributes for hypergraph
representation, a multi-hop modularity function for optimization, and a hypergraph sparsification for scalable
computation. AHRC achieves cutting-edge clustering quality and efficiency: compared to the state-of-the-art
(SOTA) AHC method on 10 real hypergraphs, AHRC obtains an average of 20% higher F-measure, 24% higher
AR, 26% higher Jaccard Similarity, 10% higher Purity, and runs 5.5X faster. As a byproduct, the intermediate
result of graph representation dramatically boosts the clustering quality of SOTA contrastive-learning-based
hypergraph clustering methods, showing the generality of our graph representation.
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1 Introduction

Attributed Graph Clustering (AGC) [21] partitions an attributed graph into a collection of disjoint
node sets where each node set is called a cluster. In addition to the topological requirement imposed
by traditional graph clustering, i.e., nodes in one cluster should be more closely connected to
each other than to the nodes in the other clusters, AGC also expects nodes in the same cluster to
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(a) An attributed hypergraph

Fig. 1. An overview of our pipeline AHRC

have similar attributes [7]. Traditional graph clustering can be formulated as optimizations with
objective functions such as normalized cut [57], conductance [34], and modularity [5], or addressed
by firstly embedding the graph nodes into a vector space using eigenvalue decomposition [64] or
graph neural networks [4, 63, 71] (GNNs), and then applying K-Means for clustering. AGC can
be reduced to traditional graph clustering by edge re-weighting [50] based on attribute similarity,
or by treating each attribute as a node in an augmented graph [80]. Both, as commented in [70],
ignore the similarities between nodes that are not directly connected. Alternatively, AGC can be
addressed by computing similarities between all pairs of nodes [17], integrating both topological
and attributed similarity; such integration can also be achieved in a random walk model [70].
The state-of-the-art quality of AGC is achieved [39, 43] by graph contrastive learning [72], e.g.,
TriCL [43], which learns unsupervised representations of the graph nodes based on both graph
topology and node attributes.

With graph applications engaging more with high-order connections [3], e.g., groups in social
networks or author teams in citation networks [66], recent years have witnessed growing research
on hypergraphs [3]. Unlike traditional graphs where each edge connects two nodes (thus called
dyadic graphs), hypergraphs allow each edge to connect an arbitrary number of nodes (called
hyperedges). This paper studies Attributed Hypergraph Clustering (AHC), aiming to partition a
hypergraph into clusters such that nodes in the same cluster are close to each other with both
high connectedness and homogeneous attributes. AHC has wide applications in social community
detection [46], metabolic reactions analysis [38], image segmentation [36], and biological analy-
sis [67], especially in scenarios where data involves not only high-order topological connections
but also diverse node attributes. For example, in a coauthor network, a node represents an author.
The node attribute forms an author profile, which could be the collection of keywords used by
the author’s research work, a blurb describing the research area, or a high-dimensional vector
learned by a deep learning system based on the author’s publications. A hyperedge represents a
team of co-authors who published a paper in a joint effort. AHC identifies groups of authors with
high research relevance by jointly considering their profiles and co-authorship in hyperedges. In
a protein complex network, a node denotes a protein, node attributes describe the protein, and a
hyperedge represents a group of proteins that form a multi-protein complex. AHC uncovers groups
of proteins that share high functional similarities, providing insights into biological processes.
However, existing AHC methods face two challenges in achieving both efficiency and effectiveness:
the difficulty of hypergraph representation and limited scalability.

Firstly, existing AHC methods [10, 19, 32, 46] are all matrix factorization based. They require
prior knowledge of the number of clusters to produce quality clustering and may incur substantial
computation costs. Specifically, the cluster number of a desirable AHC is usually dataset-dependent
and unknown in advance, which, if inaccurately estimated, shall lead to a significant deterioration
in the clustering quality [65]. Besides, matrix factorization facilitated with Non-negative Matrix
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Factorization (NMF), Singular Value Decomposition (SVD), or eigendecomposition, leads to substan-
tial computational and memory costs, thereby limiting scalability [32]. The state-of-the-art AHC
method AHCKA [46] adopts a greedy iterative method to approximate the eigendecomposition,
achieving outstanding performance; however, its algorithm design and performance are still highly
sensitive to the cluster number, and the complexity of approximate eigendecomposition may hinder
a further improvement on the scalability of AHCKA.

Secondly, a more effective integration of the hypergraph topology and node attributes is desirable
for quality and scalable clustering. Existing works [22, 59, 78] focusing on only one of the two lack
a clear pathway for integration. The integration that involves matrix operations such as NMF and
SVD incurs high computation costs [10, 19, 32] and is thus not scalable. AHCKA [46] performs a
multi-hop random walk where each step has a fixed probability to walk along the attribute graph
— the graph where each node v is connected to the nodes whose attribute sets have the largest
cosine similarity to that of v — instead of the hypergraph. However, it is unclear why the attribute
similarity should be propagated through multi-hop random walks especially when the attribute
graph has already considered attribute similarities among all node pairs.

Given the above challenges, this paper considers three questions. Q1) How to integrate the
topological and attributed information more effectively to enhance clustering quality? Q2) How to
conduct clustering without prior knowledge of cluster numbers while achieving high scalability
over large attributed hypergraphs? Q3) Could one generate a graph representation for AHC that is
generally applicable, e.g., can improve the clustering quality of existing learning-based methods?
We provide positive answers to the above questions with Attributed Hypergraph Representation
for Clustering (AHRC), a hypergraph clustering pipeline that achieves cutting-edge efficiency
and effectiveness. AHRC comprehensively outperforms the state-of-the-art attributed hypergraph
clustering method AHCKA [46]: averaged over 10 real hypergraphs, AHRC obtained 13% higher
F-measure, 16% higher ARI, 17% higher Jaccard Similarity, 11% higher Purity, and is 5.5% faster in
running time.

Figure 1 overviews the pipeline of our AHRC. Given an attributed hypergraph, AHRC computes
an Attribute Similarity Matrix (ASM) S4 and a Topology Similarity Matrix (TSM) St to capture the
node-wise relationships in terms of attributes and hypergraph topology, respectively, and integrate
them into an Integrated Similarity Matrix (ISM) S. S4 is derived from the attribute graph while S is
obtained by firstly sparsifying the hypergraph and then performing a random walk to capture multi-
hop relations. AHRC formulates AHC as an optimization on the objective function of multi-hop
modularity and then engages the cluster-number-free Louvain for clustering; the intermediated ISM
S can alternatively be fed into other clustering methods, e.g., contrastive learning-based clustering
method, for general useage. In the design of the pipeline, we find that excluding the attribute
similarity from the random walk and our unique presentation integration of the attribute and
hypergraph topology are highly effective in enhancing the clustering quality. To make the method
scalable, we introduce a sparsification module, which dramatically improves the efficiency without
deteriorating the clustering quality. Our contributions are summarized below.

(1) We propose a cluster-number-free AHC method AHRC that represents an attributed hypergraph
for clustering by effectively integrating both hypergraph topology and node attributes. The
graph representation allows a formulation of a multi-hop modularity as the objective function
for optimization and can be of independent and general use in other clustering frameworks.

(2) AHRC adopts spanning forest sparsification to further scale up the pipeline while preserving
essential features for clustering.

(3) Extensive experiments justify the outperformance of AHRC over the state-of-the-art (SOTA)
AHC methods in both scalability and effectiveness. AHRC is efficient: averaged over all datasets,
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our AHRC speeds up the SOTA method AHCKA [46] by an average of 5.4X and up to 23X.
AHRC is effective: it obtained 20% higher F-measure than AHCKA, 24% higher ARI, 26% higher
Jaccard Similarity, 10% higher Purity.

(4) AHRC intermediate graph representation S can be of general use. Notable improvements in
clustering quality are observed by feeding S into the convolutional encoder of two cutting-edge
attributed hypergraph contrastive learning models: averaged over tested real hypergraphs, by
using S, we outperform the best-in-class model TRICL by 38% in F-measure, 147% in ARI, 47%
in Jaccard Similarity, and 22% in Purity.

The rest of this paper is organized as follows. Section 2 introduces the building blocks of our
AHRC: attribute graph construction, hypergraph random walk, and modularity-based clustering.
Section 3 presents our proposed attributed hypergraph representation approach. Section 5 describes
the sparsification module for scalable computation and contrastive learning for the general use
of the graph representation. Section 6 discusses the related work. Section 7 shows the empirical
results. Section 8 concludes the paper.

2 Preliminary

Let A be a set of attributes. An attributed hypergraph H (V, E, att) has a node set V, an edge set E
where each edge e C V is a subset of V, and a function att : V + 2/ that maps each node v in V to
a subset att(v) C A of attributes. For each node v € V, define the degree d,(H) of v as the number
of hyperedges in H that contain node v, i.e., d,(H) = |{e € E|v € e}|. For a set C C V of nodes,
denote by volg(C) = Y ,cc dp(H) the volume of C. Denote by vol(H) = volg/(V) the volume of
hypergraph H. Denote by n = |V| number of nodes in H, m = |E| the number of edges, d = |A|
the number of attributes. When # is clear in the context, we denote by d, the degree of a node v
and by vol(C) the volume of a node set C. Denote by H € R™*" the incident matrix of H: for each
edge e;, i € [m] and each node v;, j € [n], entry H[i, j] = [v; € ¢;], 1.e,, H[i, j] = 1if v; is incident
to e; and H[i, j] = 0 if otherwise.

An attributed dyadic graph G(V, E, att) is a special attributed hypergraph where each edge e € E

has exactly two nodes. Represent the graph G as an adjacency matrix W: for two nodes v; and
vj, Vi, j € [n], Wi, j] = 1 if there is an edge (v;,0;) € E; otherwise W[i, j] = 0. A weighted
(dyadic) graph assigns a weight w(e) to each edge e € E, its adjacency matrix has Wi, j] = w(e) if
e(v;,0;) € Eand Wi, j] = 0 if no edge in E connects v; and v;.
Clique Reduction [40]. Given an attributed hypergraph H (V, E, att), clique reduction is a standard
process that transforms H to an attributed dyadic graph G, (V, Es, att). Specifically, it converts
each hyperedge e € E to a clique of nodes in e and unions the cliques to a dyadic graph G, with
edge set E; = {(u,v)|3e € E,s.t.,u,v € e}. We call vol(G;) the dyadic volume of H and denote it as
voly (H). The drawback of clique reduction is the loss of high-order information.

PROPERTY 1 (ATTRIBUTED HYPERGRAPH CLUSTERING [46, 70]). Given an attributed hypergraph
H(V,E, att), a clustering € of H, a disjoint partitioning of V, is desirable if it satisfies two constraints:
1) nodes in the same cluster are closely connected to each other in terms of structure, while nodes between
clusters are structurally separated, and 2) nodes in the same cluster have homogeneous attribute values,
while nodes in different clusters may have diverse attribute values.

Remarks. Property 1 shows the high-level objectives of existing AHC methods [46, 70]; however,
their solutions assume that the number of clusters |4’ in a desirable clustering is known in advance,
which is not valid in reality. This paper focuses on the problem of finding a desirable AHC without
a predefined cluster number.
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2.1 Attribute Graph

To capture the attribute similarities among nodes, the techniques of K-Nearest Neighbor (KNN)
search have been widely used [30, 46, 47]. Specifically, given an attributed hypergraph H (V, E, att)
and a parameter K, for each node v € V, the K nodes Nk (v;) with the highest attribute similarity
with v are computed. For two nodes v;,0; € V, measure their attribute similarity with a cosine-
similarity function f (att(v;), att(v;)) over their attribute sets. A straightforward similarity matrix
can then be derived as follows:

M1 ] = { _(j:(att(vi),att(oj)), ifo; € Nic (o))

, otherwise

(1)

Because M is not symmetric, AHCKA [46] constructs a symmetric Attribute Similarity Matrix
(ASM) Sp € R™" by letting S = M + MT and uses Sa in the random walk for clustering. While
computing the exact KNN graph could take quadratic time, fast approximate KNN algorithm [11, 27]
has been adopted on large-scale attributed graphs due to its outstanding efficiency and accuracy.
The attribute graph is a weighted graph constructed according to Sa.

ExaMPLE 1. For example, in the hypergraph shown in Figure 1(a), node vy shares the same attribute
“Blue” with nodes vy and vy, yielding a cosine similarity of 1. In contrast, vy has a different attribute
from nodes vs — vs, their similarity is 0. As illustrated in Figure 2(a), when K = 2, both v, and v, are
KNN neighbors of vy. Similarly, vy is a KNN neighbor of v;. So, M[0,1] = M[1,0] = 1 and Sa[0,1] =
MJ[0,1] + M[1,0] = 2.

2.2 Hypergraph Random Walk

Random walk captures multi-hop similarities among nodes in a graph [31]. To preserve the high-
order information in a hypergraph, the random walk is conducted in two steps [28]. Step 1 walks
from a node v to an edge e chosen uniformly at random from all the incident hyperedges of v. Step
2 walks from e to a node u chosen uniformly at random from all the nodes in e. Formally, given an
attributed hypergraph H with incident matrix H € R™*", let Ty € R™ and Tg € R™*" be the
row-normalized matrices of HT and H, respectively. The transition matrix of Step 1 is Ty and that
of Step 2 is Tg. We call T = Ty X Tg the hypergraph transition matrix.

Based on the hypergraph transition matrix defined above, the random walk with restart process
on dyadic graph [62] can be generalized to hypergraph, to capture the multi-hop topology in the
hypergraph. Formally, from a node u € V, an «, y-Hypergraph Random Walk moves in y steps
where in each step:

e With probability «, terminates at the current node and then jumps back to the source node u;
o With probability 1 — «, transits from the current node v; to a node v; based on the hypergraph
transition matrix T.

2.3 Modularity-based Clustering

On dyadic graphs, a widely adopted line of clustering optimizes the modularity function proposed
by Newman-Girvan [51]. Given an unweighted dyadic graph G(V, E) and a random graph model [2]
that preserves the degree distribution of G, the NG modularity NG(C) of a subset C of nodes in G
is defined as follows.

NG(C) = m ~ vol(G) vol(G)

where E(C) = {(u,0) € E|u,v € C} is the set of edges with both ends in C. For a clustering %, the
modularity for ¢ is the sum of modularity for each cluster C € ¥, i.e., NG(%) = Y ccee NG(C).

|E(C)| ~ Exp[IE(O)] _ 2IE(O)] _ (vom)z @

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 59. Publication date: February 2025.



59:6 Zijin Feng, Miao Qjiao, Chengzhi Piao, & Hong Cheng

(a) Attribute graph (b) Spanning forest sparsification (c) Representation integration

Fig. 2. Illustrative examples of our pipeline AHRC

The NG modularity measures the difference between the actual number of innercluster edges of
G and the expected number of innercluster edges of a random graph. A higher modularity score
indicates a more pronounced clustering structure: nodes within the same cluster of 6" are more
closely connected in G than that would be anticipated in a random graph.

Modularity-based clustering is highly popular [5, 14, 22, 33, 52] especially in large-scale graph
applications because it requires no prior knowledge of the cluster number, i.e., it decides the cluster
number automatically, and moreover, its algorithm, e.g., Louvain [5], achieves both high scalability
and clustering quality [77].

Our proposed clustering method is established based on the above building blocks, which will be
introduced in Section 3.

3 Clustering Attributed Hypergraph

In this section, we introduce the backbone (modules shaded in Figure 1) of the hypergraph clustering
pipeline of Attributed Hypergraph Representation for Clustering (AHRC) in two parts. Section 3.1
elaborates attributed hypergraph representation (AHR) which integrates hypergraph topology and
attribute information into an Integrated Similarity Matrix (ISM) S. Section 3.2 formulates, based on
S, an integrated multi-hop modularity, as the objective function for modularity-based clustering.

3.1 Attributed Hypergraph Representation

The topological similarity between nodes in a graph is computed based on «, y-Hypergraph Random
Walk introduced in Section 2, which derives the Topology Similarity Matrix (TSM) St € R™"

Y
St :aZ(l e 3)

1=0

where entry St[i, j] is the probability that an a,y-hypergraph random walk from v; terminates at
vj under hypergraph transition matrix T defined in Section 2.2. St captures multi-hop topological
similarity by considering random walks up-to-y lengths. Specifically, « controls the probability of
restarting the random walk from the initial node at each step, balancing local and global topological
information. T! represents the probability of transitioning from one node to another in exactly !
steps. The summation ZLO(I . captures the contribution of walks of different lengths (from
0 to y hops) to the overall topological similarity.

The parameter y can be infinite, but it is practically set to a constant for an efficient approxi-
mation [46]. Our empirical studies suggest that y = 2 strikes a balance between the computation
cost and effectiveness and thus is set as a default value. Lemma 1 shows the computational time
and space complexities of St when y = 2. The proof of Lemma 1 indicates that the main cost in
computing St arises from the large dyadic volume voly (). To mitigate this issue, Section 4 will
show a sparsification process to reduce vol, (H).
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Algorithm 1: Integrator

Input: Topological similarity matrix S, attributed similarity matrix S5
Output: Integrated similarity matrix S
1 Compute row normalization matrices St <— norm(St) and Sp < norm(Sp);
2 Compute §’ < ST X Sx;
3 for each entry §'[i, j] do Let S[i, j] « +S'[i, j];

4 return S;

LEMMA 1. Given a hypergraph H and let y = 2, the computation of St takes O(M) time and

9 2 .
O(%) memory space in the average case.

Proor. Given a hypergraph H, the number of non-zero entries in the transition matrix T is
O(voly(H)) because any two nodes have non-zero transition probability if they have at least one
common incident hyperedge. Since T is a sparse matrix, the time complexity of computing matrix

2
power T? is O(%) [73]. Since the sparse matrix power takes the main computational cost,

the overall time complexity of computing St is thus to be O(M). The space overhead is also
determined by the densest matrix T2 For nodes v;,v; € V, we call v; a 1-hop neighbor of v; if entry
TJi, j] > 0. As there are O(vol;(H)) non-zero entries in T, the average number of 1-hop neighbors
of a node is O(M) Similarly, we call node v; to be the 2-hop neighbor of v; if T?[i, j] > 0. The
average number of 2-hop neighbors of a node is thus expected to be O((w)z) Thus, summing

A{)2
up over n nodes, the overall space complexity is expected to be O(M) in the average case. O

On the other hand, we can employ a fast approximate KNN search to construct the attribute
graph and the corresponding Attribute Similarity Matrix (ASM) Sa based on Section 2.1.
Integrated Similarity. With Topology Similarity Matrix (TSM) and Attribute Similarity Matrix
(ASM), we now compute the integrated similarity between nodes. We first show the steps of the
integration and then elaborate on the rationales behind the integration.

Algorithm 1 shows the pseudo code for computing the integrated similarity. Given the topological
similarity matrix St and attribute similarity matrix Sa, Line 1 performs row normalizations on
both St and S4 to convert each row into probability distributions. Consequently, entry St[i, j]
(resp. Sali, j]) denotes the topological (resp. attributed) similarity of v; from the perspective of
v;. Line 2 defines 8’ € R™" as 8’ = St x S where entry S'[i, j] = X, cy St[i.7] - Sa[r, j] is
the weighted sum of the product of St[i,r] and Sa[r, j] over all intermediate nodes v,. Line 3
transforms S’ to Integrated Similarity Matrix (ISM) S by applying a square root transformation [54],

ie., S[i, j] = p(S'[i, j]) = VS'[i, j]. for each pair i, j € [n].

EXAMPLE 2. Given row-normalized St and Sa, Figure 2(c) shows how to compute the entry S[2,1].
First, we calculate the dot product of St[2,:] and Sa[:,1] as S'[2,1] = S1[2,:] - Sa[:,1] = 0.45. Then, the
square root transformation is applied, giving S[2,1] = V0.45 ~ 0.7.

Interpretation. S’ propagates the multi-hop topological similarity across the attribute graph.
Specifically, for two nodes v;, v;, and an intermediate node v,, the topological similarity between
v; and v, is passed on to v; if v; has a similar set of attributes with v,. In other words, if v;
and v, are similar by nature (attribute-wise), they exchange the information of their topological
neighbors in the computation of 8. 8'[i, j] reflects a similarity between v; and v; in terms of both
topology and attributes. Integrated Similarity Matrix (ISM) S is eventually computed by applying a
square root transformation on $’ for a better similarity distribution. Specifically, in the presence
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g;:.lj—oé: EL;‘D

(1) Bad clustering ¢” (0.34 — 0.25) (2) Clustering % (0.32 — 0.27)

Fig. 3. Example on how transformation affects modularity

of unbalanced graph structures [76], existing optimization methods adopting objectives (e.g., cut
ratio [42], conductance [49] and modularity [23]) empirically does not perform well. In other words,
they tend to favor graphs with balanced ground truth clusterings (i.e., each cluster has similar
volume). By applying the concave square root function, large values become less influential, leading
to a more even distribution of similarities and consequently, a better clustering quality [24]. The
choice of the smooth function is not exclusive; we conducted experiments (Exp 6 in Section 7)
which suggests square root function is an ideal candidate.

ExampLE 3. To illustrate the impact of the square root transformation on modularity-based clus-
tering, consider Figure 3. The graph consists of a 3-clique and a 7-clique, connected by a single edge.
Naturally, each clique would be its own cluster. Without the transformation, node v might be incorrectly
assigned to the 3-clique cluster because the clustering ¢’ in Figure 3 (1) has a higher modularity
(0.34 > 0.32). However, after applying the square root transformation, the modularity of ¢’ decreases
significantly to 0.25, making it lower than that of the true clustering of € = {3-clique, 7-clique} in
Figure 3 (2).

Lemma 2 shows the time and space complexities of Algorithm 1.

LEMMA 2. Given a topological similarity matrix St and an attribute similarity matrix S4, Algo-
. 12 . 2
rithm 1 takes O(M) time and O(M) memory space.

ProOF. We first prove that the space complexity of S is O(K - vol, (H)?), where K is the parameter
for the KNN algorithm. Since the average number of non-zero entries per row in sparse matrices St

I\ 2 . 2
and S, is % and K, respectively, a node can access O(Kvoil#) number of nodes on St X Sa.

. A2
The number of non-zero entries in S (the memory cost) is thus O(M).

2
Then, we prove the time complexity. Line 1 normalizes matrices St and S, taking O(% +

K - n) time. Since both St and Sa are sparse matrices with O(M) and O(Kn) numbers of

K-voly (H)?
— ) [73]

non-zero entries, respectively, the complexity of Line 2 is O( . Line 3 performs a

transformation on S, taking O(M) time. Overall, Algorithm 1 takes O(M) time. O

Remarks. We represent the attributed hypergraph with S which combines both graph topology and
attribute information. Specifically, consider two nodes v; and v;. If v; and v; are closely connected
topologically and share homogeneous attributes, the probability of a random walk connecting them
should be high, leading to a large value of S[, j]. Conversely, if v; and v; are distant with dissimilar
attributes, and there is no node that is similar to v; (in terms of attributes) and topplogically close
to v;, the value of S[i, j] should be small. Section 3.2 defines an integrated multi-hop modularity
for clustering.
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3.2 Integrated Multi-hop Modularity

The definition of NG modularity fails to capture the constraints of AHC (as described in Property 1),
as it considers neither multi-hop topology nor attribute information. To address this issue, we
propose an objective function, called Integrated Multi-Hop Modularity (IMM). Specifically, given an
attributed hypergraph H, Section 3.1 computes a similarity matrix S using our proposed attributed
hypergraph representation (AHR). Regard S as the adjacency matrix of a weighted dyadic graph
where entry S[i, j] = 0 indicates there is no edge between nodes v; and v;. We call this weighted
dyadic graph the representative graph of H, on which we define the integrated multi-hop modularity,
denoted as IMM, as follows.

DEFINITION 1 (INTEGRATED MULTI-HOP MODULARITY). Given an attributed hypergraph H, a
clustering €, and a similarity matrix S under the AHR model, the integrated multi-hop modularity of
the clustering € is defined as:

©

IMM(%) = Z

.o .1\ 2
Zv,-,ujec S[l,]] Zuiec,ujev S[l,]]
Ceé ZU[,Z)]EV S[l’.]] .

Zv,-,vjeV S[i’ ]]

Note that 3, ,.cc S[i, j] is the sum of similarities between all pairs of nodes within cluster C,

and Xy, cco v S[i, j] is the sum of similarities of all nodes in C with its neighbors. Recall that the
IMM does not require a predefined cluster number k. The subsequent process is to partition all
nodes within G, aiming to find the clustering ¢ = {Cy,Cy, - - - , C%| } such that their IMM score is
maximized. Exact modularity optimization is NP-hard [8], leading to approximation approaches
such as Louvain [5].
Remarks. Different from the classic NG modularity function, which merely relies on edges (1-hop
relation), the IMM function (Definition 1) captures multi-hop relations under our AHR model,
which encodes high-order information in H. Specifically, the random walk takes into account the
paths that start from and end at nodes within the same cluster: given a cluster C, IMM computes
the difference between the actual possibility that paths on the data graph stay within C and, the
expected possibility that the paths on the random graph stay within C. A higher modularity score
indicates that the actual paths within clusters are (probabilistically) more than what would be
expected in a random graph, suggesting a good clustering structure. Paths can capture higher-order
relationships between nodes, providing a richer representation of connectivity in the data graphs.
Implicitly generalizing modularity from edges to paths 1) allows the extraction of more informative
features on the data graphs, 2) is an alternative approach to overcome the resolution limit of
modularity (struggling to identify small clusters) [18], and thus 3) often brings higher clustering
quality [25].

3.3 The AHRC Algorithm

The process of AHRC starts with an attributed hypergraph as input, computes the integrated
similarity matrix as representation to capture both graph topological and attribute information
using the AHR model, and performs clustering based on this representation.

Algorithm 2 shows the pseudo code of the AHRC. It takes as input an attributed hypergraph
H (V,E, att), the attribute similarity matrix Sp of H, a decay factor «, and the number of iteration
y for hypergraph random walk. Two additional inputs, a sparsification parameter 7 and a boolean
indicator spax will also be taken when AHRC applies the proposed spanning forest sparsification
process (will be described in Section 4). In Line 1, AHRC first extracts the incident matrix H of H
followed by computing the row normalization matrices Ty and Tg in Line 2. Then, the transition
matrix T of «, y-Hypergraph Random Walk is computed (Line 3). After that, in Line 6, AHRC
computes the TSM St according to Equation 3. Algorithm 1 is then called in Line 7 to compute the
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Algorithm 2: AHRC

Input: Attributed hypergraph H (V, E, att), attribute similarity matrix Sa, decay factor &, number of
iteration y, sparsification parameter 7, and boolean spax: switch of the sparsification
Output: Clustering €
1 H « incident matrix of H;

2 Compute row normalization matrices Ty < norm(HT) and Tg < norm(H);
3 Compute transition matrix T < Ty X Tg;

4 if spax then

5 ‘ Perform matrix sparsification T « Sparsifier(T, 7);

6 Compute topological similarity matrix St < « ZLO(I 9 A

7 Compute integrated similarity matrix S < Integrator(St, Sa);

8 ¢ < Louvain(S);

9 return ¢;

ISM S. Based on the obtained S, the Louvain method is then applied to do the clustering (Line 8).
Line 9 returns the resulting clustering €. Lemma 3 analyzes the time complexity of the AHRC
algorithm without spanning forest sparsification.

LEMMA 3. When y = 2, the time complexity of Algorithm 2 without spanning forest sparsification is
O( K-voly (H)? )
—)-

ProOF. Since the number of non-zero entries in sparse matrix H is vol (), Line 2 takes O (vol(H))
time. Both sparse matrices Ty € R™™ and Tg € R™*" have vol(H) non-zero entries, their multi-

plication takes O(%) time [73] in Line 3. According to Lemma 1, Line 6 takes O(M) time.
Line 7 then calls Algorithm 1 to multiply matrices St and Sa, taking O(M) time according
to Lemma 2. Since the matrix S has O(M) non-zero entries, the Louvain method called in

Line 8 is thus to be O(IM). Therefore, the total time complexity of the AHRC algorithm is
O(K~vo|z(‘74)2). O

n

4 Spanning Forest Sparsification

This section introduces the module of spanning forest sparsification (Figure 1) which addresses the
main scalability bottleneck of AHRC. Lemma 3 indicates that the main scalability bottleneck of
AHRC is the large dyadic volume vol, (#) resulting from the dense hypergraph transition matrix
T. It’s a natural idea to consider how to reduce volz(H) through sparsification. In this section, we
propose a linear-time graph sparsification method called Spanning Forest Sparsification. Recall the
definition of T and hypergraph random walk in Section 2.2, we have a Lemma as follows.

LEmMMA 4. Given a hypergraph transition matrix T, define a binary matrix of By such that Br[i, j] =
1 if T[i, j] > 0 and Br[i, j] = 0 otherwise. Then, Br is a symmetric matrix.

Proor. To prove that Bt is a symmetric matrix, we show that Br[i, j] = Br[j, i] for every i, j.
For any pair of nodes v; and v;, assume T[i, j] > 0. It implies that v; can transit to v; through a
one-step random walk. According to the definition of hypergraph random walk, v; can transit to v;
if and only if they share at least one incident hyperedge. Thus, v; and v; share at least one incident
hyperedge, and through this shared hyperedge, v; can also transit to v;, leading to T[j,i] > 0.
Therefore, we have T[j,i] > 0if T[i, j] > 0. We can prove that T[i, j] > 0if T[}j, i] > 0 similarly
by reversing the roles of v; and v;. Thus, for every i, j, we have T[j, i] > 0 if and only if T[, j] > 0,
and therefore By [j,i] = Br[i, j]. O
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Algorithm 3: Sparsifier

Input: Transition matrix T and sparsification parameter ¢
Output: Sparsified transition matrix T’

Initialize cumulative matrix M* « 0;

[

2 Initialize residual matrix M™ <« T+ TT;
3 fori«— 1tordo

4 Find maximum spanning forest F; « Kruskal(M");
5 Update M™ « M™ — F; and M* « M* + F;;
6 TV <« 0;

7 for each non-zero entry M* [, j] then T’[i, j] « T[i, j|;
s return T’;

In this section, we represent T, and hence the random walk, as a weighted directed graph [28]
G with edge set {e(i, j)|T[i, j] > 0}, where the edge weight of e(i, j) is the transition probability
from node v; to v;. According to Lemma 4, G has an undirected structure: for any node pairs (v;, v;),
there is an edge from v; to v; if and only if there is another edge from v; to v;. G has asymmetric
weights: due to the asymmetry of the hypergraph random walk, the weights of edge e(v;,v;) may
not equal to that of e(v,v;).

Given a graph G with aforementioned properties, our method constructs the union of a set of
edge-disjoint maximum spanning forests, resulting in a sparsified graph that 1) is a structurally con-
nected subgraph of G, 2) maintains the asymmetric edges weights of G, and 3) preserve significant
relationships carrying large edge weights.

Given a transition matrix T and a parameter 7, we first compute the symmetric matrix T +TT,
combining transition probabilities in both directions between nodes, yielding an adjacency matrix
of an undirected graph, denoted as Ggyr,. This symmetrization allows us to apply Kruskal’s algo-
rithm [37], which is designed to find the maximum spanning tree (forest) on undirected graphs. Next,
on Gsym, we generate the union of a set of edge-disjoint maximum spanning forests Fy, Fy, - - -, Fy.
Each F; is a maximum spanning forest on Gy, after removing those edges in Fy, F, - - -, F;_1. The
union of these forests is denoted as F = U;c [, F;. F can be computed iteratively. Specifically, we
maintain two graphs: a residual graph G~ and a cumulative graph G*. Initially, G~ is the same as
Gsym and G* has the same node set as Gy, but starts with an empty edge set. In each iteration i,
we generate a maximum spanning forest F; for G~ by Kruskal’s algorithm. We then update G~ by
subtracting the set of edges in F; from G~, and update G* by taking the union of the edge sets of
F; and G*. The process repeats 7 times. After termination, the edge set of G* is the edge set of F.
Finally, for each undirected edge e(i, j) in F, we retain a pair of directed edges e(i, j) and e(J, i) in
the sparsified transition matrix T.

ExamPLE 4. Consider the hypergraph in Figure 1(a) where the asymmetric transition probabilities
between vy and vy is T[0,1] = 0.2 and T[1,0] = 0.3, respectively. In Figure 2(b-i), we first compute the
symmetric matrix of T, yielding an undirected graph where edge e(vo, v1) has a weight 0f0.2+0.3 = 0.5.
Figure 2(b-ii) then shows the spanning tree on the graph, preserving connectivity and prioritizing
larger edge weights. The asymmetric transition probability T[0,1] and T[1,0] can then be recovered
from the tree.

Algorithm 3 presents the pseudo code of the sparsification method, where the residual graph
G~, cumulative graph G*, and maximum spanning forest F; is represented by the adjacency matrix
M", M*, and F;, respectively. Algorithm 3 takes the transition matrix T and a parameter 7 as inputs.
In Line 1, the matrix M* is initialized as a zero matrix with the same shape as T. In Line 2, the
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Fig. 4. TCL+: AHRC for Contrastive Learning based Clustering

matrix M is initialized to be T + T7. Lines 3-5 iteratively find the maximum spanning forest F; by
calling the Kruskal’s algorithm and update the matrices M~ and M*. Lemma 5 analyzes the time
complexity of the AHRC algorithm with sparsification.

LEMMA 5. When y = 2, the time complexity of Algorithm 2 using the spanning forest sparsification
method is O(voly(H)).

Proor. Since the transition matrix T has O(volz (7)) number of non-zero entries according to the
proof of Lemma 1, Algorithm 3 takes O(7-vol, (H) log n) time [37] for performing the sparsification.
Therefore, in Algorithm 2, Line 4-5 takes O(7 - voly(H) log n) time by calling Algorithm 3. Given
that 7 forests have O(7n) edges in total, the sparsified transition matrix has O(rn) number of
non-zero entries. According to Lemma 1, Line 6 of Algorithm 2 then takes O(7?n) time to compute
matrix St with O(zn) non-zero entries. Line 7 multiplies matrices St and S, taking O(7Kn) time
according to Lemma 2. The resulting matrix S has O(7Kn) non-zero entries. The Louvain algorithm
called in Line 8 thus takes O(7Kn) time. Therefore, the overall time complexity of Algorithm 2 is
O(t-voly(H) logn+ (t+K)rn). Assuming 7 and K are small constants, the overall time complexity
of AHRC with sparsification is O(vol,(H)). O

Limitation. The proof of Lemma 5 shows that the spanning forest sparsification reduces the
dyadic volume vol, (H) of a hypergraph for clustering, which brings dramatic improvement in the
clustering computation. In the spanning forest sparsification itself, however, AHRC still faces a
limitation as a main-memory algorithm. In other words, if the vol; () of the original hypergraph
exceeds the memory limit, T cannot be computed in main memory. A possible remedy to this
limitation is to resort to external memory spanning forest sparsification, which has been listed
as our future work. According to the proof of Lemma 5, with T computed, the computational
complexity of the remaining processes in AHRC becomes O((r + K)rn) when y = 2, thereby
bypassing the dependence on voly (H).

5 Enhancing Contrastive Learning with AHRC

This section introduces the module of contrastive learning as a general application of our graph
representation S. In the context of GNN-based attributed graph clustering, Graph Contrastive
Learning (GCL) [72] has emerged as a popular framework. It learns an encoding function that
takes node attributes and graph topology as input, and produces node embeddings as output. These
embeddings can then be used for clustering by applying k-Means algorithm. In this section, we
show how the attributed hypergraph representation generated by our AHR model enhances existing
GCL methods.

We proposed two models TCL+ and GRC+, as enhanced variants of the state-of-the-art GCL
methods TRICL [43] and GRACE [81], respectively, based on our AHRC. Figure 4 elaborates the
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module of contrastive learning + k-means in Figure 1 when it comes to TCL+. It consists of four
major components: graph augmentation, encoder, projection head, and contrastive loss. Typically,
the encoder is composed of one or more graph neural network layers built on the underlying
graph structure. Under our AHRC, we propose an AHR layer that enriches embeddings with the
comprehensive multi-hop topological and attribute information captured by the AHRC.

AHR Layer. The AHR layer is built on the Integrated Similarity Matrix (ISM) S under our AHRC
pipeline. Given an attributed hypergraph, we first compute ISM S using AHRC. Regarding S as a
weighted directed graph G(V, E), graph convolution is then applied to the underlying unweighted
structure of G to generate node embeddings for the contrastive learning process. Specifically, the
AHR Layer iteratively propagates embeddings through the unweighted structure of G, updating
the embedding of each node by aggregating the embedding of its adjacent nodes. Let zz(,i) be the
embedding of node v € V at the i-th AHR layer, defined as:

2 = £ o eluo) € ) ?

where f is the aggregation rule. Then, our proposed models, TCL+ and GRC+, incorporate the
AHR layers to the encoders of TRICL and GRACE, respectively.

TCL+ Model Architecture. Figure 4 overviews the architecture of our proposed model TCL+. We
briefly introduce it in the following.

(1) Graph augmentation. Given an attributed hypergraph H, we first compute an ISM S using
the AHRC pipeline. Next, we augment S by performing random edge removing [81], which
we refer to as AHR edge removing, to generate two alternate views on S. In these views, a
portion (controlled by a hyperparameter p4) of non-zero entries in S are randomly set to be
zero. Additionally, we perform hypergraph masking to augment the hypergraph topology and
attributes by performing random membership masking [43] and node feature masking [81] to
generate two alternate views of the hypergraph.

(2) Encoder. The encoder produces embeddings for the views generated in (1). As Figure 4(b)
shows, TCL+ employs a two-level encoder, each of which consists of one AHR layer and one
hypergraph layer. All layers use the element-wise mean pooling aggregation rule as a special
instance of Equation 5. Specifically, the AHR layer can be represented in the matrix form:

2V = (D'BZIYWY) (6)

where B is a binary adjacency matrix such that B[i, j] = 1if S[i, j] > 0 and B[i, j] = 0 otherwise,
representing the unweighted structure of G. The initial node embeddings Z*) are set to the
node attributes. D is the diagonal degree matrix where D[i, i] = %, B[4, j], W is the trainable
weight for the i-th layer, and ¢ is the activation function ReLU(x) = max (0, x). The hypergraph
layer applied on the hypergraph topology follows the same structure as that of [43].

(3) Projection head and contrastive loss. With the embeddings from encoder, we project them
by performing non-linear transformation [12] using the same projection heads as [43]. For node
embeddings generated by both hypergraph layers and AHR layers, we adopt the same objective
function as [43, 81]. The overall loss is computed as follows:

-Ln:l:H"'Ws'LA (7)
where Ly and L, is the contrastive loss on the node embeddings generated by the hypergraph
layers and AHR layers, respectively. w; is the weight balancing two losses.

GRC+ Model Architecture. GRACE is a state-of-the-art GCL method on dyadic graphs, employing
a two-layer encoder. On hypergraphs, GRACE can be applied on a dyadic graph G’ that is converted
from a given attributed hypergraph through clique reduction. Our proposed model, GRC+, enhances
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GRACE by replacing the layers built on G’ with the AHR layers built on the ISM S under our AHC
model.

6 Related Works

Attributed Hypergraph Clustering. Graph clustering [23, 56] has been extensively studied
on dyadic graphs. Traditional clustering optimizes objective functions such as modularity [15],
conductance [6], normalized cut [58], etc. Exact modularity optimization is computationally hard,
leading to approximation approaches [5, 16, 20, 52]. Among these, Louvain [5] has been widely
used in industry due to its scalability and clustering quality [77]. A hypergraph can be transformed
into a dyadic graph using clique reduction [1, 41], and then dyadic graph clustering methods can
be applied. However, this approach loses high-order information in hypergraphs. Other methods
represent a hypergraph using a hypergraph random walk transition matrix [28, 78] or a normalized
Laplacian [44, 45], transforming it into a weighted dyadic graph. Another line of research [14, 22]
models a hypergraph with a random hypergraph model, then clusters the hypergraph by iteratively
maximizing the modularity-based objective scores.

Attributed hypergraph clustering (AHC) has also been studied. Existing AHC methods [10, 19,
32, 46] predominantly rely on matrix factorization techniques, leading to high computational
and memory costs, thereby limiting scalability [32]. Additionally, they require prior knowledge
of the number of clusters to produce quality clustering. However, the number of clusters for a
desirable AHC is usually data-dependent and unknown beforehand, without knowing which, the
performance can drop dramatically [65]. Specifically, JNMF [19] first represents an attributed
hypergraph by a hypergraph Laplacian and an attribute matrix. It then integrates both by adopting
a Non-negative Matrix Factorization (NMF) objective function that consists of an NMF part for the
hypergraph topology and the attributes, respectively. [32] transforms an attributed hypergraph to
an attributed dyadic graph and then extends GNMF [10], an NMF-based high-dimensional data
clustering method, to three clustering algorithms GNMFA, GNMFC, GNMFL by clique reduction
or hypergraph normalized Laplacian. However, the clique reduction hinders clustering effectiveness
due to the information loss, and the NMF operations incur high computational and memory costs.
To address the issue, GRAC [32] represents hypergraph topology by a less costly hypergraph
Laplacian and then performs hypergraph convolution on node attributes to obtain a similarity
matrix such that they better integrate the topological and attribute information. However, the
following Singular Value Decomposition operations for clustering are still expensive, limiting its
scalability.

Discussion on Similarity in Algorithm Flow with Existing Works. As summarized in Table 1,
our AHRC shares three similar modules with existing works [28, 46]: an attribute graph module
(AGM) for exploiting attribute information, a random walk module (RWM) for capturing topological
information, and a clustering module (CLM). One of the major differences lies in how attribute
and topology are integrated. Specifically, our AHRC first computes attribute similarities in AGM
and topological similarities in RWM separately, and then integrates them in the representation
integration module. In CLM, our method maximizes a modularity-based objective using the Louvain
algorithm. In the solution of EDVW [28], all three modules, AGM, RWM, and CLM, are used.
Specifcially, the AGM calculates tf-idf for each node-hyperedge pair to compute a weighted incident
matrix. Then, the RWM constructs random-walk-based hypergraph Laplacians using the weighted
incidence matrix. Note that, different from AHRC which computes the two similarities separately,
EDVW computes them sequentially. Finally, the CLM adopts a cut-based objective function to
obtain clustering via matrix factorization over the constructed Laplacians. Unlike our approach,
EDVW carries out integration in the AGM module by directly computing the weighted incidence
matrix. AHCKA [46] also uses AGM, RWM, and CLM. AGM first exploits attributes by using the
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- Module

Attribute graph (AGM) | Random walk (RWM) Clustering (CLM)
[28] | weighted incident matrix topology cut-based objective
[46] KNN attribute graph topology + attribute cut-based objective
ours KNN attribute graph topology modularity-based objective

Table 1. Similarity in Algorithm Flow with Existing Methods

KNN algorithm to compute an attribute graph. The RWM then integrates the attribute graph
with hypergraph topology through a joint random walk process. Specifically, the random walk
intertwines these two graphs: At each step, a walk can either move to a neighbor in the attribute
graph or to a neighbor in the hypergraph, with a certain probability. However, it is unclear why
the attribute similarity should and could be transmitted through random walk, especially when the
attribute graph has considered attribute relations among all node pairs. Finally, the CLM adopts a
cut-based objective function to obtain clustering by iteratively approximating the eigenvectors of
the similarity matrix derived from the joint random walk. In contrast to our approach, AHCKA
integrates the unweighted hypergraph topology and the attribute graph through a joint random
walk in the RWM module.

We experimentally prove that our AHRC outperforms AHCKA [46] in the clustering quality;
EDVW [28] primarily focuses on text datasets, and cannot be directly applied to the hypergraphs
used in our experiments.

Measure the Similarity Among Nodes. The measures of node-wise topological [26, 55, 60, 65, 74]
and attribute [30, 47, 70, 79] similarity in graphs have been extensively studied. These similarities
can be stored in a similarity matrix, serving as an input for clustering algorithms such as Louvain
and spectral method. A line of methods uses Gaussian similarity [65], L2 distance [74], or random
walk [26, 55, 60] to compute node-wise similarities based on graph topology. However, these
methods fail to capture the attribute information. Another line of methods [70, 79] augments the
data graph by treating the attributes as ‘nodes’ and establishing a set of node-attribute associations.
They then perform random walks on the augmented graph to integrate both topological and attribute
information. However, these methods suffer from high computational costs on large graphs with
multi-dimensional attributes. Additionally, considering all attributes with potential inconsistencies
can diminish clustering effectiveness [46]. To capture sufficient attribute information while reducing
computational cost and noise, methods [30, 47] employ the KNN algorithm to measure the attribute
similarity.

Graph Contrastive Learning. Graph contrastive learning (GCL) methods [43, 68, 75, 81] learn
an encoding function that takes node attributes and graph topology as input and produces node
embeddings as output. This process involves using GNN layers to propagate and aggregate infor-
mation based on the underlying graph structure. The embeddings can then be used for clustering
by applying the k-Means algorithm. On dyadic graphs, the state-of-the-art GRACE [81] generates
two graph views by randomly removing a portion of edges and node attributes, then learns node
embeddings by maximizing the agreement that is measured by contrastive loss on node embeddings
in these two views. However, GRACE cannot be directly applied to hypergraphs, necessitating the
representation of hypergraphs into dyadic graphs through techniques such as clique reduction.
There is still alack of efficient and effective hypergraph representation methods. Among hypergraph
contrastive learning methods [43, 68, 75], TRICL [43] achieves the state-of-the-art performances. It
aggregates information directly on the underlying hypergraph structure, which can be represented
by a hypergraph transition matrix capturing the local topology of 1-hop neighbors. However, as
existing models are rather shallow — GRACE consists of two layers and TRICL has one layer only —
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Name Dataset n m vol(H) voly (H) d
C13 C13-C [19] 693 545 3,475 26,908 | 4,728
WIK Wiki [32] 1,999 2,184 16,321 91,479 | 4,973
COA Cora-A [46] 2,708 1,072 4,585 17,136 | 1,433
COC | Cora-C [46] 2,708 1,579 4,786 5,687 | 1,433
CIC Citeseer-C [46] 3,312 1,079 3,453 6,007 | 3,703
NEW 20News [46] 16,242 100 65,451 34,234,847 100
PBC Pubmed-C [32] 19,717 7,963 34,629 186,155 500
DBA DBLP-A [46] 41,302 22,363 99,561 906,564 | 1,425
AMZ Amazon [53] 2,249,006 4,285,799 72,816,145 | 5,993,189,994 | 1,000
TWB Tweibo [69] 2,320,895 | 50,133,382 | 100,266,764 61,186,099 | 1,657
MAG MAGPM [46] 2,353,996 1,082,711 17,279,202 517,767,530 | 1,000

Table 2. Data Statistics

they are inadequate to capture the global information. Under our AHR model, the AHR layer we
proposed captures multi-hop relationships between nodes in both topological and attribute senses,
effectively integrating global information to enhance the performance of contrastive learning on
hypergraphs.

7 Experiments

This section evaluates the performance of our proposed AHRC method on 10 real-world attributed
hypergraphs with ground truth clustering. To further demonstrate the scalability of our AHRC
method, we include an additional attributed dyadic graph, TWB, with 2.3 million nodes and 50
million edges in the scalability test. Table 2 shows the data statistics. For the algorithmic AHC
methods, all the experiments were conducted on a CPU server (Intel Xeon Gold 6230 CPU 2.10GHz,
376GB RAM, and Ubuntu 5.8.0-38-Generic). All methods were run 10 times to report the average.
The cut-off running time was set to be 12 hours. For contrastive-learning-based AHC methods, all
the experiments were conducted on a GPU server with an NVIDIA RTX A6000 48GB GPU.
Baselines. We compare our AHRC with 6 state-of-the-art algorithmic attributed hypergraph
clustering methods that are introduced in Section 6: GNMFA, GNMFC, GNMFL [10], JNMF [19],
GRAC [32], and AHCKA [46]. Additionally, we compare our contrastive learning methods TCL+
and GRC+ with the state-of-the-art contrastive learning methods TRICL [43] and GRACE [81]. For
a fair comparison, we use the objective computed on node embeddings in TRICL.

Parameters. For all baselines, we adopt the default parameter values as suggested in their respective
papers. Given that the number of clusters k in a desirable clustering is often not available in reality,
our AHRC produces a reasonable k based on Property 1. For consistent comparison [22], this value
of k will be used for baselines that require a predefined k. For our AHRC, unless otherwise specified,
we set the default values of parameter ¢ = 0.2 following [46], 7 = 3, and y = 2 based on our
sensitivity analysis in Exp 5 and Exp 6.

Hyperparameters. We adopt a standard practice for hyperparameter tuning and model evaluation
in graph contrastive learning [43, 61, 81]. We randomly divide graph nodes into a validation set (20%)
and a test set (80%). We perform a grid search for hyperparameters (i.e., the learning rate, p; and
ws in TCL+, and p, and p, in GRC+) based on validation clustering performance in F-measure, and
choose the hyperparameters that yield the best performance. Then we use these hyperparameters
on the test set. The selected hyperparameter values and detailed sensitivity tests are provided in
the report.
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- F-measure ARI

C13 | WIK | COA| COC | CIC | NEW| PBC | DBA | AMZ| MAG| C13 | WIK | COA | COC | CIC | NEW| PBC | DBA | AMZ| MAG
GNMFA|| 0.13 | 035 | 0.23 | 0.22 | 0.19 \ 0.13 | 0.42 \ \ 0.01 | 0.24 | 0.01 | 0.00 | 0.02 \ 0.00 | 0.20 \ \
GNMFC|| 0.12 | 0.35 | 0.26 | 0.24 | 0.29 \ 0.17 | 0.41 \ \ 0.01 | 0.24 | 0.07 | 0.03 | 0.15 \ 0.04 | 0.19 \ \
GNMFL || 0.14 | 0.30 | 0.28 | 0.27 | 0.42 \ 0.20 | 0.49 \ \ 0.02 | 0.17 | 0.14 | 0.07 | 0.28 \ 0.03 | 0.37 \ \
JNMF 0.19 | 0.30 | 0.33 | 0.26 | 0.33 | 0.12 | 0.08 | 0.42 \ \ 0.09 | 0.19 | 0.20 | 0.14 | 0.21 | 0.01 | 0.00 | 0.22 \ \
GRAC 0.39 | 0.32 | 0.38 | 0.33 | 0.28 | 0.14 | 0.14 | 0.56 \ \ 0.32 | 0.20 | 0.27 | 0.22 | 0.11 | 0.07 | 0.05 | 0.45 \ \
AHCKA || 0.38 | 0.40 | 0.46 | 0.40 | 0.49 | 0.18 | 0.17 | 0.62 | 0.34 | 0.38 | 0.31 | 0.32 | 0.35 | 0.31 | 0.38 | 0.11 | 0.07 | 0.53 | 0.28 | 0.34
AHRC || 0.40 | 0.41 | 0.55 | 0.51 | 0.46 | 0.28 | 0.17 | 0.62 | 0.61 | 0.43 | 0.33 | 0.34 | 0.46 | 0.41 | 0.36 | 0.20 | 0.06 | 0.53 | 0.54 | 0.37

Jaccard Similarity Purity

™~ C13 | WIK | COA | COC| CIC | NEW| PBC | DBA | AMZ| MAG| C13 | WIK | COA | COC | CIC | NEW| PBC | DBA | AMZ| MAG
GNMFA|| 0.07 | 0.21 | 0.13 | 0.12 | 0.11 \ 0.07 | 0.26 \ \ 0.21 | 0.54 | 0.29 | 0.26 | 0.23 \ 0.12 | 0.47 \ \
GNMFC|| 0.07 | 0.21 | 0.15 | 0.14 | 0.17 \ 0.09 | 0.26 \ \ 0.21 | 0.54 | 0.36 | 0.31 | 0.41 \ 0.20 | 0.46 \ \
GNMFL || 0.07 | 0.18 | 0.16 | 0.15 | 0.26 \ 0.11 | 0.33 \ \ 0.22 | 049 | 042 | 0.44 | 0.55 \ 0.24 | 0.60 \ \
JNMF 0.10 | 0.17 | 0.20 | 0.15 | 0.19 | 0.06 | 0.04 | 0.27 \ \ 0.25 | 0.47 | 0.50 | 0.38 | 0.47 | 0.18 | 0.06 | 0.52 \ \
GRAC 0.24 | 0.19 | 0.24 | 0.19 | 0.16 | 0.08 | 0.07 | 0.38 \ \ 0.39 | 0.56 | 0.56 | 0.45 | 0.40 | 0.19 | 0.14 | 0.69 \ \
AHCKA || 0.24 | 0.25 | 0.30 | 0.25 | 0.33 | 0.10 | 0.09 | 0.45 | 0.21 | 0.23 | 0.39 | 0.54 | 0.61 | 0.55 | 0.64 | 0.22 | 0.19 | 0.74 | 0.71 | 0.63
AHRC 0.25 | 0.26 | 0.38 | 0.34 | 0.30 | 0.17 | 0.09 | 0.45 | 0.44 | 0.28 | 0.41 | 0.57 | 0.71 | 0.67 | 0.62 | 0.37 | 0.19 | 0.74 | 0.65 | 0.59
- Balanced Accuracy NMI
C13 | WIK | COA | COC| CIC | NEW| PBC | DBA | AMZ| MAG| C13 | WIK | COA | COC | CIC | NEW| PBC | DBA | AMZ| MAG
GNMFA || 0.51 | 0.71 | 0.51 | 0.50 | 0.51 \ 0.50 | 0.66 \ \ 0.12 | 0.46 | 0.05 | 0.02 | 0.02 \ 0.00 | 0.30 \ \
GNMFC|| 0.51 | 0.71 | 0.54 | 0.52 | 0.57 \ 0.52 | 0.65 \ \ 0.12 | 0.46 | 0.11 | 0.05 | 0.18 \ 0.15 | 0.28 \ \
GNMFL || 0.53 | 0.68 | 0.56 | 0.54 | 0.65 \ 0.51 | 0.69 \ \ 0.16 | 0.46 | 0.20 | 0.21 | 0.27 \ 0.09 | 0.43 \ \
JNMF 0.59 | 0.64 | 0.59 | 0.56 | 0.59 | 0.51 | 0.50 | 0.66 \ \ 0.18 | 0.38 | 0.27 | 0.21 | 0.23 | 0.03 | 0.00 | 0.31 \ \
GRAC 0.80 | 0.68 | 0.62 | 0.59 | 0.56 | 0.53 | 0.52 | 0.73 \ \ 0.43 | 046 | 0.36 | 0.34 | 0.22 | 0.19 | 0.16 | 0.53 \ \
AHCKA || 0.80 | 0.69 | 0.67 | 0.63 | 0.69 | 0.54 | 0.53 | 0.77 | 0.61 | 0.63 | 0.42 | 0.48 | 0.44 | 0.42 | 0.37 | 0.29 | 0.17 | 0.60 | 0.54 | 0.52
AHRC || 078 | 0.69 | 0.73 | 0.69 | 0.67 | 0.58 | 0.53 | 0.77 | 0.77 | 0.67 | 0.44 | 0.52 | 0.49 | 0.46 | 0.36 | 0.27 | 0.14 | 0.61 | 0.47 | 0.49

Table 3. Cl@ri@Q@ity of Different A@rithmic Methods

7.1 Effectiveness and Scalability

In this section, we show the experimental results on clustering quality and scalability. Clustering
quality is evaluated in the alignment to the ground truth clustering with 6 widely used metrics:
F-measure [48], Adjusted Rand Index (ARI) [29], Jaccard Similarity [29], Purity [48], Balanced
Accuracy [9], and Normalized Mutual Information (NMI) [35]. For all the above metrics, a larger
score indicates better clustering quality.

Exp 1. Clustering Quality. Table 3 shows the clustering performance of our AHRC and 6 algo-
rithmic baselines on datasets with ground truth. Top-2 scores for each dataset are highlighted with
bold&underline and bold, respectively. °\’ denotes no result due to time-out or out-of-memory rea-
son. Baselines GNMFA, GNMFC, and GNMFL fail on dataset NEW as they regard the entire graph
as a single cluster. In general, our AHRC achieves the best overall performance. Specifically, on
F-measure, AHRC surpasses all 6 baselines (in top-down order as listed in Table 3 unless otherwise
specified) by 102%, 83%, 61%, 80%, 41%, and 20%, respectively, averaged over all datasets. In terms of
ARI, AHRC outperforms all 6 baselines by 8,329%, 776%, 598%, 6, 585%, 85%, and 24%, respectively.
On Jaccard Similarity, AHRC is 133%, 104%, 86%, 107%, 53%, and 26% higher than the 6 baselines.
For Purity, AHRC outperforms the baselines by 98%, 60%, 34%, 75%, 34%, and 10%, respectively. On
Balanced Accuracy, AHRC outperforms baselines by 26%, 22%, 18%, 17%, 9%, and 5%, respectively.
On NMI, AHRC is 4, 645%, 237%, 83%, 2,370%, and 24% higher than GNMFA, GNMFC, GNMFL,
JNMF, and GRAC, respectively. AHRC obtains a similar (by an average of —1% lower) NMI to
AHCKA.

Exp 2. Clustering Quality. Table 4 shows the clustering performance of our TCL+, GRC+, and 2
contrastive learning baselines on datasets with ground truth. Due to the out-of-memory reason,
none of the methods could run on the datasets with millions of nodes such as MAG. In general, our
TCL+ achieves the best overall performance among all 4 methods. Averaged across all datasets,
TCL+ obtains 694%, 45%, and 147% higher ARI than GRACE, GRC+, and TRICL, respectively, and
outperforms them by 78%, 33%, and 25% in terms of NMI, respectively.
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- F-measure ARI
C13 | WIK | COA | coCc | CIC | NEW | PBC | DBA | C13 | WIK | COA | cOC | CIC | NEW | PBC | DBA
GRACE || 0.14 | 036 | 026 | 031 | 028 \ 0.18 \ 001 | 028 | 005 [ 016 | 007 \ 0.07 \
GRC+ || 029 | 040 | 035 | 031 | 035 | 019 | 016 \ 021 | 033 | 022 | 019 | 021 | 0.11 | 005 \
TRICL || 017 | 021 | 044 | 037 | 045 | 019 | 016 | 056 | 0.04 | 006 | 034 | 026 | 035 | 012 | 0.07 | 044
TCL+ || 039 | 039 | 046 | 043 | 046 | 0.23 | 020 | 0.65 | 0.31 | 031 | 037 | 032 | 036 | 0.14 | 0.07 | 0.57
- Jaccard Similarity Purity
C13 | WIK | COA | coc | CIC | NEW | PBC | DBA | C13 | WIK | COA | COC | CIC | NEW | PBC | DBA
GRACE || 007 | 022 | 015 | 0.18 | 0.16 \ 0.10 \ 026 | 052 | 040 | 047 | 039 \ 0.20 \
GRC+ || 017 | 025 | 0.21 | 0.18 | 0.21 | 0.11 | 0.09 \ 0.35 | 0.56 | 0.55 | 048 | 0.50 | 0.26 | 0.19 \
[ TRICL J] 009 [ 012 [ 028 [ 023 | 029 | 011 | 008 | 039 [ 028 [ 035 [ 061 | 054 | 059 [ 022 [ 017 [ 071 |
[ TCL+ [ 024 [ 024 [ 030 [ 0.27 | 0.30 [ 013 [ 0.11 [ 049 | 0.38 [ 055 | 0.62 [ 059 | 0.61 [ 027 | 0.24 [ 077 |
g Balanced Accuracy NMI
C13 WIK COA | coC CIC | NEW | PBC DBA Ci13 WIK COA | coC CIC | NEW | PBC DBA
GRACE || 052 | 067 | 053 | 058 | 055 \ 0.53 \ 022 | 051 | 017 [ 0.29 | 0.16 \ 0.19 \
GRC+ || 0.68 | 0.68 | 0.61 | 059 | 0.61 | 054 | 052 \ 034 | 054 | 031 [ 028 | 029 | 0.24 | 0.15 \

[ TRICL J] 061 [ 058 [ 0.65 | 062 | 0.66 | 054 | 0.53 | 075 [ 022 [ 029 | 043 | 040 | 038 [ 032 [ 019 [ 058 |
[ TCL+ [[ 079 | 0.68 | 0.66 [ 0.65 [ 0.66 [ 0.55 [ 053 [ 0.78 | 044 | 047 | 044 | 045 | 039 | 0.33 | 0.21 | 0.64 |
Table 4. Clustering Quality of Different Contrastive Learning Methods
- C13 WIK COA coC cIc NEW PBC DBA AMZ MAG

Time| Space| Time| Space| Time| Space| Time| Space| Time| Space| Time | Space| Time| Space| Time| Space| Time | Space] Time | Space|
GNMFA[ 23.69] 0.15 | 113 | 0.30 | 31.31] 0.27 | 27.30] 0.27 | 165 | 0.35 | 295 | 2.21 | 415 | 4.29 | 1550 | 20.17] \ \ \ \
GNMFC|[ 23.90] 0.15 | 118 | 0.27 | 32.54] 0.23 | 27.30| 0.23 | 164 | 0.31 | 302 | 2.14 | 411 | 4.27 | 1502 | 20.17| \ \ \ \
GNMFL || 23.81] 0.15 | 121 | 0.21 | 29.55] 0.17 | 28.92] 0.17 | 168 | 0.17 | 316 | 2.13 | 483 | 4.34 | 2382 | 20.11| \ \ \ \
JNMF || 158 | 0.15 | 6.40 | 0.31 | 10.73] 0.21 | 11.04] 0.24 | 30.19] 0.29 | 285 | 2.15 | 494 | 4.29 | 2716 | 20.11] \ \ \ \
GRAC || 35.15] 0.23 | 89.51] 039 | 32.97| 0.36 | 14.17] 0.36 | 61.27] 0.41 | 30.60] 0.29 | 19.29 0.43 | 525 [ 1.32 | \ \ \ \
AHCKA[] 0.74 | 0.03 | 2.93 | 0.14 | 1.98 [ 0.02 [ 3.47 [ 0.13 | 2.67 | 0.04 | 42.48] 0.13 | 43.86 0.19 | 8.74 | 0.21 | 18799] 6.16 | 11064 5.34
AHRC ][ 0.16 | 0.03 | 0.47 | 0.04 | 0.48 | 0.02 | 0.74 | 0.02 | 0.47 | 0.02 | 33.37] 0.16 | 3.70 | 0.07 | 9.53 | 0.19 | 6214 | 21.80] 4236 | 16.19)

Table 5. Time and Memory Cost of Different Algorithmic Methods (Time in Seconds, RAM in (ﬁ)

To better demonstrate the effectiveness of our models and AHR layer, we group TCL+ with TRICL,
and GRC+ with GRACE, highlighting the best score within each group for each dataset. Specifically,
our TCL+ constantly outperforms TRICL on all datasets across all 6 metrics. Specifically, TCL+
achieves 38% higher F-measure, 147% higher ARI, 47% higher Jaccard Similarity, 22% higher Purity,
7% higher Balanced Accuracy, and 25% higher NMI compared to TRICL, averaged over all datasets.
Comparing our GRC+ and GRACE, GRC+ constantly surpasses GRACE on all datasets except PBC
across all 6 metrics: averaged over all datasets, GRC+ achieves 28%, 425%, 36%, 18%, 10%, and 33%
higher F-measure, ARI, Jaccard Similarity, Purity, Balanced Accuracy, and NM]J, respectively, than
GRACE.

Exp 3. Time and Memory Cost. Table 5 shows the time and memory cost of AHRC and the
algorithmic baselines on 10 hypergraphs. On the largest hypergraphs AMZ and MAG, the baselines
GRAC failed with out-of-time errors, and the other baselines failed with out-of-memory errors. In
terms of running time, AHRC is in general the fastest among all 7 methods, showing the effectiveness
of our method. Specifically, over all datasets, GNMFA, GNMFC, GNMFL, JNMF, GRAC, and AHCKA
is on average 140, 141, 156, 68, 85, and 4 times slower than our AHRC, respectively. In terms of
memory cost, averaged over all datasets, GNMFA, GNMFC, GNMFL, JNMF, and GRACE take 29,
28, 26, 28, and 10 times more memory space than our AHRC, respectively. On AMZ and MAG,
we take 2.5 and 2 times more memory space than AHRC, respectively. It is because we store the
transition matrix T of a hypergraph for spanning forest sparsification, while AHCKA maintains
3 small matrices: i) a matrix of size O((k + 1)n) to approximate the top k + 1 eigenvectors (k is
the number of clusters) of T for clustering, ii) the O(vol(#H)) incident matrix, and iii) the O(Kn)
transition matrix of the KNN attribute grap (K is the number of neighbors in the attribute graph).
However, the running time of AHCKA is much higher than that of AHRC for the iterative matrix
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Fig. 5. Scalability: Time Cost of AHRC by Varying Node Number
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Fig. 6. Sensitivity: Clustering Quality of AHRC by Varying ©

multiplications. Specifically, AHCKA iteratively updates the approximations by recomputing matrix
multiplications on these matrices in each iteration.

Exp 4. Scalability. Figure 5 shows the time cost of AHRC (on the left y-axis) and the dyadic
volume of the graphs (on the right y-axis) when varying the number of nodes of the graph. Due
to the space limit, we only show the results on 4 largest datasets. For each graph, we created 5
induced subgraphs, containing 10%, 30%, 50%, 70%, and 90% of nodes randomly selected from the
original graph, respectively, and reported the running time on them. Figures 5 shows that the time
cost exhibits approximately a linear trend with the dyadic volume vol, (#). This result echoes the
complexity of AHRC proved by Lemma 5. It also underscores the primary scalability limitation
discussed in Section 4, where the growing vol, () impacts scalability.

7.2 Sensitivity

Exp 5. Sensitivity Test on 7. We conduct a sensitivity test by varying the parameter 7 from 1 to 6
to test its impact on the clustering quality and time cost of AHRC. Figure 6 reports the scores for
6 metrics on 8 datasets. As a general trend, increasing 7 slightly improves the clustering quality.
With a small 7, the sparsified graph captures insufficient topological relationships, which degrades
the clustering quality. As 7 increases, the clustering quality improves, as more topological structure
is preserved. When 7 becomes greater than 4, the quality may slightly degrade on some datasets
(e.g., NEW and DBA). Overall, the clustering quality exhibits minor sensitivity to the change in 7.
As 7 increases from 1 to 6, the metric scores change by 4.5%, —0.6%, 2.4%, —0.7%, and 0.7% at each
step, respectively, averaged on all metrics and datasets. Figure 7 shows the time cost of AHRC. In
general, the running time of AHRC rises as 7 increases. Specifically, when 7 increases from 2 to 6,
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Fig. 8. Sensitivity: Clustering Quality of AHRC by Varying y

AHRC takes 53%, 107%, 158%, 205%, and 221% more time compared to 7 = 1. This result echoes the
complexity proved by Lemma 5. To achieve a good balance between the clustering effectiveness
and efficiency, we set 7 = 3 as the default value.

Exp 6. Sensitivity Test on y. We evaluate the clustering quality and time cost of AHRC when
the parameter y varies from 1 to 6. Figure 8 reports the scores for 6 metrics on 8 datasets. As
a general trend, the clustering quality increases sharply when y increase from 1 to 2 and then
remains relatively stable as y grows larger. Specifically, as y increases from 1 to 6, the metric scores
change by 7.9%, —1%, 2.2%, —0.8%, and 0.8% at each step, respectively, averaged on all metrics and
datasets. Figure 9 shows the time cost of AHRC. In general, the running time of AHRC rises as y
increases. Specifically, when y increases from 2 to 6, AHRC takes 76%, 224%, 470%, and 789% more
time compared to y = 1. This result echoes Lemma 1. Thus, considering the efficiency, we set y = 2
as the default value.

Exp 7. Sparsification Methods. We conduct a sensitivity test to evaluate how different sparsifica-
tion methods impact the clustering quality of AHRC. In addition to spanning forest sparsification
(SPF), we tested 6 top-performing deterministic sparsification methods from [13]: K-Neighbor (KN),
ER-unweighted (ER), ER-weighted (ERW), Local Similarity (LSim), LSpar (LS), and Local Degree
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Fig. 9. Sensitivity: Time Cost of AHRC by Varying y

C13 WIK COA coc CcIC NEW PBC DBA AMZ MAG
F1 | Time| F1 | Time| F1 | Time| F1 | Time| F1 | Time| F1 Time F1 | Time| F1 Time F1 | Time| F1 | Time
KN 0.37 | 0.34 | 0.42 | 0.86 | 0.54 | 0.57 | 0.49 | 0.65 | 0.46 | 1.04 | 0.28 | 21.92 | 0.15 | 5.12 | 0.64 | 21.86 | 0.26 | 6705 | 0.40 | 6934
ER 0.35 | 5.66 | 0.43 | 18.88| 0.54 | 12.90| 0.49 | 19.95| 0.47 | 20.66| 0.26 | 10863 | 0.29 | 466 | 0.60 | 2368 \ \ \ \
ERW 033 | 3.82 | 0.44 | 13.41| 0.53 | 0.83 | 0.49 | 16.68| 0.47 | 15.88| 0.25 | 7704 | 0.27 | 405 | 0.63 | 1756 \ \ \ \
LSim 024 | 1.93 | 0.47 | 7.40 | 0.51 | 1.37 | 0.48 | 1.27 | 0.46 | 2.38 \ \ 0.21 | 50.73| 0.61 | 82.95 \ \ \ \
LS 0.27 | 1.55 | 0.45 | 6.14 | 0.51 | 1.15 | 0.48 | 1.10 | 0.46 | 1.74 \ \ 0.22 | 44.18| 0.62 | 66.34 \ \ \ \
LD 0.35 | 0.38 | 0.42 | 1.23 | 0.51 | 1.87 | 0.49 | 1.67 | 0.46 | 1.67 | 0.32 | 17.71 | 0.31 | 32.91| 0.62 | 29.98 | 0.50 | 3305| 0.37 | 5098
SPF || 0.37 | 0.11 | 0.41 [ 0.32 | 0.55 | 0.54 | 0.51 | 0.34 | 0.46 | 0.34 [ 0.28 | 23.75 | 0.17 | 2.72 | 0.62 | 6.12 | 0.60 | 6214 0.43 | 4236

Table 6. Sensitivity: Clustering Quality and Time Cost of AHRC with Different Sparsification Methods

~

F-measure ARI
C13 | WIK| COA| COC| CIC | NEW| PBC | DBA| AMZ| MAG| C13 | WIK| COA| COC| CIC | NEW| PBC | DBA| AMZ| MAG
AHRC (LIN) 0.36 | 0.46 | 0.45 | 0.43 | 0.38 | 0.22 | 0.13 | 0.52 | 0.16 | 0.21 | 0.29 | 0.41 | 0.36 | 0.34 | 0.28 | 0.15 | 0.05 | 0.43 | 0.12 | 0.15
AHRC (LOG) 0.36 | 0.45 | 0.34 | 0.34 | 0.33 | 0.22 | 0.13 | 0.48 | 0.14 | 0.15 | 0.30 | 0.41 | 0.24 | 0.25 | 0.24 | 0.15 | 0.04 | 0.37 | 0.11 | 0.10
AHRC (EXP) 024 | 0.47 | 0.43 | 0.39 | 0.38 | 0.22 | 0.13 | 0.50 | 0.16 | 0.21 | 0.17 | 0.42| 0.34 | 0.29 | 0.28 | 0.15 | 0.05 | 0.40 | 0.13 | 0.15
AHRC (SQR) || 0.40 | 0.41 | 0.55 | 0.51 | 0.46 | 0.28 | 0.17 | 0.62 | 0.61 | 0.43 | 0.33 | 0.34 | 0.46 | 0.41 | 0.36 | 0.20 | 0.06 | 0.53 | 0.54 | 0.37

Table 7. Sensitivity: Clustering Quality of AHRC with Different Transformation Functions

~

(LD). For a fair comparison, all methods were set to the same sparsification level, with each node
having 6 neighbors. Table 6 reports the F-measure score and time cost on 10 datasets. SPF in general
achieves the fastest performance. Specifically, KN, ER, ERW, LSim, LS, and LD are on average
40%, 98%, 91%, 85%, 82%, and 53% slower than SPF, respectively, over all datasets. In terms of the
clustering quality, SPF outperforms KN, LSim and LS by 15%, 5% and 3%, and outperforms slightly
worse than ER, ERW and LD by —3%, —2% and —1%. Note that on the largest datasets AMZ and
MAG, ER, ERW, LSim, and LS exceeded the time limit due to their low efficiency. Among the rest,
our SPF achieves the best clustering quality. Overall, SPF provides the best trade-off between the
effectiveness and efficiency, making it the most suitable choice for AHRC pipeline.

Exp 8. Transformation Functions. We evaluate the clustering performance of AHRC using
the square root transformation compared to other transformation methods. We compare four
variants of our method using 4 transformation functions p: AHRC (LIN) denotes our algorithm
using p(s) = s, AHRC (LOG) uses p(s) = m, AHRC (EXP) uses p(s) = Zzg((i;j, where
exp(1) = 2.71828 - -, and AHRC (SQR) uses p(s) = +/s. Table 7 reports the F-measure and ARI
scores. In general, AHRC (SQR) achieves the best clustering performance. Specifically, on F-measure,
AHRC (SQR) outperforms the other 3 variants (in top-down order as listed in Table 7) by 22%, 40%,
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F-measure
C13 | WIK| COA| COC| CIC | NEW| PBC | DBA| AMZ| MAG
AHRC \ ATM 0.14 | 0.16 | 0.21 | 0.11 | 0.10 | 0.23 | 0.02 | 0.27 | 0.22 | 0.34
AHRC\RWM || 0.38 | 0.34 | 0.47 | 0.48 | 0.40 | 0.19 | 0.23 | 0.59 | 0.26 | 0.38
AHRC \ ST 0.21 | 0.40 | 0.29 | 0.29 | 0.29 | 0.24 | 0.14 | 045 | 0.12 | 0.12
AHRC \ Sa 0.16 | 0.13 | 0.05 | 0.06 | 0.01 | 0.01 | 0.02 | 0.06 | 0.01 | 0.01
AHRC 0.37 | 041 0.55| 0.51| 0.46 | 0.28 | 0.17 | 0.62 | 0.60 | 0.43

Table 8. Impact of Individual Modules on Clustering Quality

~

and 29%, respectively, averaged over all datasets. On ARI, it outperforms the other 3 variants by
27%, 56%, and 38%, respectively.

Exp 9. Ablation Studies. To quantify the impact of different modules, we conduct ablation studies
by creating 4 variants of our method. For the attribute graph module, AHRC\ATM replaces the
KNN graph with a KNN adjacency graph, where each node selects its k most similar neighbors
based on attribute similarity among its adjacent nodes. For the random walk module, AHRC\RWM
skips random walk. For the integration module, AHRC\TSM uses only Sp and AHRC \ ASM
uses only St. Table 8 shows the F-measure score on 10 datasets. Overall, AHRC achieves the best
performance. Specifically AHRC achieves 231%, 23%, 104%, and 2108% higher F-measure scores
than the other variants (in top-down order as listed), respectively, averaged over all datasets. The
ablation studies show the impact of each module on the clustering performance.

8 Conclusions

This paper proposes AHRC, an attributed hypergraph clustering approach with cutting-edge
clustering quality and scalability. The performance of AHRC attributes to three new designs of
AHRC compared to existing methods: 1) a novel integration of multi-hop hypergraph topology and
attributed information, 2) a new formulation multi-hop modularity for clustering, 3) an effective
sparsification for improving the scalability, and 4) generalizability to enhance contrastive learning.
Our experiments show that AHRC significantly outperforms the state-of-the-art methods on real-
world hypergraphs and in particular, it is up to two orders of magnitude faster than the baseline
methods.
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